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Abstract
The hyper-centralized nature of personal data has been getting some doubt due to recent data scandals.
Decentralized ecosystems, like Solid, allow for users to take back control of their data by storing it
in a data pod. This decentralization of data, together with the vision of Solid where everything has
to be interoperable, causes the querying of this data to be slow. We propose to address this problem
by introducing aggregators. Aggregators are a network of query and reasoning agents, each of which
contribute (partial) results to a query by providing an up-to-date materialized view on the decentralized
data.
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1. Introduction

The Big Data and analytics software market was worth $90 billion in 2021 and is set to double by
2026 [1]. Companies are increasingly relying on personal data to offer personalized experiences,
but data scandals (e.g. Cambridge Analytica & Equifax) and legal limitations on the collection of
personal data have led to an increasing demand of decentralized storage of personal data [2],
where each person has their own personal data storage or pod. The key to sustainability of
this decentralized vision is that every data pod provider implements a universally accepted
standard to share this data. So each service provider can also adopt this standard and thus
request and process data from any data pod provider, with the person’s permission. The Solid
specification [3] has large potential of becoming this standard. Solid’s focus is to enable the
discovery and sharing of information in a way that preserves privacy. Solid is built upon
existing (Semantic) Web standards, as each pod stores data in the form of documents containing
Linked Data (RDF) to allow for high interoperability between services. While the community
is currently gaining momentum and rapidly realizing decentralized solutions for the storage
and querying of data in Solid pods, fundamental research questions arise from a service
provisioning viewpoint concerning the scalable and performant processing of all this
decentralized data. We tackle the problem from a querying perspective: a service provider
has an information need, expressed as a query, and wishes it to be answered. For example, if
Agent 1 on the left of Fig. 1 wants to query social media posts on a certain topic, it would need
to query all the available posts to find the solution, which is not feasible on a web scale. Also,
decentralized data inherently suffers from data variety, as there exists no central authority that
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Figure 1: A decentralized social media use case with posts and comments.

can enforce one specific data format or schema. Meaning, no schema is enforced to describe
this kind of social media data, so schema/ontology alignment through semantic reasoning is
required to create a unified view on the variety of schema data. Semantic reasoning allows
to automatically infer alignments between various schemas and hide this data variety to the
applications using the data. However, semantic reasoning brings a computational overhead,
adding to the challenge of generating the query results in a timely manner.

As such, tackling the service information need in a decentralized pod environment requires
solving a federated query and schema alignment (reasoning) problem with a high number of
independent and varied data sources, requiring more complex algorithms while having less
computational power per node than centralized systems. We aim to address this problem by
introducing aggregators. Aggregators are a network of query and reasoning agents, each
of which contribute (partial) results to a query by providing an up-to-date, i.e. contin-
uously maintained, materialized view on the underlying decentralized RDF data. The
materialized view refers to SPARQL query results, which also includes results from data
originally modelled using different ontologies than the ones used in the query. By using
aggregators, a service information need could be quickly resolved by just retrieving the result
from one or more aggregators. To achieve this, the changes in the underlying data need to be
timely reflected into changes in the materialized view. This can be achieved by re-executing
the query when changes occur, but to achieve proper scalability, incremental approaches are
necessary. In decentralized systems, we can perform link-traversal [4], i.e. follow links to
discover new sources that might contain relevant data, e.g. in Fig. 1 Posts specify links to the
comments, which can be dereferenced to find the associated comment data on another pod.
Performing link-traversal in an incremental query engine is more difficult as certain links might
not contain any relevant data at the moment of fetching, but might in the future. Moreover,
a link might be deleted, causing some links to become irrelevant in the future. To allow for
optimal scalability, interoperability and re-use of the aggregators, it is preferable that they can
be automatically discovered, both in terms of location and offered functionality. Two challenges
arise with this, a central catalogue for all aggregators is infeasible at web scale, so a decentralized
solution should be used. Second, discovering and using an aggregator to find the results of a
query should be faster than executing the query itself.



In summary, to realize aggregators that enable scalable and efficient querying of decentralized
data sources, the following challenges need to be tackled:
C-I: Design of incremental query algorithms that are able to query decentralized sources in an
efficient and scalable fashion.
C-II: Facilitate complete query answers, regardless of decentralized storage that use different
ontologies, by enabling decentralized schema alignment.
C-III: Increase decentralized query scalability by enabling automated discovery and use of the
aggregator.

2. State of the Art (SotA)

The SotA on link-traversal is to the best of our knowledge non-existent for incremental
systems. For non-incremental systems there exist 3 types of link-traversal strategies [5]. The
top-down strategy first finds and collects the relevant sources and data before the query is
executed. The bottom-up strategy immediately evaluates the relevant sources. This requires
incremental SPARQL operators, as it is possible that some data might be added later, however,
only additions need to be supported. Finally, the hybrid strategy combines both approaches
by first collecting a number of sources, then executing the query for some first results, before
gathering additional sources. This allows for both fast and up-to-date results [6].

Incremental view maintenance, for incremental query engines, has been researched ex-
tensively in the field of relational databases. The most notable one is differential dataflow [7],
which describes the logic behind differential operators. These operators determine the changes
in the result set based on the changes of the input set. Incremental query engines for the Se-
mantic Web have also been researched. Schmedding et al. [8] laid the foundation of incremental
SPARQL operator logic. Most incremental query engines [9, 10, 11, 12] use the Rete algorithm
to incrementally update the result set. Some of these do not consider deletions and only use
the symmetrical joins in the Rete network to allow for a bottom-up link-traversal approach.
This research lacs to consider the computation expenses that come with computing the changes
between different resource versions.

For schema alignment backed by semantic reasoning, we focus on rule-based reasoning
as rule-based reasoning is more scalable and typically aligns naturally with the definitions
of business logic and thus also aligns naturally with the definition of alignment rules [13].
Three inference approaches exist for enabling schema alignment using rule-based reasoning:
forward-chaining, backward-chaining and hybrid. To perform incremental forward-chaining
also called materialization, there exist three main algorithms [? ]: the counting algorithm, the
Delete/Rederive (DRED) algorithm and the Forward/Backward/Forward (FBF) algorithm. They
support both additions and deletions. Backward-chaining can be done in two ways, goal driven
or query rewriting. The advantage of backward-chaining is that no intermediate results need
to be explicitly stored, however, typically requiring a computational penalty to re-compute
intermediate results more often in the goal driven case or the evaluation of very large queries
in the case of query rewriting [14]. First steps towards hybrid approaches [14] have been set,
that use backward-chaining to prune the rules, so only the necessary ones remain to perform
forward-chaining materialization. However, these hybrid approaches have focused so far on



limited reasoning problems, i.e. the computation of class hierarchies. The combination of
reasoning for schema alignment and link-traversal has not been researched extensively. Only in
Umbrich, et al. [15] some lightweight reasoning is applied to increase the recall of the SPARQL
query, so further research in this area is required.

For the SotA on discovery of the aggregator , we can take inspiration from two fields of
research. First, distributed hash table (DHT) protocols [16] are used in peer-to-peer systems
to decentralize data and allow for timely lookup of that data. Each peer is responsible for a
fraction of the hash table. To find an element in the network, the hash table can be used to find
the location of the peer where the element is in. This idea can be used in an aggregator network
where the elements are queries and the peers are aggregators. Second, approximate membership
functions (AMFs) can determine if certain elements could be part of a dataset or if they will
not be part of a dataset. As such, they could give false positives but will always return true
negatives. Bloom Filters [17] are AMFs, as they map multiple hash functions to a bitmap. They
can be used to more quickly find a corresponding aggregator for a certain query. In federated
querying, they are already used to index RDF datasets to more quickly determine if a dataset is
useful for a certain query [18]. Next, we can look into the SotA of the use of the aggregator .
After discovering a potentially useful aggregator, the research field of query containment [19]
can allow for checking if and how it can be used to contribute to the query answers. Next,
FedQPL [20] is a language for query plans using different heterogeneous endpoints. This would
allow for defining query plans while using different aggregators and other endpoint like TPF,
brTPF, SPARQL endpoints, etc.

In summary, although research has been conducted on incremental querying, many do not
support deletions and none get the changes from decentralized sources, where they consider the
computational expenses of calculating the changes. Furthermore, no incremental link-traversal
exists that takes possible deletions of sources into account. Incremental reasoning is a well-
established field, however more efficient hybrid approaches that could enable reasoning on
the limited resources in the decentralized web and the combination with link-traversal have
not been explored yet. Discovery techniques for RDF datasets exist, but additional research is
needed on how these techniques can deal with more quickly discovering aggregators based on
a query.

3. Problem Statement and Contributions

The overall goal is to investigate a discoverable network of aggregators and how they can
efficiently maintain an up-to-date view on (partial) query results on decentralized RDF data
that are possibly modelled by a variety of schemas that need to be automatically aligned. The
following research questions (RQs) and hypotheses (H) will be tackled:
RQ-I: Can incremental query evaluation in a decentralized environment allow for a lower latency
in updating the materialized view compared to re-executing the query? (C-I)
H-I: In 90% of cases, incremental query evaluation allows for a 50% decrease in latency when
updating the materialized view.
RQ-II: Can view maintenance in a decentralized environment incorporate changes (additions and
deletions)? (C-I)



H-II:Current link-traversal algorithms do not allow for both additions and deletions, redesigning
these algorithms could enable decentralized view maintenance.
RQ-III: Can rule-based reasoning (for schema alignment) be used to increase the recall of a query
over decentralized sources when using link-traversal? (C-II)
H-III: Rule-based reasoning for schema alignment can allow for a 70% increase in recall.
RQ-IV: Can a yet to be discovered aggregator allow for a decrease in query execution time compared
to local execution? (C-III)
H-IV: Aggregators can allow for up to a 50% decrease in query execution time compared to
local execution of a query.

Agent 2 in Fig. 1 shows how I envision aggregators to be used in the aforementioned social
media use case. Multiple aggregators can work together to find the solution to the query. Agent
2 can use the materialized view of the right aggregator, which builds on the result of all the
other aggregators.

4. Methodology and Evaluation

Fig 2 shows the different envisioned components of the aggregator and will aid in explaining
the function of different building blocks I aim to design during my research. The aggregator
itself will be built by modifying and extending Comunica [21], this is a modular querying
framework for decentralized RDF data. The modularity of Comunica allows for fast prototyping
(like implementing incremental query evaluation) whilst already having a foundational query
framework. Two benchmarks have been selected to evaluate the RQ’s. Firstly, the Train
Benchmark [22] is a cross-technology performance benchmark build for continuous queries. It
is a centralized benchmark that includes changes to the dataset for continuous or incremental
query engines. Second, the Solidbench benchmark [23] is based on the LDBC data generator, it
generates decentralized linked social media data. Solidbench currently only generates static
data, which needs to be altered to be able to evaluate the incremental nature of the aggregator.
All the social media data is currently also described using only one ontology, so for RQ III
additional ontologies will need to be implemented into the benchmark.

In RQ-I, I will research incremental query operators for maintaining a materialized view on
decentralized data (C-I). This RQ will focus on the Guarding and Incremental Query Engine block

Figure 2: Aggregator architecture diagram.



in Fig 2, Guarding is the act of keeping the local state of the resources up to date and calculating
the changes between resource versions. Incremental Query Engine will then use these changes
to calculate the changes in the results. This allows us to compare the latency and memory
consumption between re-evaluating the query versus maintaining it incrementally. Different
Guarding and Incremental Query Engine techniques can then also be explored and quantified.
Incremental computation will require the query engine to keep more state in the operators and
will therefore use more memory, but it should have a lower latency compared to reevaluating
the query. The Incremental Query Engine can be benchmarked with the Train Benchmark whilst
the complete aggregator can be benchmarked with the Solidbench benchmark.

For RQ-II I will investigate techniques to perform link-traversal in an incremental query
engine (C-I). Here, I will focus on extracting links in the Incremental Query Engine that are then
added to the URI Queue. To perform link-traversal incrementally, it will have to be deterministic.
So it is guaranteed to end at some point [24] and the aggregator will not have to guard too many
resources. Furthermore, the links that lead to other resources might be deleted and the newly
found resources might therefore become irrelevant. I will develop algorithms and techniques to
lower the amount of resources that are being guarded in the incremental query framework.

To answer RQ-III, research on how schema alignment (reasoning) can complement the incre-
mental query algorithms is needed (C-II). Two approaches can be compared for implementing
reasoning in the aggregator. A query rewriting approach should be able to make use of all the
features of the query engine (incremental computations and link-traversal). A hybrid systems
will require a reasoner that is able to update its resulting materialized triples when changes
to the decentralized data occur, and extract links based on the chosen reachability-semantics
of the link-traversal. These two approaches need to be compared and evaluated based on the
amount of memory they use, the increase in recall of query results and the latency between
changes in the decentralized data using the Solidbench benchmark.

Previously, we have made the assumption that the location and function of the aggregator is
known. To answer RQ-IV, I will research how the aggregator can be discovered and used by
other agents (client applications or other aggregators). A central catalogue of all aggregators
is not scalable to the whole Web, so a solution needs to be investigated on how each pod can
maintain a catalogue for all the aggregators that use its data. Once an agent has discovered
the aggregator, it can check if it can use its result. Meaning, the aggregator should explain its
materialized view (query, alignment rules, sources). I will design this decentralized catalogue
and investigate different approaches to enable faster discovery of aggregators compared to
actually performing the query itself using the Solidbench benchmark.

5. Preliminary or Intermediate Results

Two preliminary results have been accomplished:
Query redo: I designed a query engine that gives a continuous materialized view on given

sources. This first naive implementation of an aggregator was realized as a wrapper around
Comunica. This aggregator accepts queries and will execute them and cache and update the
results on changes to the source data. Two main ways were investigated to check for changes, a
polling strategy and a websocket strategy. As the whole query is re-evaluated when the data
changes, it is not necessary to calculate the difference. This implementation of the aggregator



allowed for faster query results, but has a high latency when changes occur.
Incremental query engine: Research on implementing incremental query operators in

Comunica has already begun. A naive way of guarding has already been implemented, together
with a rudimentary incremental symmetric hash join. All used sources are constantly polled
and if one changes it calculates the changes with a naive algorithm. The changes are then stored
in a streaming store. This store indexes the new triples and updates subscribed triple pattern
fragments if the new triple matches. The changes are then propagated to the query engine and
result in the change in result set. At the moment, only an incremental symmetric hash join has
been implemented.

6. Conclusions

The current paradigm shift to decentralized storage ecosystems will hit major limitations when
these systems scale to the size of the current Web. I therefore propose aggregators to allow for
greater scalability when querying over these large scale decentralized semantic data. These
aggregators provide an up-to-date materialized view on top of this decentralized data to more
quickly answer queries. In my research, I will be investigating if incremental query approaches
are a possible solution to decrease the latency of these aggregators. Furthermore, I will explore
link-traversal techniques when performing incremental queries. Next, I will be evaluating what
types of reasoning techniques can be used to achieve schema alignment in these aggregators in
a timely manner. Finally, I will make sure multiple aggregators can be used together to find a
solution to a query. These aggregators will enable applications to get the results to complex
queries in a timely manner and enable to scale the decentralized web.
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