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Abstract
Root Cause Analysis is a method to identify the cause of problems in manufacturing. The analysis
is usually performed manually by experts, is time-consuming, and costly. Therefore, the automation
of the analysis process is of interest. However, besides measurements from manufacturing processes,
prior knowledge is needed to create results comparable to those from manual analysis. This work uses
Semantic Web technologies to model prior knowledge and Neuro-Symbolic AI to reason for root causes.
The Neuro-Symbolic AI combines reasoning on observed production data and on prior knowledge. Using
such approach makes it possible to combine efficient pattern recognition and probabilistic reasoning for
data analysis. This work shows an evaluation workflow for such proposedmethods with a data generation
model. Preliminary results show the conceptualization of available prior manufacturing knowledge.
The future steps contain the research on data models and the evaluation of existing Neuro-Symbolic
approaches.
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1. Introduction

Enabling high quality and efficiency simultaneously in manufacturing is a challenging task.
Root Cause Analysis (RCA) is used for identification of problems in manufacturing to reduce
machine downtimes and the amount of produced scrap. The aim is to find and fix the cause
of a problem rather than treat the symptoms [1]. However, current methods depend highly
on expert knowledge, like the Failure Mode and Effect Analysis, the Ishikawa Diagram, or the
5-Why Analysis [2]. Since traditional RCA is an expert-dependent and time-consuming process,
automating RCA is a research topic of interest. Furthermore, the usage as an on-production-line
analysis tool [3] and the incorporation of additional observed data [4] motivate the automation
of RCA.

The proposed research aims to integrate prior knowledge into an automated RCA process.
Therefore, the advantages of symbolic and sub-symbolic methods should be combined. Such
Neuro-Symbolic approaches use the pattern recognition capabilities of neural approaches and
the first-order logic from symbolic approaches [5].
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Performing RCA requires data from different sources. Semantics are essential in integrating
this data since the same concepts are often named differently across different datasets. Another
crucial part of the data collection is documenting and integrating data sources into a common
framework [6]. Semantic Web (SW) technologies can deal with these data integration challenges
and are already highly used in smart manufacturing for cyber-physical production systems,
as overviewed by Sabou et al. [7]. Using the standards from SW enables the extensibility and
compatibility of modeled knowledge. As expected by Hitzler et al. [8], interoperable standards
like the Resource Description Framework and the Web Ontology Language from SW are of
interest for research in the domain of Neuro-Symbolic methods. Promoting the standards from
SW for use in Neuro-Symbolic Artificial Intelligence methods, therefore, helps strengthen SW
community efforts and improves compatibility of researched solutions.

2. Related Work

2.1. SW Technologies for RCA

Abele et al. [9] use ontologies for an alarm RCA in manufacturing. For this application,
they store expert knowledge about abnormal machine situations and incorporate data from
structured failure analysis of processes (like Failure Mode and Effect Analysis) to perform
probabilistic reasoning. Besides incorporating structured failure analysis data, ontologies can
model hierarchical dependencies in assembly groups to track occurring failure paths on a
component location level ([10], [11]). The summarized RCA methods aim to find a root cause’s
location and time. Oliveira et al. [4] name this RCA level Location-Time. The more precise RCA
level Physical, according to Oliveira et al. [4], investigates the root cause on a physical process
parameter level (e.g., ”Force 𝐹 led to the failing quality check”). Current methods for RCA on
parameter level (e.g., like with Causal Artificial Intelligence [12]) do not use prior knowledge
about relations and parameters in a general applicable, systematic way to enhance the analysis
performance of RCA.

2.2. Neuro-Symbolic Artificial Intelligence

Pearl [13] gives in his work about causality three levels of causal hierarchy: Associational,
interventional, and counterfactual. Pearl states neural network approaches can only perform
association-level causality [13]. Based on this, Garcez and Lamb [5] see a need for combining
symbolic approaches, capable of all three levels described by Pearl, with the pattern recognition
capabilities of a neural approach. Incorporating symbolic knowledge for decision-making
has the potential to enable better explainable decisions [14]. When contradicting or uncertain
information is present, Probabilistic Reasoning [15] is of interest, where a possible representation
is the Markov Logic Network (MLN). MLNs utilize weights to transform hard constraints about
assumptions into soft constraints [16]. Qu and Tang [17] combine Markov Logic Networks with
Knowledge Graph Embeddings to a Neuro-Symbolic approach called pLogicNet. Another Neuro-
Symbolic method incorporating Probabilistic Reasoning is DeepProbLog: Neural Probabilistic
Logic Programming [18], which enables using neural networks and probabilistic-logic reasoning



            

 
  

      

        

     

         

          

     

  

 

       

       

               

                      

  

  

  
 

            

            

         

               

             

 

 

 

 

Figure 1: Schema of a production line with different production stations and a quality check

        

    

             

           

            

     

     

        

     

  

  

  

  

  

  
 

  
 

        

          

              

               

            

            

         

               

             

 

 

 

 

 

 

Figure 2: A failure path over multiple causal relations of observed and unobserved parameters

in a common framework. Therefore, probabilistic reasoning incorporates the uncertainty about
the output of a neural network.

3. Problem Statement

To illustrate the problem a production line with four stations manufacturing a product is given
(see Figure 1). While at station 2 and station 3 a fitting process of two components is performed,
sensors record the observable production parameters force 𝐹1 and force 𝐹2. At the end of the
line, a quality check measures the tightness of the produced fitting with a pressure 𝑃 as a product
feature used to compute a quality label 𝑄 using tolerance limits. In addition to continuous data,
categoric parameters of used raw materials (in Figure 1 material 𝑀), produced products, utilized
machines, or executed control programs are available. A typical application example of RCA is
to identify the most likely parameter(s) that caused a failed quality check.

The causal relations describe influences between different parameters. A failure path
consists of a row of causal relations and origins from a failing quality check. The end of



a found failure path is a root cause. For example, in Figure 2 the raw material stiffness
𝐾 is most likely the cause of the failing quality assessment, but also multiple combined
root causes for one occurring quality issue are possible. For analyzing the likelihood of
parameters being a root cause, the causal relations of parameters to the final quality check
play an important role. Therefore, empirical models can be derived from observed production
data via statistical learning to describe the influence of causal relations between observed
parameters. However, such empirical models’ performance is limited in manufacturing
due to data quality issues like long-tail distributions and missing data for failure situations
[19]. That leads to bad out-of-distribution generalization of empirical models. As shown
in Figure 2, unobserved parameters in manufacturing can influence observed parameters
via a causal relation and hence change the functional relationship between the observed
parameters. Therefore, unobserved parameters make using statistical models hard. Instead,
prior knowledge from experts or laboratory experiments investigating the effect of certain
unobserved parameters, causal relations, or physical models could improve the performance of
the analysis. Confidence evaluations about the validity of a model or an assumption for a certain
parameter range are gained by laboratory experiments. However, it has yet to be proven how a
Neuro-Symbolic RCA could use such prior knowledge which could be contradicting or uncertain.

Hypothesis. Neuro-Symbolic methods using prior manufacturing domain knowledge about
causal relations and parameter models integrated with a Knowledge Graph improve the RCA
performance on observed production data. In the following, three research questions are posed
to prove this hypothesis.

RQ1. Which prior knowledge from manufacturing supports RCA, and how to integrate this
knowledge into a common Knowledge Base to enable neuro-symbolic RCA? This research
question includes research on existing data sources from manufacturing and on already
available data from traditional RCA methods like Failure Mode and Effect Analysis.

RQ2. How to combine symbolic and sub-symbolic methods to improve the performance
of RCA methods in manufacturing using prior knowledge? The proposed methods use prior
knowledge and are capable of learning hidden data patterns. The methods aim to find failure
paths within the Knowledge Graph and uncover the root cause of an observed quality problem.

RQ3. How to perform RCA on contradicting or uncertain information? The developed
methods infer conclusions on sets of contradicting or uncertain information so that the RCA is
supported best in finding the most likely failure path within the Knowledge Graph structure.

4. Methodology and Approach

The following chapter gives an overview about methods and approaches used for researching
the posed questions.

RQ1. A ground-truth data generation model is developed to generate observable data



               

                                 

  

                     

  

                                                     

                                              

              

               

               

           

         

    

     

                        

                     

       

             

                     

       

          

          

                          

                               

                                

              

         

                                            

  

 

  

 

     

     

Figure 3: An overview of the workflow for evaluation of Neuro-Symbolic RCA methods

and derive a varying amount of prior knowledge (see Figure 3). By assuming different
degrees of prior knowledge, it could be identified which information has the potential to
improve RCA performance. SW technologies are used with developed data models to integrate
the data. The data model design describes a generally applicable schema for prior knowl-
edge in themanufacturing context and is optimized for efficient use with proposed RCAmethods.

RQ2. Proposed RCA methods follow a graph-traversal approach and investigate a parameter
and its causal relations to other parameters to select a parameter that is most likely part of a
failure path. Information about causal relations could be captured in prior knowledge (like
expert assumptions or sensitivity analysis) or hidden within historical observed production data
(data containing information about causal relations). A sub-symbolic approach makes use of
hidden data patterns and handles noise of observed production data, while a symbolic approach
combines results from sub-symbolic methods with prior knowledge stored in a Knowledge
Graph.

RQ3. The MLN is a probabilistic representation of interest for reasoning on soft constrained
information. Integrating such probabilistic representations into neural approaches like those
proposed with pLogicNet by Qu and Tang [17] and DeepProbLog by Manhaeve et al. [18]
is of special interest. Evaluating such integrations for use in the context of RCA, but also
improvements of those, should be researched. The probabilistic approach incorporates rules
and probabilities into the root cause search.

5. Evaluation Plan

The evaluation of the proposed methods takes place using benchmark datasets. As shown in
Figure 3, a benchmark dataset consists of synthetically generated production data utilizing a



              
      

        

          

     

         

     

                

           

         
         

         

                

        
        

             

            

               
          

      

         

        

                      

          

                           

         

        

          

           

          

          

Figure 4: The concept for an ontology modeling prior knowledge about manufacturing data

data generation model. The data generation model uses the underlying physical models of
a manufacturing process to generate data samples. Therefore, the input parameters of this
data generation model sample their values from a pre-defined distribution. On all observed
parameters, noise is added according to the uncertainty of the measurement procedure. While
the underlying physical model builds a realistic process for synthetic data generation, knowledge
on its structure and used physical models is assumed to be only partially available for the RCA
methods developed and evaluated as part of this work. Also, only some parameter values are
assumed to be observed. Unknown values represent unobserved parameters in production lines.
Root causes can be injected systematically, and a ground truth for evaluation of the RCA is
therefore available.

The workflow in Figure 3 shows how synthetically generated data is integrated into a
shared Knowledge Graph along with prior knowledge. Using the integrated knowledge, Neuro-
Symbolic RCA methods are used for reasoning for failure paths and root causes. The mea-
surement of the performance of proposed methods takes place using performance metrics.
Computed metrics include accuracy for outputting the correct root cause. In addition, the
evaluation uses top-k accuracy metrics for different set sizes k. The top-k metric measures how
often the correct root cause is within the set of most likely outputted k predicted root causes.
Of interest for comparison are benchmark datasets that use a purely data-driven RCA approach
(e.g., [12]).

6. Preliminary Results and Next Steps

This work is in its first year, and the primary efforts made so far were conceptualizing the
problem domain. Therefore, investigations on available prior knowledge for integration into a
common Knowledge Graph like shown in Figure 3 were made. Figure 4 shows the three main
concepts: parameters, causal relations, and parameter models.



A parameter can therefore be discrete or continuous. Statistical characteristics and tolerance
limits could be prior knowledge for continuous parameters from lab experiments during process
development. Prior knowledge about causal relations is present in expert assumptions (e.g., 𝐾
proportional 𝐹) or analyzed sensitivities from sensitivity studies. In this context, a parameter
model describes a parameter based on its incoming causal relations. These models can be of
two types. The first type is an empirical model, which is derived from observed historical data,
and the second type is a generally applicable physical model. A parameter could have multiple
associated models, that could be rated with confidences and parameter ranges for their validity.

The next step is to specify an ontology from the first concept made in Figure 4 and then to
generate a suitable benchmark dataset with the shown workflow in Figure 3. In the following,
existing Neuro-Symbolic approaches using probabilistic reasoning (like [17], [18]) are evaluated
to incorporate available prior knowledge into RCA.

7. Conclusion

This research proposal shows the motivation for Neuro-Symbolic RCA methods using SW
technologies for automating RCA in manufacturing. The problem statement describes the
concept of the manufacturing line with observables and prior knowledge. Proposed approaches
are SW technologies for data integration and Neuro-Symbolic methods with probabilistic
reasoning for RCA. For the evaluation, a workflow is described using a ground-truth data
generation model, to compute performance metrics for proposed methods. The first preliminary
results show a concept for describing the ontology of prior knowledge from manufacturing.
This work generally contributes to using SW technologies for Neuro-Symbolic methods and
Neuro-Symbolic RCA in manufacturing. Potentially, synergies and challenges for using SW
technologies in Neuro-Symbolic Artificial Intelligence will evolve from this research.
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