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Abstract
Numerous Earth Observation (EO) satellite data are available on the Web. These data can be used to
analyze the impact of human activities on the environment. However, extracting meaningful information
from EO data requires specialized knowledge and expertise. In this Ph.D., we aim to facilitate the use
and analysis of the evolution of EO data over time for a non-expert audience. To accomplish this, we
propose an ontological model describing environmental changes in municipalities called the Semantic
Environmental Trajectories of Territorial units (SETT) Ontology. To implement SETT, we exploit the
advantages of the Semantic Web (SW) and apply Machine Learning (ML) methods. Moreover, to evaluate
our proposal, we rely on three real case studies, i.e., EO data from selected municipalities in France and
Switzerland.
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1. Problem statement

The overexploitation of natural resources such as forests and seas, as well as the pollution
of air, soil, and water are urgent concerns affecting the Earth’s global system and leading to
climate change and loss of biodiversity. The Intergovernmental Panel on Climate Change
(IPCC)1 constantly report the drastic consequences of inappropriate human behavior against
the environment. To improve decision-making and implement effective environmental policies
that counteract these negative trends, stakeholders in any given jurisdiction e.g., policy-makers,
citizens, etc., need to have access to Open Data that give them insight into the environmental
evolution of an area, referred to here as a Territorial Unit (TU).

Earth monitoring programs such as US Landsat2 and European Copernicus3 provide free and
open collection of satellite data depicting the Earth, also known as Earth Observation (EO) data.
To facilitate accessibility to these resources for Earth scientists, European platforms such as
EVER-EST4 and RELIANCE5 are established. However, due to the enormous amount of EO data,
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most state-of-the-art works [1, 2, 3] and projects such as Adam6 propose organizing EO images
into Data Cubes. An Earth Observation Data Cube (EODC) is a massive multi-dimensional
array organizing data to properly store, manage, and analyze the EOs [4]. Currently, Australia7

and Swiss8 are some of the countries making a strong effort to adopt this approach. Although
the EODC offers several advantages, it also presents challenges. One of these challenges is
the difficulty of understanding the data included in the EODC, requiring expertise. Specialists
compute indices such as the Normalized Difference Vegetation Index (NDVI) to assess the
environmental characteristics of specific areas. However, these indices are provided as raw
Time Series (TS), which requires metadata as well as processing and analysis to understand
their meaning and evolution over time.

In this sense, this Ph.D. research aims to facilitate the use and analysis of EO data evolution
over time, for non-specialists, by exploiting all the advantages of the Semantic Web (SW). For
this purpose, an ontological model describing the environmental trends of municipalities is
proposed. It is called the Semantic Environmental Trajectories of Territorial units Ontology.

Furthermore, this doctoral thesis is part of the TRACES project9, a French-Swiss International
Collaborative Research Program, focused on building a Knowledge Graph (KG) integrating
various data to give insights about the environmental evolution of municipalities to broad audi-
ences. In particular, I am focused on: (1) Structuring and semantizing the EO data; (2) Detecting
automatically significant changes in TS; and (3) Modeling the environmental trajectories in the
SW.

2. Importance

My doctoral thesis aims to open up EO data but also to make it understandable to a wide
audience. To accomplish this, the SETT ontology and dedicated tools to populate this ontology
are proposed. Our proposal facilitate the understanding of the environmental evolution of
geographic areas. Indeed, the ontology provides a vocabulary dedicated to the description of
trends and breakpoints in the EO time-series. Thus, it contributes towards building summaries
of the EO data TS. This specific approach benefits different stakeholders. Policymakers can
compare the trajectories of municipalities with various environmental policies and use this
information to predict the future trajectory of a particular municipality, facilitating the proposal
of more appropriate policies. Likewise, citizens and associations can easily access the EO data
and observe the trajectory of their own municipality, becoming aware of living conditions and
their impact on them. Furthermore, the SETT data can be enriched with additional Linked Data
(LD) resources that provide contextual information regarding the identified changes i.e., explain
why trends and breaks occurred in the trajectory of a municipality.

6 adamplatform.eu
7 www.dea.ga.gov.au/about/open-data-cube
8 swissdatacube.org
9traces-anr-fns.imag.fr/
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3. Related work

Related work relevant to the problems we intend to solve is presented below:

a) Structure and semantize EO data: Semantic Sensor Network (SSN) [5] and RDF Data
Cube Vocabulary (QB) [6] are standard ontologies that can be used to integrate EO data
into the SW framework. SSN provides a means to describe sensors and their observations,
encompassing satellite imagery as well. QB supports the publication of various multidi-
mensional data, e.g., socioeconomic or environmental, and aligns with the OLAP cube
concept used in Online Analytical Processing. Due to their extensive use, several studies
are dedicated to expanding or improving both ontologies. In the research of [7], a compact
representation of semantic sensor data utilizing SNN was proposed. In the work of [8],
an extension of the QB vocabulary was introduced to support spatiotemporal definitional
aspects. Following, in projects like TELEIOS [9], novel methods for managing large EO
data were devised. However, their focus is primarily on publishing image metadata in LD
format using the non-standard stRDF ontology. The paper [10] introduced a method for
publishing EO raster data at the pixel level using QB. In the context of our work, it is more
appropriate to publish data at a local level such as municipalities, which is meaningful
to the stakeholders. In the [11] study, the authors presented a modular ontology that
contributes to the semantization of EO data. Their model reuses vocabularies such as
SNN and the TSN ontology [12]. As a result, the integration allowed characterizing the
TUs along with their land cover characteristics.

b) Detect significant changes in Time-Series: TS data often present change points, which
indicate shifts in the behavior of the observations. Therefore, several studies focusing on
pattern detection in TS have been proposed in the literature. In this research, we focus on
describing a well-known algorithm called Breaks For Additive Seasonal and Trend (BFAST)
[13]. BFAST has been successfully applied to environmental data because of its property of
decomposing a time series into trend, seasonal and remanent components. Furthermore,
the algorithm also detects changes such as trends and breaks. In the following, we describe
some studies that applied the BFAST to analyze EO data. In the work conducted by [14],
BFAST was employed to detect forest clear-cuts and burnt areas in a specific region of
central Portugal. In the research paper [15], the authors monitored methane emissions
from wetlands in China between 2002 and 2018 to observe the impact of climate change.
Additionally, in [16], BFAST was applied to detect changes in 16-day NDVI images taken
from 2000 to 2009 in a forested study area in southeastern Australia. Although BFAST
is widely used, many of its parameters, such as the “break threshold”, must be adjusted
based on the input data. This process is not straightforward and may require several tests
involving experts.

c) Semantize environmental changes: Few works focus on describing environmental
changes in the SW. In the study of [17], a modular ontology was proposed to monitor
land cover changes over time. In the paper of [18] is introduced an ontological design for
modeling “trajectories” and their explanatory factors. Although the study focused on life
trajectory data, it introduced vocabulary terms applicable to environmental changes, e.g.,



“episode”, “event”, and “trajectory”. In the work of [19], the author proposed a hierarchy
of semantic concepts to face the challenges of big EO data. The concepts included terms
such as “trajectory”, “pattern”, and “event”. The author also suggested using BFAST to
detect events in the time series. While this work is relevant to our thesis proposal, no
real-world application of the proposed concepts has been developed so far.

4. Research questions and hypotheses

The following research questions (Q) and related hypotheses (H) investigate how to model a
complex artifact such as SETT:

Q1 How to efficiently structure and open EO data?

H1 OLAP data cubes are multidimensional structures used to analyze data and obtain
insights. SW technologies, on the other hand, are often adopted to open data.
The RDF data cube (QB) follows both approaches. The QB structure aligns with
OLAP concepts, allowing efficient storage, management, and accessibility of EO data
within the cubes. Also, its dimensions can be linked and shared with LD resources,
including other linked cubes. As a result, QB addresses the challenges related to
isolation, interoperability, and reusability typically found in EODC.

Q2 How can the environmental trajectory of a TU be described and published on the Semantic
Web?

H2 Initially, it is necessary to define a threshold to detect relevant trends and breaks
among those detected by the change system, e.g., BFAST. Subsequently, with the
support of experts, a specific vocabulary is defined to describe the most significant
changes to a wide audience. Terms such as increase, decrease, deforestation, and
replanting can be used. Finally, a semantic approach is followed for the implemen-
tation and population of the Semantic Environmental Trajectories of Territorial units
(SETT) Ontology based on the proposed vocabulary.

Q3 Can the SETT data be used to obtain knowledge?

H3 The use of analysis techniques on the SETT ontological model allows obtaining
valuable insights. First, the execution of SPARQL queries on the SETT KG allows to
obtain implicit information and to take advantage of LD. Secondly, the application
of machine learning methods allows to predict the trajectory of a given municipality
of interest and to identify shared patterns among several trajectories of multiple
municipalities by using clustering techniques.

Figure 1 presents an overview of the contributions we aim to achieve in this doctoral thesis.
The initial layer ( ) depicts the input EO data being transformed from satellite images to raw
environmental indices. Moving to the second layer ( ), our goal is to benefit from the RDF data
cube and the BFAST algorithm to structure the raw time series. This crucial step will allow us
to create a vocabulary that effectively describes the identified “trends and breaks”. In the last
layer ( ), we introduce the concept of semantic trajectory by semantizing the structured time



Figure 1: Pipeline of the overall doctoral thesis.

series. For this, we define and populate the SETT ontology and link it to other KG resources,
such as Wikidata or DBpedia, to obtain appropriate index definitions, e.g., NDVI meaning.

5. Preliminary results

This section presents an overview of the results obtained so far. As depicted in Figure 2, the
ongoing efforts have primarily centered on the transformation of the EO data into RDF Data
Cubes in order to structure the data. In the following, we briefly explain the two modules that
compose the created pipeline:

1. EO data aggregation by TU: The TRACES project partners are the creators of the Swiss
Data Cube (SDC)10. The SDC data cover all of Switzerland and part of France. This
research selected three significant case studies from SDC as our study area, i.e., Fribourg,
Evian, and Grand Geneve. The data was delivered as raw time series.

2. Structure and semantize EO time series: Themain objective of thismodule is to publish
the EO TS using the QB vocabulary to address the challenges of isolation, interoperability,
and reusability that are often encountered in EODC. To this end, we have implemented
the Linked Earth Observation Data Series (LEODS) framework. The three phases covered
by this framework are described below.

a) QB modeling: The initial step in our framework involves modeling the structure
of the RDF cubes. This is considered a fundamental phase of the framework. The

10 https://www.swissdatacube.org/
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Figure 2: The current progress of our pipeline is focused on immersing and structuring EO time series
using the RDF Data Cube vocabulary.

structure of the cubes defined using the QB vocabulary consists of dimensions,
measures, and attributes. For our design, we have chosen three main dimensions:
time, space, and indices. The latest is generic enough to cover indices of all types,
e.g. environmental, socioeconomic, etc.

b) QB population: Once the RDF data cube structure has been modeled, the next step
consists of the semi-automatic conversion of the raw environmental indices, for
each municipality, into RDF data cubes. This conversion process can be facilitated by
tools such as the RDFlib Python library11 and Tarql12. Once the cubes are populated
with the converted data, we link the RDF cube components to the Linked Data
resources. For instance, we connect the cube metadata to the well-known Dublin
Core Ontology (DCT)13. Similarly, connecting our RDF data cubes with others
available in LOD is possible.

c) QB exploration: Finally, when the RDF data cubes are produced, we can initiate the
exploration phase to extract meaningful information from them. To achieve this goal
we propose the use of two up-to-date tools: (1) By using GraphDB’s14 visualization
function, the RDF data cube can be observed as a graph. This allows us to explore
the relationship between the cube’s components. (2) With SPARQL15, retrieving
and manipulating RDF data cubes to obtain information is feasible. Moreover, since
most of the components of RDF data cubes are linked to several LD vocabularies, it
is possible to obtain insights that are not explicit in the raw indices.

6. Evaluation

Several approaches can be employed to evaluate the hypothesis outlined in section 4. Firstly, to
verify that the EO data have been correctly structured and immersed in SW, SHACL validations
and SPARQL queries can be used to evaluate the QB vocabulary syntax and the query response

11 https://rdflib.readthedocs.io/en/stable/
12 https://tarql.github.io/
13 https://www.dublincore.org
14 https://graphdb.ontotext.com/
15 https://www.w3.org/TR/sparql11-query/
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time. Additionally, it will be necessary to ensure compliance with the five-star principles
[20] of LD. Secondly, machine learning metrics, e.g., F1 and recall, can be used to evaluate
the system’s accuracy when detecting labeled changes in the TS. Lastly, the SETT KG can be
assessed by conducting an end-user evaluation, particularly involving non-experienced users
such as citizens. Furthermore, the computational cost of the SETT KG creation can also be
calculated. The minimum number of operations is composed of 𝑚 ∗ 𝑡 ∗ 𝑦 ∗ 𝑖 where 𝑚 represents
the 373 municipalities of our three case studies, 𝑡 the time-step (e.g., 4 time-steps for seasonal
data), 𝑦 the 38 years of collected data, and 𝑖 represents the 73 land cover indices.

7. Reflection and future work

This Ph.D. research aims to address the challenge of enhancing accessibility and comprehension
of EO data, at the municipality level, for a broad audience. To face this issue, we proposed
the ontological model called the Semantic Environmental Trajectories of Territorial units (SETT)
Ontology. Building such complex artifact called SETT requires several steps. Initially, we
structure and publish the EO time series into the SW by utilizing the standard ontology RDF
Data Cube. Subsequently, to create a vocabulary that represents the environmental trajectories
of municipalities, we will apply change detection methods like BFAST, which identifies trends
and breaks within TS. Once the vocabulary is defined and populated with data from our three
case studies, we aim to exploit SETT to provide valuable insights to non-expert users. While
we are still addressing the issue of EO structuring, we are already planning to work with EO
data experts to characterize the TS changes with specific terms such as increase, decrease,
deforestation, replanting, etc.
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