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Abstract. Recently there has been a series of studies in knowledge
graph embedding (KGE), which attempts to learn the embeddings of the
entities and relations as numerical vectors and mathematical mappings
via machine learning (ML). However, there has been limited research
that applies KGE for industrial problems in manufacturing. This paper
investigates whether and to what extent KGE can be used for an impor-
tant problem: quality monitoring for welding in manufacturing industry,
which is an impactful process accounting for production of millions of
cars annually. The work is in line with Bosch research of data-driven
solutions that intends to replace the traditional way of destroying cars,
which is extremely costly and produces waste. The paper tackles two very
challenging questions simultaneously: how large the welding spot diam-
eter is; and to which car body the welded spot belongs to. The problem
setting is difficult for traditional ML because there exist a high number
of car bodies that should be assigned as class labels. We formulate the
problem as link prediction, and experimented popular KGE methods on
real industry data, with consideration of literals. Our results reveal both
limitations and promising aspects of adapted KGE methods.

Keywords: knowledge graph embedding · welding quality monitoring ·
literal embedding · knowledge graph construction · open dataset

1 Introduction

Background and Challenge. In automotive industry, automated welding is
essential for manufacturing high-quality car bodies, accounting for over millions
of car production annually. Welding is a data-intensive process. Considering the
production lines in Fig. 1 with 10-20 welding machines in each line, each welding
⋆ Contact email addresses of corresponding authors: zhipeng.tan@rwth-aachen.com,
baifanz@ifi.uio.no, evgeny.kharlamov@de.bosch.com. Code and data are avail-
able under https://github.com/boschresearch/KGE-Welding
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machine produces one spot in several second or minutes, and a car body can have
up to 6000 spots [1]. For each spot, several hundreds of features are generated,
including welding status, quality indicators, and sensor measurements, where
the sensors measure important physical properties every millisecond, such as
current, resistance, power.

This large amount of data increases the demand of data-driven solutions [2,3],
which aims to reduce and eventually replace conventional destructive methods.
In the case of the latter, only a small sample of welded car bodies can be mea-
sured, because the sample needs to be destroyed, making the methods to be
extremely expensive and also producing waste. Two core questions need to be
answer here as shown in Fig. 1. Q1 is important because the spot diameter is
the key quality indicator for judging welding quality. It must be above a cer-
tain threshold, because a too small diameter means insufficient connection and
can cause severe consequences (e.g., car user safety). The diameter should also
not be too large, because this means energy inefficiency and can cause quality
deficiency of the surrounding spots (by e.g. short-circuit effect). Q2 is impor-
tant because it is essential to know the percentage of good spots for each car
body, and this percentage must be higher than certain thresholds according to
quality standards. Bosch is doing research to develop data-driven solutions [4]
and semantic technologies [5,6,7] for answering the two questions, whereby both
classic machine learning (ML) [1] and the recent methods of knowledge graph
embedding (KGE) are under consideration.

Knowledge Graph Embedding. There has been a series of research on KGE
methods recently [8,9,10]. In essence, KGE attempts to represents nodes and
edges in KGs as vectors/matrices or mathematical mappings. Mainstream works
include translational models [11], bilinear models [12], graph neural networks [13],
etc. They have studied KGE for downstream tasks such as link prediction [14],
entity classification [15], and entity alignment [16]. KGE for industrial applica-
tions is a relatively new trend. We observe that there has been limited investi-
gation done especially in the area of KGE for manufacturing industries (to our
best knowledge). One recent work applied KGE on ecotoxicological effect pre-
diction [17], where the KGE models are applied to enhance the MLP model for
predicting the effects of chemical compounds on specific species. Other works ap-
plied KGE in text processing [18], where the user names and name abbreviations
are mapped to the same author based on their publications. Inspired by these
works, we consider it an interesting and important research question to study
whether and to what extent KGE can be applied for manufacturing industry.

Our Approach. To this end, we investigate KGE for answering the two ques-
tions in the automotive industry with Bosch data, and compare with a represen-
tative classic ML method. In this work, (1) we first give a detailed introduction
of the welding quality monitoring use case and welding data (Sect. 2); (2) af-
ter that, we formulate regression and classification problems as link prediction
problems (Sect. 4); (3) and construct KGs from tabular data, during which we
pay special attention to handling literals, and discretise the literals in intervals
and create entities on them; (4) we compare mainstream KGE methods such as
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Fig. 1. Two core questions in welding quality monitoring: Question 1 (Q1), how large
is the spot diameter? Question 2 (Q2), which car body part does this spot diameter
belongs to?

TransE, RotatE, AttH with multilayer perceptron (MLP) (Sect. 5). In addition,
we conduct an ablation study to investigate whether the literals are important.
Furthermore, we compare a variant KGE method proposed in a recent appli-
cation paper [17] to see if this method is applicable; (5) we introduce adapted
performance metrics to increase the applicability of KGE to our industrial prob-
lems and give recommendations for further adoption in these settings (Sect. 6).

2 Use Case

Welding process. We refer to automated welding as a family of manufacturing
processes where multiple metal parts are melted and then connected together.
An example process and production line is illustrate in Fig 1, during which,
the welding robots control welding electrodes move along the car body parts. A
high current (several kilo Ampere) passes through the electrodes and car bodies,
generates heat on the metal, melting the metal to produce welding nuggets for
connecting the car bodies. Welding is heavily applied in automotive industry,
accounting for over millions of carbody production annually, where which car-
body has upto 6000 spots. Monitoring welding quality has been a key problem
for industrial manufacturing, due to the requirement of accuracy and efficiency
at the same time. Traditional quality monitoring applies destructive testing,
where the test carbody is intentionally destroyed to evaluate its properties and
performance, which is timely and financially expensive, and produces waste, con-
sidering the large amount of welding spot. Furthermore, this only covers part of
the welding quality, because the destroyed car bodies can not be used as product.
Thus, for large scale production, reliable, highly automatic and efficient quality
monitoring method with data-driven model would be preferred to replace the
traditional destructive testing.

Welding Data. Welding data include various information gathered from the
welding process (Fig. 1). We exemplify welding data with the three tables in Ta-
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Table 1. Example of welding data, including three tables: (a) main protocol with
ids, status, etc.; (b) welding meta setting with the carbody component information
such as type, material; and (c) sensor measurements, which are the physical properties
measured per milliseconds. Note that the carbody information does not exist in the
welding table data.

capwearcountmonitor_stateprogram_noprogram_idmachine_idspot_id

360422690machine10Spot127

440622286machine1Spot16

1190720698machine2Spot13

12201026680Machine5Spot22

551920360Machine5Spot21

main protocol

component2_typecomp1_thicknesscomp1_materialcomponent1_typeprogram_id

Type31AluminiumType122690

Type40.2SteelType222286

Type50.2SteelType320698

Type60.1AluminiumType426680

welding meta setting

ResistanceVoltageCurrenttime
0.430.80.881
0.50.340.882
0.030.640.93
0.980.080.434
0.160.050.095
0.210.230.396
0.330.910.817
10.170.68
0.490.940.569
0.710.830.4410
0.80.180.0911
0.270.230.9912
0.520.990.413
0.450.140.8114

sensor measurementsca

b

ble 1. Welding machines are installed with different sensors which can detect the
parameter values of all the machines, these data will be collected and stored in
various sources, including the the welding protocol, the welding setting database
and the sensor measurements. Table. 1 shows an example of the recorded weld-
ing data with selected columns. The welding protocol involves all the parameters
used for the machines when conducting the welding process, such as the weld-
ing machines, the welding program, the welding state etc. This welding setting
database (metadata) contain information about the materials being welded, such
as the type, materials and thickness of welded sheets. The sensor measurements
contain all the numeric literals that are measured during the welding process
over different time span, including the current, the voltage, PWM and the re-
sistance. The welding data we are utilising are the combination of data from
welding protocol, welding setting database, and the sensor measurements. The
details of the columns of Table 1 are given as follows:

– Welding Machine records the machines that perform the welding operations.
– Welding Program is the program installed in the welding machine used for

different welding operation. Literals are the data measured by sensors in the
welding process, including current, voltage, resistance, power, and other im-
portant sensor measurements.

– Component Type is the components of the welding spot. A welding spot will
connect a few sheets (components), where each sheet has an impact on the re-
sulting welding spot diameter. The three different components are also closely
related to the carbody.

Welding data is important for ensuring that the welding process is performed
correctly and that the resulting weld is strong and durable. In our work, welding
data will be used for quality control and quality monitoring purposes, such as
monitoring the location of the welding spots and the diameters.
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Data Anonymisation. Data anonymisation and data simulation are important
approaches to keep the privacy of the data. Because Bosch has strict regulations
that protects the company privacy, and the production data contain numeric
values subject potential leak of confidential information, the production data
are not directly disclosed in the open data set for KGE. We anonymise the pro-
duction data from a factory in Germany and simulate part of the data based
on domain knowledge, so that the data capture the statistics of the real data
but do not disclose any potentially confidential information. We conducted the
anonymisation and the discretisation on the numeric values, which follows the
idea of literal embedding of previous works [19,20]. We provide the anonymised
dataset in the open source Github repository, aiming at improving the repro-
ducibility of the work, and potential reuse for investigation of KG embedding.

3 Preliminaries

Knowledge Graph (KG) represented as G = (E ,R,L) is a graph-structured
data model, where E is a set of entities, L is a set of literals included in the
knowledge graph, and R is a set of binary relations, which can be further divided
into two groups R = {Po,Pd}, where Po denotes the relations between entities
(Po ⊆ E×E , known as object properties), while Pd denotes the relations between
entities and literals (Pd ⊆ E × L, known as datatype properties).

Knowledge Graph Embedding (KGE) in a common setting [21], seeks to
find a function (also model) that represents entities (e ∈ E) as vectors (ve ∈ Ue)
and relations (r ∈ R) as mathematical mappings (rr ∈ Ur), with a given set
of triples (h, r, t) ∈ T ⊆ E × R × E , where the Ue and Ur are some choices
of embedding spaces for entities and relations, respectively. Commonly a KGE
model is trained with ML by solving the problem of link prediction: (h, r, ?),
namely given the query of the head entity h ∈ E and the relation r ∈ R, to
find the most probable tail entity t (for simplicity, we denote the query in both
two directions as (h, r, ?)). Thus, a KGE model needs to find a scoring function
s : E ×R×E → R, which measures the plausibility of a triple (h, r, t). In literal-
aware KGE, the triples are in the form of (h, r, t) ∈ T ⊆ E × R × {E ,L}, and
the relations have two groups (r ∈ R = {Po,Pd}). Both the literals and the
relations need to be handled properly. We list some popular KGE models below.

TransE [11] represents entities as vectors and relations as translation operations
between these vectors. Specifically, given a query (h, r, ?) in a KG, TransE pre-
dicts the tail entity as f(h, t) = vh + vr. TransE then minimizes the Euclidean
distance between the predicted and the true entity representation while maxi-
mizing the distance between the predicted and the false entity representation:
Dist(v′t, vt) → 0 for true tail entity, while Dist(v′t, ve) → MAX for other entities
except the true tail.

DistMult [12] models the interactions between entities and relations as dot prod-
ucts in a low-dimensional space. Specifically, The score function is calculated in
the matrix multiplication gr(h, t) = vTh ·Mr · vt , here T denotes the transpose,
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while DistMult maximizes the score for true triples while minimizing the scores
for negative triples, where the score

RotatE [22] is similar to TransE, but models the relations as rotation vectors.
Specifically, tail entities are predicted from head entities and relations through
f(h, t) = vh◦vr, where ◦ denotes rotation in complex number space. The distance
function is defined as cosine distance Dist(h, t) = cos(v′t, vt).

AttH [21] models the relations as reflections and rotations in the hyperbolic
space as well as weights in the attention mechanism which combines the two
hyperbolic transformations. In particular, AttH first calculates the two predicted
values for the tail entity by relation-specific hyperbolic reflecting and rotating the
head entity. The two predictions are then combined into the final tail prediction
through an attention mechanism with a relation-specific attention weight. The
model is eventually optimised so that the true tail entity embedding is the closest
to the prediction compared to the false ones. In Atth, the mapping of hyperbolic
spaces is able to better represent hierarchical relationships, thus Atth achieves
good accuracy in relatively low dimensions.

Negative Sampling Negative sampling is a widely used technique in KGE that
aims to improve the performance KGE models [23]. The key idea of negative
sampling is to sample negative triples that do not exist in the KG and use them
to train the KGE model along with positive triples. By doing so, the model learns
to differentiate between positive and negative triples and improves its ability to
predict missing relationships in the KG. The learning objective is usually set
as maximising the difference between positive triple scores and negative triple
scores, so that the positive triples are assigned higher scores and negative triples
are assigned lower scores. In this paper, we also explore the effectiveness of
negative sampling in KGE by training with different negative size.

Multi-Layer Perceptron. A Multi-Layer Perceptron (MLP) classifier is a type
of artificial neural network that is commonly used for classification tasks. The
MLP consists of multiple layers of interconnected nodes or neurons that are
organized into an input layer, one or more hidden layers, and an output layer.
Each neuron in the network receives input from the neurons in the previous layer,
and computes a weighted sum of those inputs using a set of learned weights. The
weighted sum is then passed through an activation function, usually the sigmoid
function or the ReLU function, to produce an output. The output of the final
layer is used to make a classification decision. The weights of the MLP are learned
through a process called backpropagation, which involves adjusting the weights
to minimize a loss function that measures the difference between the predicted
output of the network and the true output. MLP is used in many industrial
applications such as abnormality detection, predictive quality maintenance [24].

4 Method

Welding KG construction. A welding KG is constructed from the table data.
We have used welding-related information, such as time of welding processes,
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Fig. 2. Formulating regression and classification problems as link prediction problems.

welding machines, welding programs, and welding parameters (e.g., voltage, cur-
rent, resistance). The constructions are conducted on welding spots and the car
body and diameters. We transform the values of the welding data table into enti-
ties and the relationships between these entities as edges in the KG. Fig.4a shows
the construction of literal entities, which are entities generated from numeric val-
ues. Based on the mean values, the current and voltages will be discretised by
value ranges, such that all the numerics values are turned into entities. Discre-
tised values such as machines and program id can be directly converted into
entities. Fig.4b shows the Welding KGs, which are constructed from the data
table with the form of the table 1. And the two main research questions of our
work. Question 1 is the classification of the welding spot to the diameter classes.
Question 2 is to predict the link between the carbodies and the welding spot, to
find the correct carbody of the welding spots.

Problem formulation. Given the information of the welding spot, including
the machine ID, program ID and their literal features such as voltage, current,
resistance, welding time, welding power, the two research questions are to predict
the carbody of the this welding spot and the diameter of the welding spot. To
make KGE applicable to the problem, we reformulate the two questions of the
quality monitoring in the use case (Fig. 2): Q1: The Spot diameter prediction
was a regression problem based on the welding data to predict the real values
for the diameters size. Due to resolution when measuring the spot diameter,
we discretise the diameters into different diameter classes and constructed the
entities based on the diameter classes. We then predict the link between weld-
ing spots and the diameter classes. Considering the fixed differences between the
neighbouring diameter classes, we use the mean differences between the diameter
classes and calculated rmse based on the differences. Q2: For carbody classifi-
cation, we conducted similar reformulation. Difference is that the carbodies are
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Q1 and Q2.

already discretised values, so we simply create the entities based on carbodies.
Then the question is converted to predict the link between the carbody entities
and the welding spots. With both of the reformulated research questions, we can
apply KGE models, and their results become comparable to that of the original
regression and classification problems.

KG construction from tabular data. The welding data are original in tab-
ular form extracted from relational databases. Since the tabular data are very
extensive (over 200 columns) and contain many columns not closely related to
the operation (e.g., unused machine settings), we need to construct welding KGs
with relevant information describing welding operations. We construct KGs as
the following steps: (1) Remove all the empty columns and columns with only
unique value, since these columns are not distinguishing information and are thus
redundant for the welding knowledge graphs. (2) Choosing the most represen-
tative features based on domain knowledge from welding. Those representative
features are to be put in the welding KG. (3) Process the literal features to
be converted into KGs. Since many KGE approaches do not consider the liter-
als when embedding the entities, we adapted literal-embedding approaches from
previous works to convert the literals into entities. [19] (4) Identify the entities
and relationships: Look for the unique entries and their attributes in the ta-
ble as the entities in the KGs. These relationships will be the edges in the KG
and connect the entities. For example, one operation with id 1 was conducted
on machine id 2, then the entities should be operation1 and machine2, with
relationship “conducted_on_machine”.

Literal handling. We did the following steps for literal embeddings inspired
by [20]: aggregation, value discretisation, entity creation and linking. In the
aggregation step, the sensor measured values are aggregated into the mean values
of the three stages and the overall mean values in real numbers. Then in the
discretisation step, we discretise the real values into different ranges. And then
we create entities based on the discretised ranges. Then we link all the created
literal entities with other entities.
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Multi-layer Perceptron Classifier. In our work, MLP classifier is used to
predict whether there exist connection between welding spot and the carbody
or the diameter class, based on the information from welding knowledge graphs
related to the welding spot and the carbody. Fig.3a shows the structure of the
MLP classifier with embedding layer mapping each entity to a low-dimensional
vector. The input of the MLP classifier is all the known parameters that belong
to the welding spot, for example the welding machine, weling program, welding
current, welding voltage etc. Their one-hot encoding will be fed to the MLP clas-
sifier. The output of the MLP classifier is the one-hot encoding of the carbodies
or encoding of the diameters.
This model is the most basic model used in the quality monitoring and works as
a baseline model for this use-case. Since the traditional manufacturing quality
approach is totally different and not predictable, we can not compare directly
with traditional method but rather compare all the machine learning approaches.

Knowledge Graph Embedding. As the development of knowledge graph em-
bedding models in the recent years, there are various KGE models focusing on
capture the information in the graph structural data. Our KGE models are based
on the famous models TransE which treat the entities and relations based on
vector translation, DistMult model which treat relation with matrix factoriza-
tion, AttH which maps the vector into hyperbolic space and calculate the score
based on hyperbolic space vector. Those models shows good performance on
open dataset and possess good generalization capability. Fig. 3b contains the
KGE models architecture. The KGE model will embed all the entities and rela-
tions into a look-up table with a embedding layer. Afterwards the score or the
distance of the input triple will be optimized based on the score functions tailored
to different models. The input data of the model are triples in the form of (head,
relation, tail) representing the single fact from the welding knowledge graphs.
The output of the model is the score based on the distance of the triple, usually
with the distance in the form of d(h + r, t) where head entities embeddings are
combined with relation embeddings in the model specific way, and then compare
the vector distance with tail entity. The smaller the distance is, thus the higher
is the score of the triple is. The training objective of KGE models is to maxi-
mize the scores of the input triples while minimize the scores of the non-existing
triples by building the loss function as Loss = s(h, r, t) − s(h, r, t∗) where t∗
represents all the negative sampling triples. To evaluate the KGE model after
training, the ranks of correct triples will be calculated. For each correct triple in
the welding knowledge graph, the tail will be replaced by other triples and the
rank of correct tail will be calculated with respect to the other false tails.

Metrics and their meanings in the use case. We consider 4 metrics for our
questions: Acc(Hits@1), Hits@GroupBy3, nrmse, MRR.
Acc(Hits@1) represents the percentage of correct entities that are predicted cor-
rectly by assigning them the highest scores. In our case this can be understood as
prediction accuracy and we use the Hits@1 to represent the accuracy. It is calcu-
lated by the percentage of entities having highest rank in the evaluation. In our
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Fig. 4. (a) Procedure of literal embedding (b) Partial illustration of the welding KG

use case, the Hits@1 represents the accuracy of the prediction. The range of the
Hits@1 is between 0 and 1, where higher score represents the better performance.
Hits@GroupBy3 represents the percentage of correct entities that are predicted
correctly when conducting a prediction in the group of 3 welding spots. In the
testing, 3 carbody parts are grouped together and the prediction is considered
correct if the predicted carbody part is in the same group as the ground truth
carbody part. In our use case, the Hits@GroupBy3 is a less strict metrics than
Hits@1, but it derives from the industrial scenario where the testing is conducted.
It also represents the accuracy of the prediction.
nrmse is the shortcut for normalised-root-mean-square-error, which was used
to calculate the accuracy of diameter prediction. The metric is still applicable
after we reformulating the problem into the link prediction problem, since the
average diameter difference between the different diameter classes are known. It
is calculated, as shown in the equation nrmse = Σi(Di − D̂i)

2/D̄, as the square
root of the mean value of the squared error.
MRR is a measure of the average rank of the first correct entity or relation
among all possible entities or relations. It is computed as the reciprocal of the
rank of all the correct tail entities. MRR is more on the research purpose and
used to compare the performances of different KGE models.

5 Evaluation

This section compares multilayer perceptron (MLP) with mainstream KGE
methods and its KGE-MLP variants to investigate whether and to what ex-
tent KGE methods are useful for the two questions of interest in our use case.
We also hope to shed light on KGE for industrial applications via discussions on
the KGE performance and the KG characteristics.
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5.1 Experiment Settings

Baselines. We compare three mainstream KGE methods with the representative
classic ML method MLP. The KGE methods include translational models in Eu-
cledian space: TransE, RotatE, and hyperbolic model with attention mechanism:
AttH. We select TransE and RotatE because they are representative methods,
and are proven to have good generalisability to datasets and applications other
than the settings under which they are developed [25]. We select AttH as a rep-
resentative method for more sophisticated KGE with attention mechanism and
non-Euclidean embedding space. We compare all KGE methods with MLP be-
cause MLP are widely applied in industrial applications, and have been proven
to be universal approximators [26].
In addition, we compare with a special type of KGE method proposed in [17],
because this paper is a most close work on KGE for real-world use cases. The
KGE method in this work is a combination of MLP and KGE method (thus
is referred to as KGE-MLP) to binary classification of triples (referred to has
prediction triples), MLP is used for learning the probability of the prediction
triples as well as the embeddings of the head and tail entities in the prediction
triples, and KGE is used for learning all entity and relation embeddings.

Dataset details. We randomly select welding data in relational tables related to
2000 records of welding operations from a large database with over 260 k welding
operations. We consider 2000 records is a balanced number to meaningfully test
the method performance, while not spending excessive training time. From over
200 features of the data, we removed certain features, such as constant values,
NaN values, and other features according to domain knowledge. The resulting
dataset contains 31 meaningful features and 2000 rows, including ids for ma-
chines, programs, status, and aggregated values of sensor measurements. Then
the data are used for MLP after one-hot encoding, or used for KGE after KG
construction, according to the procedures elaborated in Sect. 4. The KG dataset
contains 44801 triples, including 3342 entities, 26 relations, among which, 18
machines, 181 programIDs, 613 carbodies, 327 are literal entities.

Data splitting. We split the table data following the standard 80%/10%10%
for train/validation/test, and do the following modifications for the KGE model.
To ensure a fair comparison between MLP and no leakage appears, we firstly
split the table data into train/validation/test dataset and then conduct the con-
version from table data into KGs. The testset only contains triples with entities
of welding spot, carbodypart and diameter. The negative triple samples are gen-
erated randomly following the negative sampling of existing KGE approaches.

KGE setting. In this setting, negative samples are generated by corrupting
existing triplets in the training set. In the case of Q1, the tails in negative samples
are the wrong diameter classes. In the case of Q2, the tails in negative samples
are the wrong carbody part entities. The embedding size is experimented on a
search space of {16, 32, 64, 128, 256} and we choose the best hyper-parameters
based on the MRR on the validation set. We chose 128 or 256 as the best trade-off
between efficiency and the accuracy.
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Table 2. Model performance comparison on answering Question 1 (Q1) and Question 2
(Q2). The best results are marked bold, and second best results marked by underlines.
The experiments are repeated 5 times and results are reported as mean ± std. Note
that MLP performance is not usable according to domain expert.

MLP TransE RotatE AttH
Acc(Hits@1) 0.39 ± 0.01 0.42 ± 0.02 0.25 ± 0.01 0.31 ± 0.05

MRR - 0.65 ± 0.01 0.49 ± 0.00 0.57 ± 0.04
Q1 nrmse 0.05 ± 0.01 0.06 ± 0.00 0.08 ± 0.01 0.06 ± 0.01

timetrain 120.6 ± 15.2 s 660.1 ± 30.1 s 1022.9 ± 80.5 s 1829.1 ± 100.1 s
timetest < 0.03s < 0.03s < 0.03s < 0.03s

Acc(Hits@1) 0.61 ± 0.01 0.64 ± 0.01 0.52 ± 0.01 0.53 ± 0.03
MRR - 0.77 ± 0.01 0.69 ± 0.01 0.70 ± 0.01

Q2 Hits@Groupby3 - 0.85 ± 0.01 0.81 ± 0.01 0.79 ± 0.03
timetrain 117.1 ± 13.2 s 822.6 s ± 101.7 1722.7 ± 152.7 s 4266.9± 234.5 s
timetest < 0.03s < 0.03s < 0.03s < 0.03s

KGE-MLP setting. The special variant of KGE-MLP models are tested with
TransE [11], DistMult [12] and HolE [27], following [17]. The embedding size is
experimented on a search space of {16, 32, 64, 128, 256} and we chose 128 as
the best trade-off between efficiency and the accuracy.

5.2 Results and Discussion

Results and Discussion on Question 1. From the results of MLP and KGE
on Question 1 (table 2), we see that TransE performs the best in terms of Hits@1,
and MLP performs the best in terms of nrmse.

Acc(Hits@1). For Q1, Hits@1 means the percentage of the correctly predicted
diameter classes, therefore it represents the accuracy of diameter prediction,
making it the most important metric in the use case. In terms of Acc(Hits@1),
TransE outperforms all other KGE and outperforms MLP by 6 %. Important to
note, for industrial applications, a prediction accuracy of only 0.42 is not suffi-
cient, because industrial applications typically expect high accuracy. In our use
case, we consider an accuracy at least over 80% can make the solution usable, and
over 90% makes the solution good. However, we should not be too pessimistic,
and can relax the evaluation metric by resorting to nrmse. The MLP model per-
forms not well on Hits@1 for the diameter class prediction. As only 0.39 for the
prediction accuracy, meaning not even half of the diameter is predicted correctly.
Among all KGE models, TransE achieves the best results and is also better than
the MLP model results, with 0.42 accuracy. Other two KGE models RotatE and
AttH didn’t show improvements compared with the MLP model, but they still
manage to predict around 1/4 of the diameter classes correctly.

MRR. For common KGE problems, MRR is also a important performance in-
dicator, and mostly correlates with Hits@1. In the use case, the MRR indicates
that TransE is the best KGE model with an MRR of 0.65 and AttH is the second
best with 0.57. There exist no MRR for MLP and thus they are not comparable
in terms of MRR.
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nrmse. Here the nrmse is calculated by converting the diameter classes back to
real values then using the equation Σi(Di − D̂i)

2/D̄. It indicates the average
prediction error normalised by the mean value of the prediction target and can
be understood as relative percentage error. We see that in terms of nrmse, MLP
model is the best one, while TransE and AttH are comparable to MLP, and
their prediction errors are 5% to 6%. We postulate the reason that diameter
prediction was originally a regression problem, and classic ML method such as
MLP is well-suited for regression problems.
Considering the industrial adoption, we think the relative percentage error of
5% - 6% are both acceptable for industrial adoptions in our use case and thus
both MLP and KGE can be adopted in principle.

Time. In terms of training time, MLP consume much less than than all KGE
models, while TransE consumes the least time among the KGE models. In terms
of test time, all models are comparable. Considering industrial adoption, in the
case where training time is critical, MLP has an advantage. In mose cases, models
in industrial applications are pre-trained and the test time is more important.
In this regards, all models do not have adoption issues in terms of test time.

Results and Discussion on Question 2. From the results of MLP and KGE
models on Q2 (Question 2), we can see that TransE also performs the best in
terms of Acc(Hits@1), Hits@3Group and MRR (lower part of Table 2).

Acc(Hits@1). This metric means the percentage of the correctly predicted car-
body parts. In terms of Acc(Hits@1), TransE is the best model and outperforms
MLP model by 5% (relative). We see that for the carbody part problem, which
can be regarded as classification problem, TransE is better suited. However, a
prediction accuracy of 0.61 means 61% carbody is corrected predicted, which is
still not sufficient for industrial application. We also consider relax the prediction
and rely on Hits@Groupby3.

MRR. Similar to Question 1, MRR is highly correlated with Hits@1 and TransE
is the best KGE model.

Hits@Groupby3. Hits@Groupby3 is a metric we propose that is similar to Hits@3.
It is calculated by first splitting the carbody parts into groups where each group
has 3 carbody parts then count whether the predicted carbody is within the
group. Hits@Groupby3 relaxes the prediction by requiring to predict the correct
carbody part group (with 3 carbody parts) instead of one carbody. In industrial
practice we can also rely on Hits@Groupby3, because we can consider the car-
body part groups as the minimal unit of quality monitoring and and evaluate
the quality by the groups. With this new metric Hits@Groupby3, we can see all
the KGE models have relative good performance, about 0.80. TransE is still the
best model with 0.85.

Time. In terms of training time, the models consume time differently, with MLP
consuming much less than than all KGE models, while TransE consumes the least
time among the KGE models. In terms of test time, all models are comparable
in the Q2 prediction. Considering industrial adoption, in the case where training
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time is critical, MLP has an advantage. In the case where the models only
conduct inference, the TransE with higher performance si advantageous. In this
regards, all models do not have adoption issues in terms of test time.

Table 3. Comparison with KGE-MLP Models. The
KGE-MLP variants are marked with*.

Metric TransE TransE* DistMult* HolE*
Acc(Hits@1) 0.42 0.17 0.22 0.21

Q1 MRR 0.65 0.45 0.48 0.48
nrmse 0.06 0.11 0.09 0.10
Hits@1 0.64 0.34 0.34 0.37

Q2 MRR 0.77 0.48 0.52 0.41
Hits@GroupBy3 0.85 0.45 0.46 0.52

Comparison with KGE-
MLP models. We observe
from Table 3 that all the
KGE-MLP variants performs
worse than their KGE coun-
terparts in terms of Acc(Hits@1),
MRR, and nrmse. With 0.34
for accuracy and 0.52 for
MRR for carbody prediction
and 0.22 for accuracy and 0.48 for MRR for diameter prediction, the DistMult
based MLP model shows no performance improvement over the baseline MLP
model regarding the carbody prediction. Possible reason could be the MLP in
this model can not capture the welding information well. The special KGE vari-
ants were suitable for the problem of [17], but they seem to be not well-suited
for the questions in our case.

This results indicate that the welding KG and KGE based MLP can capture
the information of the welding data. However, due to the model design it may
not work as well as the KGE models.

Table 4. Ablation study on literals, models without
literals are marked with †

TransE MLP TransE† MLP†
Acc(Hits@1) 0.42 0.39 0.45 0.36

Q1 nrmse 0.06 0.05 0.04 0.05
MRR 0.64 - 0.68 -

Hits@1 0.64 0.61 0.53 0.49
Q2 MRR 0.77 - 0.70 -

Hits@GroupBy3 0.85 - 0.78 -

Ablation study on liter-
als. Table 4 shows the results
of the ablation study regard-
ing the literals. We can see
that for answering Q1, per-
formance of TransE is even
worse than TransE† (without
literals), while MLP performs
better with literals. We re-
peated the experiments 5 times and this result is persistent. We postulate the
reason is that the Diameter class are isolated in the KG, as shown in Fig. 4
that the rdf:type is the only link connecting Diameter with the rest of the KG.
This makes it is difficult to learn the correct links between the Diameter and
Spot. For answering Q2, we see both MLP and TransE models show some per-
formance degradation without literals. This is expected. We can see from Fig. 4
the Carbodypart is “well” connected to the rest of the KG via many other links,
and thus it does not suffer the same issue as in Q1.

Recommendation for industrial adoption. For answering Q1, MLP has
slightly better performance than TransE in terms of nrmse, which is the most
meaningful metric for industrial adoption, but the different of 5% and 6% error is
marginal. Considering MLP has less training time and it is easier to understand
for domain experts than KGE, it is still preferred than TransE. For answering
Q2, TransE has better results than MLP. Although none of the methods are di-
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rectly applicable considering the prediction accuracy (Hits@1), we can relax the
condition by introducing Hits@Groupby3, which requires to group the carbody
parts first by 3 and judging the quality for each carbody part group instead of
for each carbody. This is a good news for industrial adoption since the carbody
classification problem is challenging for classic ML due to the high number of
label classes. Overall, we consider the adoptabilty of KGE in industrial appli-
cations is promising, although not perfect. The adoptability is increased by the
adaptation of problem formulation, handling numerical literals and introducing
new metrics.

6 Discussion on General Impact and Related Work

Related work of KGE. Representative KGE models include translational
models in Eucledian space, such as TransE [11], RotatE [22], and model in hyper-
bolic space with attention mechanism: AttH [21] as the KGE models for quality
monitoring.

Related work of KGE applications. In the past work, there exist some ap-
plications of KGE in real-world applications. Such as the application in natural
language processing [18], ecooxicological effect prediction [17], application in bi-
ological area [28]. There exist rather less work on KGE in industrial applications.
Our work is an attempt to test whether and to what extent KGE can be used in
industries, especially traditional industries such as manufacturing, rather than
internet industries.

Usability by Stakeholders. Our work is grouped into the Bosch research for
data-driven solutions for manufacturing condition monitoring, and under the
umbrella of new generation manufacturing monitoring solutions based on neuro-
symbolic methods. The project spans over three sub-projects: the resistance
spot welding quality monitoring, process optimisation for hot-staking, and plas-
tic data analytics. The project collaborates with several factories in Germany,
aiming at smart equipment analytics, process optimisation, etc. Currently the
solution is under evaluation environment of both Bosch research and factories,
and received positive feedback, where the stakeholders are data scientists, se-
mantic experts, R&D engineers, etc. After the evaluation and prototyping, the
solution will be moved to the factories.

General Uptake. We provide our scripts of ML and KGE and anonymised
welding KG dataset in the open GitHub repository. Our scripts of ML and KGE
should provide important resource for reproducing the methods and results. Our
goal is to facilitate neuro-symbolic research that combines semantic technologies
and ML for industrial applications, especially for manufacturing industry. We
hope our provided resource can inspire research in the community of neuro-
symbolic reasoning, semantic technologies, graph embedding, etc. and advance
the state of art in these domains. We observe that the most open-source KG
datasets are about common sense domains, and few are about industries such
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as manufacturing. We thus hope that our dataset can help more researchers to
connect their research on KG to industrial cases.

Scalability and benefits. We have tested our solutions and recorded the con-
sumed resource and time. The results (Table 2) show that the test time which
is critical for scalabilty in industry is acceptable. The benefits of this work are
quite obvious. Data-driven solutions help to reduce cost and waste and increase
quality monitoring covering, by reducing or eventually replacing the conventional
destructive methods that destroy samples of welded car bodies. Further benefits
are that the work is an attempt of neuro-symbolic reasoning for manufacturing
that hopes to inspire more research directions.

Risks and opportunities. The risks here are that the prediction of both di-
ameters and carbody parts are not perfect. This needs to be documented in the
quality monitoring system if the technology is equipped in such a system. Despite
this, the risks are comparable to conventional methods and other data-driven so-
lutions, and are manageable by correct understanding of the prediction results
and adopting the measures such as safety coefficients. The research provide op-
portunities for further investigation and improvement of the solutions on other
manufacturing condition monitoring questions, datasets, and use cases. This re-
search also provide opportunities for researchers working on industry digitisation
and the AI application.

7 Conclusion and Outlook

Conclusion and outlook. This paper investigats to whether and to what ex-
tend KGE can be applied for Bosch welding quality monitoring. We compared
KGE methods with MLP on two important questions in manufacturing quality
monitoring. To make KGE applicable for our industrial questions, we adapted
the KGE methods in these aspects: we formulated classic ML problems of classifi-
cation and regression to link prediction, proposed strategies for handling literals,
including sensor measurements and diamters, and introduced the performance
metric rmse and Hits@GroupBy3. The KGE are not directly applicable if we
only consider the original metrics of KGE such as Hits@1 and MRR, but after
relaxing the prediction task by adopting rmse and Hits@GroupBy3, the adopt-
ability of KGE is increased and we give recommendations on the adoption.

This paper is under the umbrella of Neuro-Symbolic AI for Industry 4.0
at Bosch [29] that aims at enhancing manufacturing with both symbolic AI
(such as semantic technologies [30]) for improving transparency [31], and ML for
prediction power [32]. As future work, we plan to investigate larger datasets and
improve the KGE performance. We work closely with colleagues from factories
and will investigate further the adoptability of the technology.
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