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Abstract. Industry 4.0 and Internet of Things (IoT) technologies un-
lock unprecedented amount of data from factory production, posing big
data challenges in volume and variety. In that context, distributed com-
puting solutions such as cloud systems are leveraged to parallelise the
data processing and reduce computation time. As the cloud systems be-
come increasingly popular, there is increased demand that more users
that were originally not cloud experts (such as data scientists, domain
experts) deploy their solutions on the cloud systems. However, it is non-
trivial to address both the high demand for cloud system users and the
excessive time required to train them. To this end, we propose Sem-
Cloud, a semantics-enhanced cloud system, that couples cloud system
with semantic technologies and machine learning. SemCloud relies on
domain ontologies and mappings for data integration, and parallelises
the semantic data integration and data analysis on distributed comput-
ing nodes. Furthermore, SemCloud adopts adaptive Datalog rules and
machine learning for automated resource configuration, allowing non-
cloud experts to use the cloud system. The system has been evaluated
in industrial use case with millions of data, thousands of repeated runs,
and domain users, showing promising results.

Keywords: ontology engineering · knowledge graph · semantic ETL ·
machine learning · cloud computing · welding · quality monitoring · In-
dustry 4.0· rule-based reasoning · Datalog

1 Introduction

Background. Industry 4.0 [1] aims at highly automated smart factories that
rely on IoT technology [2], spanning across data acquisition, communication, in-
formation processing and actuation. This has unlocked unprecedented amounts
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Fig. 1. Data analytics development cycle exemplified on the Bosch case of welding con-
dition monitoring. In industrial data science projects, many users are non-cloud experts
(e.g., welding experts, ML experts) and want to scale their solutions on the cloud.

of data that are generated by production systems [3] and, thus, drastically in-
creased the demand for data-driven analytical solutions and cloud technology.
We illustrate a common industrial scenario of development and deployment of
data-driven solutions on cloud with a Bosch welding case7 of quality monitoring
in Fig. 1: The data from a production environment such as welding machines
(a) has first to be acquired in different formats, e.g., CSV, JSON, XML (b);
then they should be integrated into a uniform format (c); After that, the project
team (including welding experts, data scientists, managers. etc.) wants to run
data analysis on cloud infrastructures on top of the large data volumes from
many factories (d); After data analysis, these users need to discuss and log the
results (e); The whole process involves iterative and cross-domain communica-
tion between the stakeholders (f).

Challenges. From the scenario, we see that scaling data science solutions poses
challenges related to dealing with the high data volume, variety, and more users,
namely enabling non-cloud experts to leverage cloud systems. Indeed, industries
equipped with IoT technologies produce huge volumes of production data. In the
Bosch case, one factory alone produces more than 1.9 million welding records
per month. The data generated by different software versions, locations, cus-
tomers have a variety of data formats, feature names, available features, etc.
Meanwhile, many users that are not cloud experts, such as domain experts and
data scientists, want to deploy the data science solutions on the cloud. In a
standard implementation of the workflow in Fig. 1, the project team requires
extensive assistance from cloud experts, whenever they want to deploy solutions
or make small changes to their solutions deployed on the cloud. To facilitate the
adoption of cloud systems for more projects and users, one can equip all projects

7Automated welding is an impactful manufacturing process that is involved in the
production of millions of cars annually, deployed world-wide at many factories. Data-
driven analytics solutions for welding can greatly help in reducing the cost and waste
in production quality. Errors in production can only be resolved by destroying newly
produced cars in samples.
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with some cloud experts, or launch training programs about cloud technology
for all users. Both require careful planing to balance time, cost, and benefits.

Our Approach. To address these scalability challenges in terms of data vol-
ume, data variety, and democratising cloud systems, we propose SemCloud: a
semantics-enhanced cloud system, that scales semantic data integration and data
analysis on the cloud with distributed computing, and allows non-cloud experts
to deploy their solutions. Our system is motivated by a use case at Bosch aim-
ing at scaling data science solutions in welding condition monitoring (Sect. 2).
SemCloud consists of semantic artefacts such as domain ontologies, mappings,
adaptive Datalog rules (Sect. 3) and machine learning (ML) that learns the
parameters in the adaptive Datalog rules.

In particular, the semantic data integration (extract-transform-load, ETL)
(Sect. 3.2) maps diverse data sources to a unified data model and transforms
them to uniform data formats. To allow distributed ETL, SemCloud slices the in-
tegrated data according to domain-specific data semantics (machine equipment
identifiers in the Bosch case), separating the data into computationally indepen-
dent subsets. SemCloud then parallelises the ETL and analysis of the data slices
on distributed computing nodes (Sect. 3.3). Furthermore, SemCloud adopts a se-
mantic abstraction and a graphical user interface (GUI) to democratise cloud de-
ployment, improving transparency and usability for non-cloud experts. These in-
clude a cloud ontology that allows to encode ETL pipelines in knowledge graphs
(Sect. 3.4), and a set of adaptive Datalog rules (Sect. 3.5) for automatically find-
ing optimal resource configurations. These rules are adaptive because some of
their predicates are functions learnt with machine learning (ML)(Sect. 3.6).

We note that the existing work on this topic addressed the cloud deployment
issues only to a limited extent [4, 5], whereby they either only focus on the
formal description of cloud, or on the limited adaptability of cloud systems.
SemCloud exploits and significantly extends our previous works on ML in the
context of Industry 4.0 [6, 7], and container-based big data pipelines [8] (Fig. 4)
by enhancing the framework with semantic artefacts and modules for specifying
container-based pipelines, including pipeline step templates for containerisation
and management of inter-step communication and data transmission (Sect. 3.3).

We evaluated (Sect. 4) SemCloud extensively: the cloud deployment report to
verify SemCloud performance on reducing computational time, with an industrial
datasets of about 3.1 million welding spots; the performance of rule parameter
learning and inference based on 3562 times of repeated runs of the system.

2 Motivating Use Case: Welding Quality Monitoring

In this section we discuss our motivating use case in more details, explain why
scaling data science solution to large data sets and more users is critical and
discuss requirements for the cloud system.

Condition monitoring for automated welding. Condition monitoring refers
to a group of technologies for monitoring condition parameters in production
machinery to identify potential developing faults [9]. The use case addresses
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Fig. 2. (a) The data variety issue. (b) The data volume issue exemplified with the
production data.

one type of condition monitoring, quality monitoring (another type is machine
health monitoring), for resistance spot welding at Bosch, which is a fully au-
tomated welding process that is essential for producing high-quality car bodies
globally in the automotive industry. During the welding process (Figure 1a),
two welding gun electrodes press two or three worksheets (car body parts) with
force, an electric current flows through the electrodes and worksheets, generat-
ing a large amount of heat due to electric resistance. The materials in a small
area between the two worksheets melt and then congeal after cooling, forming
a weld nugget (or welding spot) connecting the worksheets. The core of qual-
ity monitoring is to measure, estimate or predict some categorical or numerical
quality indicators. The diameter (Figure 1a) of welding spots is typically used as
the quality indicator of a single welding act according to industrial standards [9,
10]. Conventional practice adopts destructive methods to tear the welded car
bodies apart, although they can only be applied to a small sample of car bodies,
and the destroyed samples are waste and cannot be reused. Bosch is developing
data-driven solutions to predict the welding quality, to reduce the waste and
improve the coverage of quality monitoring.

Bosch big data. Welding condition monitoring faces big data challenges of
variety and volume. In terms of data variety, Bosch has many data sources of
different locations and conditions (Figure 2a). The production data alone are
collected from at least four locations and three original equipment manufac-
turers (OEMs). These data differ in semantics and formats because of software
versioning, customer customisation, as well as sensor and equipment discrepancy
based on the concrete needs in the location. For example, they may be stored in
various formats such as CSV, JSON, XML, etc., and may have different names
for the same variables, have some variables missing in one source but present in
another, or data may be measured with different sampling rate, etc.

In terms of data volume, data science models need a reasonably large amount
of data to make the training meaningful and representative for the given data
science tasks. For simplicity, we consider a representative example, whereby we
assume one month data are meaningful, which was confirmed by data scientists
at Bosch. In an example automobile factory responsible for manufacturing chas-
sis (Figure 2b), there are 3 running production lines with a total of 45 welding
machines. Each welding machine is responsible for a number of types of welding
spots on the car bodies, with pre-designed welding programs. These machines
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perform welding operations at different speeds, ranging from one welding spot
per second, to one spot per several minutes. The data related to one single weld-
ing spot consist of several protocols or databases. After integration, these data
become to a set of relational tables with 263 attributes, and a simplified esti-
mation gives that one factory produces 64.8k spots every day, and 1.944 million
spots per months, which account for the production of about 432 cars. Consider-
ing an average of 125 KB data for one welding operation gives the estimation of
data volume meaningful for training as 243 GB (The real amount varies and can
be larger, e.g., it was estimated as 389.32 GB in one real case. Here we adopt
the simplification with a similar magnitude.).

Cloud deployment requirements. Considering the challenges, the welding
quality monitoring system should give quality estimation/prediction not with
excessive response time, although the data volume is large. In addition, the data
come from various sources with diverse formats. Moreover, industrial data science
projects involve many users that are non-cloud experts (Fig. 1). They should be
equipped with tools to help deploy their data science solutions without extensive
cloud expertise. The cloud infrastructure has resources of computing, memory,
storage, network, etc. which need to be configured for optimised performance.
Based on the information, we derive the following requirements for the system:

– R1, Scalability on Data Volume: The system should be able to reduce the
computational time significantly when processing large data volumes.

– R2, Scalability on Data Variety : The system should be able to handle data
variety, integrating heterogeneous data to uniform data formats.

– R3, Scalability on Users: The system should improve the transparency of the
cloud system, automate resource configuration, and allow good usability for
users, especially non-cloud experts,

3 SemCloud: Semantics-Enhanced Cloud System

To address the challenges and requirements, we propose our SemCloud system.
We first give an architectural overview (Fig. 3) and then elaborate on the com-
ponents.

3.1 Architectural Overview

The architecture of SemCloud is shown in Fig. 3. The Data Analysis Workflow
Layer adopts a common workflow: data acquisition, data preparation, data anal-
ysis, results logging and interpretation; the raw data are first acquired, then pre-
pared for data analysis, and, finally, the analysis results are generated, including
models, predictions and human interpretation. In the data preparation stage, we
employ Semantic Data Integration (Fig. 3.1) that relies on domain ontologies and
semantic mappings to transform diverse data sources into uniform data formats.
SemCloud scales the data analysis workflow to the cloud by with the Distributed
Computing (Fig. 3.2), which includes the distributed ETL, distributed data anal-
ysis, and deployment orchestration that allocates cloud resources to the previous
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Fig. 3. Architectural overview of SemCloud including (1) semantic data integration;
(2) distributed computing; (3) adaptive rule-based reasoning; each of which consists of
a set of semantic artefacts (barrels) or modules (boxes). R○ indicates the requirements
the artefacts or modules intended to address.

two modules. Adaptive Rule-based Resource Configuration (Fig. 3.3) provides a
cloud ontology and GUI for the users to encode ETL pipelines in KGs, which con-
tain resource configuration information that is automatically reasoned by a set
of adaptive Datalog rules. These rules consist of aggregation operations and pa-
rameterised functions, where the parameters in the functions are learned via ML.

3.2 Semantic Data Integration

To accommodate the diverse data sources/formats and convert all data to uni-
form data formats [6, 7], we employ domain ontologies as the data models and
the semantic mappings (Data-to-DO, data to domain ontology) that map diverse
data sources to the data models. In particular, the domain ontologies capture
the knowledge of manufacturing processes, data, and assets. In the case of weld-
ing ontology, it is in OWL 2 QL, with 1542 axioms, which define 84 classes,
123 object properties and 246 datatype properties. The classes capture concepts
such as welding operations, welding machines, welding products (spots), weld-
ing programs, sensor measurements, monitoring status, control parameters, etc.
The diverse data sources have discrepancies in data formats (e.g., CSV, JSON,
XML), feature names, feature composition (some features exist in some sources
but not in others), etc. All features in the different data sources of the same
welding process are mapped (one-to-one mapping for each data source) to ob-
ject properties (for foreign keys) or datatype properties (for attributes) in the
same domain ontology. All features are renamed, and data formats are unified
in one of the selected formats, usually CSV (or relational database).
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3.3 Distributed ETL and Data Analysis

Distributed ETL. To enable distributed ETL, we need to find a strategy that
makes the ETL parallelisable, treat data streams with different updating fre-
quencies, and handle data dependencies. SemCloud achieves this by breaking
down the ETL into pipelines of four steps: retrieve, slice, prepare, and store
(Fig. 4). Data retrieval constitutes the process of retrieving data from databases
or online streams present in different factories and can normally be handled by
a single computing node. These data are then split into subsets by the step
slice to achieve parallel processing according to data semantics that make the
splitting meaningful and each subset independently processable. In the welding
use case, each subset only belongs to one welding machine, because the data
analysis of welding quality monitoring of one machine can be safely assumed to
be observable or predictable with data from this particular machine, without
considering other machines. In this way, the datasets are separated into subsets
that are computationally independent. We then deploy the ETL stage and the
subsequent two stages on the cloud system that has resources for computing,
storage and networking, to reduce the overall computational time.

An important strategy here is the hierarchically dependent parallel pipelines.
We consider two types of data streams: the less frequently updated one with
usually smaller volume, and the (more) frequently updated one with usually
larger volume. (1) The former one has only three ETL steps: retrieve, prepare
and store, because it requires resource (computing, storage, network) of one
single cloud node and does not need slicing to parallelise. The intermediate
results of this ETL pipeline are stored in a database using in-memory storage for
fast query access. In the welding case, the metadata and reference curves follow
this ETL pipeline. (2) The latter one has four ETL steps because it involves
the application of slicing for parallelising. The results of this ETL pipeline are
stored on dedicated cloud storage. In the welding case, the processing of feedback
curves and main protocol requires more resources and is implemented through
this pipeline. The ETL of these two data streams are dependent because the
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prepare step of the frequent data stream must pull intermediate results of less
frequent data stream.

Distributed data analysis. The key of distributed data analysis is to make
assumptions of what computation is parallelisable, and split the computations
into independent computing tasks. Here the target of data analysis is to predict
the welding quality quantified by quality indicators such as spot diameters or
Q-Values [11, 7]. The tasks include both classification (good or bad quality),
regression (diameter values [12] or Q-Values), and forecasting [13] (predicting
quality in the future). In practice, the latter two are preferred by domain experts
because they provide more insights than a simple classification.

Both classic methods (feature engineering with e.g., linear regression) and
deep learning (LSTM networks) are employed. We developed and tested various
ML models [11, 13]. We used model performance for tuning the hyper-parameters
and considered both model performance and adoption difficulty for selecting the
best models [7]. These models take input features such as sensor measurements,
monitoring status and control parameters and predict the quality indicators.
The training was done with various regimes [14]: the ground truth training data
included simulation data, lab data, historical production data; the validation
data were subsets of the training data for selecting hyper-parameters; test data
were both of the same welding machines or different machines (testing transfer-
ability). According to domain knowledge, we assume that the interplay between
welding machines to be only marginally significant and that it is safe to predict
the welding quality of one welding machine only by using information of this
welding machine. This assumption has been verified and obtained a prediction
error of about 2% [11]. Thus, the data analysis on data of each welding machine
can be performed independently if each subset contains all data of one machine.

Cloud Deployment Orchestration. To orchestrate the distributed computa-
tion, SemCloud encapsulates ETL steps or data analysis as containers and runs
the containers independently and in parallel, allowing for deploying multiple in-
stances of the same ETL step or data analysis [8]. Each instance is implemented
by a template composed of three main parts: Input Processing, Pipeline Step
Task, and Output Processing (Figure 4c). The Input Processing fetches data
from remote sources and moves the data to the step workspace. The Pipeline
Step Task wraps custom code to process the fetched data. The Output Process-
ing component delivers the processed data to a specific destination, notifies that
they are available for the next steps, and clears up temporary and input data
from the step workspace. Configuration and attributes of a pipeline step can
be expressed as parameters and injected at deployment time. The communica-
tion between the steps is handled by Message-oriented Middleware (MOM) [15]
(Figure 4b), so that the consecutive steps do not need to run simultaneously for
interaction, ensuring temporal decoupling. None of the sequential steps needs
to know about the existence of other steps or their scaling configuration, thus
achieving space decoupling. Therefore, it is possible to assign more instances to
bottlenecked pipeline steps that are more computationally heavy and reduce the
overall processing time.
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Fig. 5. (a) Schematic illustration of the SemCloud ontology. (b) Partial illustration of
a KG for ETL-Pipeline.

3.4 ETL Pipeline Generation

Cloud Ontology. SemCloud provides the users GUI to construct ETL pipelines
and encode them into knowledge graphs, based on a SemCloud ontology (Fig-
ure 5a). The ontology SemCloud is written in OWL 2, and consists of 20 classes
and 165 axioms. It has three main classes: DataEntity, Task, Requirement. DataEn-
tity refers to any dataset to be processed; Task has sub-classes that represents
the four types of tasks in the data preparation: retrieve, slice, prepare, and store;
and Requirement that describes the requirements for computing, storage and net-
working resources.

ETL Pipeline Generation in KGs. We now illustrate the generation of ETL
pipelines in knowledge graphs with the example in Figure 5b. The data for
welding condition monitoring have multiple levels of updating frequencies, which
should be accommodated by the ETL pipelines. For example, data that are
generated for each welding operation are updated after each welding operation,
and thus are updated very frequently (about one second for one operation). For
these data, the users construct an ETL pipeline p1 with four layers (via GUI).
Firstly, data are “retrieved” from the welding factories. Thus, the layer l1 is of
type RetrieveLayer, and has the task t1 of type Retrieve. The task t1 has an IO
handler io, which has an output d1 of type DataEntity. Then the data are read
in by a task t2 of type Slice, and “sliced” into smaller pieces d2, d3. These slices
are input to different computing nodes to do tasks t3 and t4 of type Prepare.
Finally, all prepared data entities are stored by t5 of type Store.

3.5 Adaptive Datalog Rules Inference for Resource Configuration

Obtaining an optimised cloud configuration is not a trivial task. Cloud experts
typically try different configurations by testing the system with various settings
and use the system performance under these test settings as heuristics to manu-
ally decide the cloud configurations. In SemCloud, we design a set of declarative
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adaptive rules written using logical programming to make the cloud configura-
tions explicit, automated, less error-prone where the system optimisation is done
with help of external functions learned with ML, such that the rules can be also
used by non-cloud experts.

To this end, SemCloud uses adaptive rules in Datalog with aggregation and
calls to external predicates learned by ML (they are adaptive because the func-
tion parameters are learned, see Sect. 3.6). In particular, we consider non-
recursive rules of the form A ← B1, . . . , Bn where A is a head of rule (the
consequence of the rule application) and B1, . . . , Bn are either predicates that
apply join or aggregate function that filters out the results. For the theouploary
of Datalog we refer to [16–19]. In the following we provide some example rules
and explain their logic.

We have six different Datalog programs (set of rules) that run independently
and that are divided into three steps: (i) graph extraction rules that populate rule
predicates by extracting information from the ETL-pipeline KGs (e.g., rule0)
(ii) resource estimation rules that estimate the resource consumption for the
given pipeline if there is only one computing node (assuming infinitely large
nodes, e.g., rule2) (iii) resource configuration rules that find the optimal resource
allocation in distributed computing the given pipeline (e.g., rule3).

Graph extraction rules. These rules populate the predicates so that these
predicates will be used for the resource estimation and configuration. The rule0
exemplifies populating the predicate subgraph1 that is related to the ETL
pipeline p.

subgraph1(p,n,v,ms ,mp ,ssl ,spr ,sst) ← ETLPipeline(p),

hasInputData(p,d), hasVolume(d,v), hasNoRecords(d,n)

hasEstSliceMemory(p,ms), hasEstPrepareMemory(p,mp)

hasEstSliceStorage(p,ssl), hasEstPrepareStorage(p,spr)

hasEstStoreStorage(p,sst) (rule0)

Similarly, we have rule rule1 that creates subgraph2(p,n,v,ms ,mp ,ts ,tp ,

nc ,ns ,mrs ,mrp ,mode).

Resource estimation rules. These rules are used to estimate required re-
sources assuming one computing node. For example, rule2 estimates the required
slice memory (ms), prepare memory (mp), slice storage (ssl), prepare storage
(spr), and the store storage (sst). The rule then stores these estimations in the
predicate estimated_resource .

estimated_resource(p,ms ,mp ,ssl ,spr ,sst) ←
subgraph1(p,n,v,ms ,mp ,ssl ,spr ,sst),

ms=@func_ms(n,v), mp=#avg{@func_mp(n,v,ms,i):range(i)},

spr=#avg{@func_spr(n,v,ssl ,i):range(i)},

ssl=@func_ssl(n,v), sst=@func_sst(n,v,ssl ,spr) (rule2)

where @func_ms , @func_ssl , @func_sst , etc. are parameterised ML functions
whose parameters are learnt in the rule parameter learning (Sect. 3.6). In the
implementation, those are defined as external built-in functions that are called in
the grounding phase of the program and then are replaced by concrete values [16,
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17]. We also have other resource estimation rules that estimate other resources,
such as CPU consumption.

Resource configuration rules. These rules find the optimal cloud configura-
tions based on the estimated cloud resource. rule3 is an example for deciding
the slicing strategy and the storage strategy, and finding the optimal resource
configuration such as the chuck size (nc), slice size (ns), memory reservation for
slice (mrs) and for prepare (mrp). In essence, rule3 stipulates that if the maxi-
mum of estimated slice memory (ms) and prepare memory (mp) is greater than
a given threshold (c1*nm), and the maximum of estimated slice storage (ssl),
prepare storage (spr), and store storage (sst) is smaller than (or equal to) an-
other threshold (c2*ns), then the chosen strategy for the given pipeline is slicing
(thus nc and ns are computed), and fast storage (fs, where the thresholds are
calculated from cloud attributes.

configured_resource(p,nc ,ns ,fs ,mrs ,mrp) ←
subgraph2(p,n,v,ms ,mp ,ts ,tp ,nc ,ns ,mrs ,mrp ,mode),

estimated_resource(p,ms ,mp ,ssl ,spr ,sst),

CloudAttributes(c,c1 ,c2 ,c3 ,nm ,ns ,fs ,cs),

#max{ms ,mp} > (c1 * nm), #max{ssl ,spr ,sst} <= (c2 * ns),

nc = @func_fs_1(n,v,ts,tp), ns = @func_fs_2(n,v,ts,tp),

mrs = #min{ms , #max{@func_ss(n,v,nc ,ns), c3*ms}},

mrp = #min{mp , #max{@func_pn(n,v,nc ,ns), c3*mp}} (rule3)

3.6 Rule Parameter Learning with Machine Learning

The functions in the adaptive rules are in the form of ML models. The resource
estimation rules are selected from the best model resulting from training three
ML methods and the pilot running statistics. These three ML methods are Poly-
nomial Regression (PolyR) (Eq. 1), Multilayer Percetron (MLP) (Eq. 2), and
K-Nearest Neighbours (KNN). (Eq. 3). We selected these three methods because
they are representative classic ML methods suitable for the scale of the pilot
running statistics. PolyR transfers the input features (xi, i ∈ {1, 2, ..., n}, n is
the number of input features) to a series of polynomial vectors ([1, xi, x

2
i , ...x

m
i ],

m is the highest degree), and then constructs a predictor by multiplying a weight
matrix (W ∈ Rm×n). MLP consists of multiple layers of perceptrons, where each
perceptron applies the ReLu function to the weighted sum of all neuron outputs
of the previous layer plus the bias terms W(l−1)h(l−1)+b(l−1). For a given data
i whose output feature yi is to be predicted, KNN finds its k samples (s, consist-
ing of pairs of input xs and output ys) that are most similar to i (the k nearest
neighbours Nk) in the training data, and uses a weighted sum (the reciprocal of
distance d(s, i)) of the output features ys in Nk as the estimation.

The resource configuration rules are trained with the same three ML methods
and with optimisation techniques such as Bayesian optimisation or grid search.
For example, the functions @func_fs_1 and @func_fs_2 that find the optimal
chuck size (nc) and slice size (ns) are trained by finding the arguments of (nc ,
ns) for the minimal total computing time (ttotal)
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nc, ns = argmin
nc,ns

ttotal = argmin
nc,ns

f(v, n, nc, ns, tslice, tprepare)

xi = [1, xi, x
2
i , ...x

m
i ]T

ŷi =
∑

iWxi

err = ||ŷ − y||2

(1)

h(0) = x = [x1, x2, ..., xn]
T

h(l) = ReLu(W(l−1)h(l−1) + b(l−1))

ŷ = ReLu(W(L−1)h(L−1) + b(L−1))
(2)

s = (xs, ys)

Nk = {s|d(s, i) ≤ dk}
d(s, i) = ||xs − xi||

ŷi = wys, s ∈ Nk

(3)

4 Implementation and Evaluation

We implemented our system with a front-end GUI based on Angular, HTM-
L/CSS, and a back-end system based on ASP.NET Core, JavaScript, Python
and DLV system [20, 21]. The GUI adopts the common design pattern of Model-
View-Controller and has a RESTful API that handles the requests and responses
between the front-end and back-end.

The evaluation consists of (4.1) cloud deployment report, verifying to what
extent SemCloud reduces computational time for semantic ETL (R1, R2); and
(4.2) rule parameter learning and inference, validating whether the rule param-
eter learning and inference is scalable (R1) and accurate, so that the non-cloud
experts can use SemCloud with confidence (R3).

4.1 Cloud Deployment Report

Data Description. To determine whether SemCloud reduces computational
time, we use a dataset of 3 production lines for one month. The dataset is
anonymised and simulated based on a welding factory in Germany. We simu-
lated the dataset because it allows the freedom of evaluating settings and the
information of real data is subject to a non-disclosure agreement. One produc-
tion line has 10 - 20 machines, amounting to 45 machines in total. Each machine
performs welding operations at a different speed, ranging from 1 spot/second,
to 1 spot per several minutes (due to maintenance time, delay time, and various
situations). The total amount of data are 389.42 GB, which represent 3.1 million
spots, estimated to be related to 692.3 cars

Deployment Setting.We deployed the SemCloud system on an infrastructure of
7 computing instances connected by a network that were managed by a Rancher
container orchestrator [22]. We adopt the automatic setting, whereby resource
configurations are provided via adaptive Datalog rules and the Rancher system
automatically assigns containers to resources according to the configuration.

Performance Comparison. We demonstrate the performance comparison be-
tween the ETL processing with the legacy system (without SemCloud) and with
our SemCloud system (Figure 6). The legacy system is comprised of a integrated
software that performs both the preparation of the metadata/reference curves
and the processing of the feedback curve and main protocol data. The legacy
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SemCloudLegend:

Fig. 6. (Performance comparison by (a) memory usage, (b) total CPU usage (inte-
grated over time), (c) consumed time: SemCloud significantly reduces the memory us-
age and consumed time (by about 50%), and uses slightly more total CPU, compared
to the legacy solution (Without SemCloud). X-axis: processed input data volume.

system was deployed in a node that meets the total requirements for the exper-
imental data to monitor the resource usage.

It can be seen that the the memory usage of the computing instance for the
legacy solution increases monotonously along the processed input data volume,
while SemCloud requires almost zero increase of memory allocation, which means
SemCloud can deploy the ETL process on many computing instances with no
extra memory demand. Figure 6b shows SemCloud requires slightly more CPU
power. This is expected and understandable, because the distributed deployment
consumes more computing power per unit of time, but decreases the overall
computing time. The latter is confirmed by Figure 6c: as the input data volume
increases the reduced computing time brought by SemCloud becomes increasingly
significant (R1).

4.2 Evaluation of Rule Parameter Learning and Inference

Pilot Running Statistics. To verify the scalability and accuracy of the rule
parameter learning and inference, we gather pilot running statistics, train and
test the ML functions in SemCloud. We run SemCloud repeatedly 3562 times with
different sizes of subsets of the welding dataset in Sect. 4.1 and gather pilot
running statistics. These statistics include data information, e.g., input data
size, different configurations, e.g., slice size, and recorded resource consumption
e.g., memory consumption, mCPU consumption.

Experiment Setting. We split the pilot running statistics so that 80% are
for rule parameter training and 20% for rule testing and inference. Three ML
models are trained and tested: PolyR, MLP, and KNN. We adopt a grid search
strategy for hyper-parameter tuning. The final hyper-parameter are, PolyR: 4
degree; MLP: 2 hidden layers with neurons 10 and 9; KNN: 2 neighbours.
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a b

Fig. 7. (a) Optimisation to find the best slice size for the least time, when chunk size
is fixed. (b) Comparing ML methods to find the minimal training data

Performance Metrics. We use several performance metrics: normalised mean
absolute error (nmae) [23] to measure prediction accuracy, minimal training data
amount (Min. |Dtrain| for yielding satisfactory results, optimisation time (Opt.
time), learning time and inference time. Intuitively, nmae reflects the scale-
independent average prediction error. It is computed as mean absolute error
normalised by the mean value of the configuration c̄: nmae = mae/c̄. nmae re-
flects the mean absolute error between the ground truth configuration c and the
predicted configuration ĉ: mae = 1

|Dtest|
∑

Dtest
|c− ĉ|, and c̄ =

∑
Dtest

c/|Dtest|.
We normalise mae because its scale is dependent on the variable for which we
calculate mae. If it is divided by the mean value of the variable, it becomes nmae
which is scale-independent.

Table 1. Parameter learning and reasoning
results, recorded on Intel Core i7-10710U.

Metric PolyR MLP KNN
nmae 0.0671 0.0947 0.0818
Min. |Dtrain| 7.42% 50.97% 10.00%
Opt. time 1.12s 174.32s 7.25s
Learning time 20.82ms 120.31ms 27.52ms
Inference time <1.00ms <1.00ms <5.00ms

Learning and Inference Results.
The optimisation results of slice size
shows we can configure it to find a
“sweet spot” to minimise the total
consumed time (Figure 7a). The per-
formance of rule learning and infer-
ence is shown in Table 1 (R3). The
learning time is the time it takes to
train the models. The inference time includes the model inference time and the
rule reasoning time. It can be seen that the PolyR has the best prediction ac-
curacy, requires the least training data, and consumes the least time. Therefore,
PolyR generates the best results and is selected for the use case. We presume
the reason is that PolyR works better with small amounts of and not very com-
plex data (3562 repeated running statistics). We can see MLP is not very stable
(Figure 7b). This is due to the random initialisation effect of MLP.

5 Discussion on General Impact and Related Works

Uptake for the cloud community. SemCloud is an attempt for democratising
cloud systems for non-cloud experts. We hope to inspire research and a broad
range of users who are pursuing scaling data science solutions on the cloud, but
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are impeded by the long training time for acquiring cloud expertise. Providing a
dynamically scalable (on a step and pipeline level), general-purpose solution for
big data pipelines on heterogeneous resources that a broad audience can use is
an open research topic [24, 25]. The currently available multitude of tools for big
data pipeline management only partially addresses these issues as shown in [26].
Data pipeline management approaches in literature such as [27–29] also partially
address the issue but either specifically support a knowledge domain (scientific
workflows, ad-hoc languages), fail to address issues related to individual step
scalability, or are not well-suited for dynamic long-running jobs. Other works
that touch that topic [30–33] also do not address the automatic resource allo-
cation issue and are not designed for non-cloud experts. Our approach tackles
these issues and the presented principles should be easy to reproduce.

Uptake in terms of semantic technology. We open-source our cloud ontol-
ogy [34]. We hope this ontology can facilitate research of semantic technology
in the scalability challenges, that the tenets of explicit, transparent, and shared
knowledge can advance in the practice in academia and industry. We developed it
as we did not find a suitable ontology for our challenges. Past works about cloud
ontologies focus more on describing the different layers and components [4, 5],
services [35], functional or non-functional features and the interaction between
the layers [36]. They cover the cloud tasks and resource allocation, but to a lim-
ited extent. There exist other works about the resource management topic [37–
39], but they do not provide mechanism or reasoning for adaptive and automatic
resource configuration. Works about cloud reasoning are focused on other aspects
like security attacks [40], minimising sources like computing nodes [41], computa-
tional requirements [42], service placement [43], verifying policy properties [44],
deploying semantic reasoning on the cloud [45]. There is insufficient discussion
on helping users to automate the cloud resource configuration.

Uptake by stakeholders and benefits. Semantic technologies play an increas-
ingly important role in modern industrial practice. Ontologies, as a good way
for formal description of knowledge, offer unambiguous “lingua franca” for cross-
domain communication. They can help users to perform tasks of a remote domain
that otherwise would be error-prone, time-consuming and cognitively demand-
ing. We incorporated rule-based reasoning, falling in the category of symbolic
reasoning, with machine learning, which is a type of sub-symbolic reasoning. The
combination takes benefits from both: SemCloud becomes more agnostic of cloud
infrastructure and adapts to the resource conditions, thus exploiting explicit
domain knowledge via semantics and learning implicit relationship via ML.

In addition, we tested SemCloud with users of various backgrounds (welding
experts, data scientists, semantic experts). SemCloud could improve their working
efficiency. Before using SemCloud, users that are the non-cloud experts have very
limited understanding of the cloud system, and did not use the cloud system.
Through SemCloud, these users could obtain better understanding of the cloud
system, start using the cloud system, and rely on the SemCloud to automatically
configure the resource allocation. We tested the GUI with the users to collected
feedback for improving the usability and expanding the functionalities.
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Lessons Learnt on costs and risks. The main costs for development of such
systems comprise the early development time for the semantic infrastructure
that mediates between the cloud resources, data analysis solutions and users.
Naturally, these costs vary depending on the specific project. It was manageable
in our case, but should be carefully evaluated for each project individually. The
key lessons learnt for reducing costs is that a good cross-domain communication
framework is essential, where experts of different backgrounds can speak a com-
mon language and reduce misunderstanding and communication time. A possible
and important risk is that the assumption could be wrong as to whether and to
what extent the ETL and data analysis can be parallelised. It is recommended
to verify the assumption early to avoid further costs.

6 Conclusion, and Outlook

Conclusion. This work presents our SemCloud system motivated by a Bosch use
case of welding monitoring, for addressing the scalability challenges in terms of
data volume, variety, and more users. SemCloud provides semantic abstraction
that mediates between the users, ETL and data analysis, as well as cloud infras-
tructure. The scalability in terms of data variety is addressed by semantic data
integration, data volume by distributed ETL and data analysis, and scalability
to more users by adaptive Datalog rule-based resource configuration. These Dat-
alog rules are adaptive because they have parameterised functions learnt from
pilot running statistics via ML, a combination of symbolic and sub-symbolic
approaches. We evaluated SemCloud extensively through cloud deployment with
large volume of industrial data, and rule learning from thousands of pilot runs
of the system, showing very promising results.

Outlook. SemCloud is under the umbrella of Neuro-Symbolic AI for Industry
4.0 at Bosch [46] that aims at enhancing manufacturing with both symbolic
AI (such as semantic technologies [47]) for improving transparency [48], and
ML for prediction power [49]. Bosch is developing user-friendly cloud technology
in the framework of EU project DataCloud with many EU partners [50]. Sem-

Cloud is partially developed with production end-users and current deployed in
a Bosch evaluation environment. We plan to push it into the production to test
with more users and collect feedback, and work together with EU partners for
transferring the knowledge and experience to other manufacturing domains to
increase the wide adoption. We also plan to develop formal theories for knowl-
edge representation and reasoning for cloud technology and automatic resource
configuration, e.g., better modelling framework, advanced reasoning rules, and
deeper integration of symbolic and sub-symbolic reasoning.

Acknowledgements. The work was partially supported by the European Com-
mission funded projects DataCloud (101016835), enRichMyData (101070284),
Graph-Massivizer (101093202), Dome 4.0 (953163), OntoCommons (958371),
and the Norwegian Research Council funded projects (237898, 323325, 309691,
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