
Aviation Certification Powered by the

Semantic Web Stack

Paul Cuddihy1, Daniel Russell2, Eric Mertens3,

Kit Siu1, Dave Archer3, Jenny Williams1

1 GE Aerospace Research, Niskayuna, NY 12309, USA
2 GE Aerospace, Grand Rapids, MI 49512, USA

{cuddihy, daniel.russell, siu, weisenje}@ge.com
3 Galois, Portland, OR, 97204 USA

{dwa, emertens}@galois.com

Abstract. Every deployed DoD system undergoes certification (or qualification,

for military) to assess the software system’s fitness for use. Certification requires

that human subject matter expert look over evidence and evaluate its conform-

ance to standards such as DO-178C or the Risk Management Framework (RMF).

Current practices are not keeping pace with the ever-increasing size of software

systems and the amount of evidence required for their certification. This problem

is further exasperated when platforms are comprised of systems of systems de-

veloped by multiple suppliers, each providing data generated by different tools,

in different formats, and captured with different granularity. We demonstrate the

application of W3C Semantic web technologies to perform efficient evidence cu-

ration under a military research program. This tech stack offers the right solutions

for integrating data from heterogeneous sources and for performing graph-tra-

versal queries across data that changes at a regular frequency.

Keywords: Recursive graph traversal, certification, curation.

1 Introduction

Every deployed aviation system undergoes certification (or qualification , for military)

to assess the software system’s fitness for use; whether it’s following DO-178C guid-

ance, a Certification and Accreditation (C&A) process, Risk Management Framework

(RMF), or Assessment and Authorization (A&A). Certification requires that a human

subject matter expert look over evidence and evaluate its conformance to standards.

With evidence consisting of ever-increasing numbers of requirements, architecture

components, test cases, and additional data, the current practices are not able to scale.

This problem is further exasperated when platforms are made up of systems of systems

developed by multiple suppliers, each providing data generated by different tools, in

different formats, and captured with different levels of granularity.

One way to solve this problem is through efficient evidence curation. Curation nor-

malizes the data by defining a schema and organizing the artifacts against it. It must

2

then provide easy access to the data so that it can be used to develop a certification

compliance report or to assemble an assurance case with a structured argument showing

how the system meets the goals of safe and secure operation. These reports and assur-

ance cases may require updating at a regular frequency to reflect software updates and

bug fixes.

The W3C Semantic Web stack offers the right solution for integrating data from

heterogeneous sources. An ontology provides the means to reify a schema – it provides

the rigidity needed to define an ontology with common subjects and predicates univer-

sally applicable to certification evidence. Inference and ingestion tools provide the

means to check the dataset’s compliance to the ontology either during or post ingestion.

SPARQL is an excellent match for the inherently recursive graph structure of assurance

case evidence and can provide results for a certification report.

In this paper, we describe how we curate certification evidence into our opensource

Rapid Assurance Curation Kit (RACK), which consists of a semantic triplestore backed

by an ontology. This curation platform is developed under DARPA Automated Rapid

Certification of Software (ARCOS) [1]. There are three performer teams on this re-

search program that generate evidence (known as Technical Area 1—TA1) and three

other performer teams that use the evidence to assemble assurance cases (known as

TA3). The development of RACK and the curation effort is known as TA2; the authors

of this paper are part of this sole performer team on the program. RACK is used by all

performer teams on ARCOS.

2 Background

2.1 Definition of Data Curation

Curation means organizing the data , assessing its quality, and providing easy access to

it. A system development process produces artifacts in a multitude of formats, some of

which we will illustrate in the next subsection. To make use of these artifacts, the data

within must be identified, extracted, and organized. To ensure that the data is curated

correctly, data verification is performed at various stages. Verification is done at inges-

tion time to make sure that all incoming data matches the types specified by the ontol-

ogy and that all properties and classes are correct. The next level of verification is per-

formed after ingestion of the complete dataset to ensure that it adheres to any specified

ontology constraints such as cardinality. The final verification step is domain specific.

In airborne system certification, for example, we perform a query that counts how many

tests do not trace to requirements.

2.2 Diversity of Tools and Artifacts

The system development process is typically defined in a series of planning documents

that describe how the development team will conform to the certification guidelines.

Examples are PSAC (Plan for Software Aspects of Certification), SDP (Software De-

velopment Plan), SVP (Software Verification Plan), SCMP (Software Configuration

3

Management Plan), and SQAP (Software Quality Assurance Plan). These plans are

freeform text documents; an example template can be found here [2]. Planning docu-

ments describe how the development team will generate artifacts through a series of

development activities and how those artifacts will be used as evidence that the team

has followed the plan. A system development process often uses multiple tools that

produce a diversity of artifacts in various formats. RACK would curate the elements of

the plans and the evidence produced by development activities, and show how evidence

is related, revealing where the development process may have deficiencies or errors.
IBM Rational® DOORS® is a requirements management tool [3] where members

of an organization can access, author, and modify requirements. The tool provides links

to other DOORS® objects, but the plans dictate traceability to design items such as

source code or testing. In this work, RACK would curate from DOORS® the require-

ment identifier, the requirement text, and any traceability information (Fig. 1).

Fig. 1. Illustration of requirements captured in DOORS®1

Developing requirements-based tests is an important verification step, often cap-

tured in XML. Fig. 2 illustrates a test procedure file that would be created for each

requirement. In this work, RACK would curate evidence information such as test iden-

tifier and the requirement that this test verifies. After tests are run, results could be

saved in a myriad of possible formats depending on the platform. Since it’s common-

place for test procedures to define expected outputs, RACK would curate the pass/fail

result from each test output file.

Fig. 2. Illustration of a test procedure in XML format

1 Requirements are textual in nature. This illustrative example is from our 2019 SAE paper [4]

where we introduced a tool to capture requirements in a more formal and structural way.

4

Many other tools exist that aid in developing artifacts within the development pro-

cess. RACK is a common repository for evidence from all tools. By combining evi-

dence produced from the multitude of tools, a knowledge graph can be assembled that

allows for the analysis of the entire development process from one place.

3 Application of the Semantic Web Stack

There are two features of the Semantic Web stack that influenced us to select it for this

certification challenge. First, the graph view and recursive graph query operators in

SPARQL are an intuitive fit to evidence curation. Second, the ability to write an ontol-

ogy with natural support for subclasses, sub-properties, and cardinality constraints, and

to write inferences to ensure model compliance were a more natural fit than a relational

schema.

3.1 Graph Databases and SPARQL

Common to all certification guidance is the need to define requirements with success

and fa ilure criteria. A graph display of a subset of curated evidence is shown in Fig. 3.

In this example, a SYSTEM component is governed by a PIDS_Req (Prime Item De-

velopment requirement) which is satisfied by additional requirements such as SRS_Req

(Software Requirements Specification). Some requirements are verified by tests, which

may also verify other types of requirements. Some tests are confirmed by test results.

Both the subclassing of REQUIREMENT and the visual graph structure are very intu-

itive to the certification community. Importantly, this type of graph display is very close

to the natural state of the data in a triplestore, indicating a strong fit.

Fig. 3. Graph view of curated evidence

In most examples, system components are arranged in a tree-like network of partOf

relationships and requirements can satisfy layers of additional requirements, creating a

need for straight-forward ways to write recursive graph queries. SPARQL’s graph

5

structure and recursive operators such as * and + are a natural fit. Take for example this

simple query:

prefix TESTING:<http://arcos.rack/TESTING#>

prefix SYSTEM:<http://arcos.rack/SYSTEM#>

prefix REQUIREMENTS: <http://arcos.rack/REQUIREMENTS#>

select distinct ? testStatus where {{

 ? testStatus a TESTING:TEST_STATUS .

 <SOME_URI> (^(SYSTEM:partOf) |

 ^(REQUIREMENTS:governs) |

 ^(REQUIREMENTS:satisfies) |

 ^(TESTING:verifies) |

 ^(TESTING:confirms) |

 TESTING:result)+ ?testStatus .

 }}

The URI of any instance of any subclass* of SYSTEM, REQUIREMENT, TEST, or

TEST_RESULT may be substituted in for <SOME_URI> and the query will return a

list of test statuses (Passed, Failed, Indeterminate) that roll up the piece of evidence.

This SPARQL query will find the test status through layers of subsystems, layers of

requirements, and all associated tests. The ability of such a relatively simple SPARQL

query to deliver powerful results for a variety of types of evidence is a clear indication

that the W3C Semantic Web stack is a great fit for our domain.

3.2 Authoring the Ontology

The ontology is written using the Semantic Application Design Language (SADL) [5]

[6]. SADL is an open-source, controlled-English language that is automatically con-

verted to OWL [7]. Besides being an ontology language, SADL is an Eclipse-integrated

development environment (IDE) with Xtext [8]. This environment provides semantic

coloring of different types of concepts in models, hyperlinking of concepts to their def-

initions and usage, graphical visualization of models, type checking, content assist, and

other functionality useful for authoring models. Below is a snippet of the ontology writ -

ten in SADL with the OWL translation below. Notice how SADL is very natural for

humans to read and write as compared to OWL, even with its standard serializations.

This allows non-semantic experts to read, write, and contribute to the data model, which

is important for maintainability, as we will describe in the next section on the partici-

pative process of updating and maintaining this model throughout the ARCOS program.

Our ontology consists of approximately 7,800 lines of SADL, which compiles into

7,400 triples. The semantic model in its entirety can be found on GitHub 2. A more in-

depth discussion of the model can also be found in [9]. The snippet we included below

does not demonstrate cardinality constraints but note that this can be done inline in the

SADL model.

2 https://github.com/ge-high-assurance/RACK/tree/master/RACK-Ontology/ontology

http://arcos.rack/REQUIREMENTS

6

REQUIREMENT
 (note "Captures (both high- and low-level) properties of a process or arti-
fact that are to be assessed")

 is a type of ENTITY.
 governs (note "ENTITY(s) that are the subject of the requirement")
describes REQUIREMENT with values of type ENTITY.

 governs is a type of wasImpactedBy.
 satisfies (note "Parent ENTITY(s) (e.g. REQUIREMENT) that this REQUIREMENT
is derived from")
describes REQUIREMENT with values of type ENTITY.

 satisfies is a type of wasImpactedBy.
 Rq:mitigates (note "ENTITY(s) (e.g. HAZARD) that is being mitigated by this
REQUIREMENT")
describes REQUIREMENT with values of type ENTITY.

 Rq:mitigates is a type of wasImpactedBy.
 wasGeneratedBy of REQUIREMENT only has values of type
REQUIREMENT_DEVELOPMENT.

REQUIREMENT_DEVELOPMENT
 (note "ACTIVITY that produces REQUIREMENTs") is a type of ACTIVITY.

<owl:Class rdf:about="http://arcos.rack/REQUIREMENTS#REQUIREMENT">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:allValuesFrom>
 <owl:Class rdf:about="http://ar-

cos.rack/REQUIREMENTS#REQUIREMENT_DEVELOPMENT"/>
 </owl:allValuesFrom>
 <owl:onProperty rdf:resource="http://arcos.rack/PROV-S#wasGeneratedBy"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:comment xml:lang="en">Captures (both high- and low-level) properties of
a process or artifact that are to be assessed</rdfs:comment>

 <rdfs:subClassOf rdf:resource="http://arcos.rack/PROV-S#ENTITY"/>
</owl:Class>
<owl:Class rdf:about="http://arcos.rack/REQUIREMENTS#REQUIREMENT_DEVELOPMENT">
 <rdfs:comment xml:lang="en">ACTIVITY that produces REQUIREMENTs</rdfs:com-
ment>

 <rdfs:subClassOf rdf:resource="http://arcos.rack/PROV-S#ACTIVITY"/>
</owl:Class>
<owl:ObjectProperty rdf:about="http://arcos.rack/REQUIREMENTS#governs">
 <rdfs:subPropertyOf rdf:resource="http://arcos.rack/PROV-S#wasImpactedBy"/>
 <rdfs:comment xml:lang="en">ENTITY(s) that are the subject of the require-
ment</rdfs:comment>

 <rdfs:range rdf:resource="http://arcos.rack/PROV-S#ENTITY"/>
 <rdfs:domain rdf:resource="http://arcos.rack/REQUIREMENTS#REQUIREMENT"/>
</owl:ObjectProperty>
...

3.3 Maintaining the Ontology

To sustain the ontology, we formed a participative process where all ARCOS perform-

ers are stakeholders in evolving the model. The Data Model Decision Team (DMDT)

is made up of one representative from each performer team. The group meets regularly

(bi-weekly) and any member of the DMDT can propose a change. We follow a RAPID

process as shown in Fig. 4. The TA2 team administers the meetings, implements agreed

7

changes, and maintains the ontology. SADL’s role as the key enabler to bringing the

Semantic Web stack to this DARPA community cannot be overemphasized. We could

not have had as deep discussions, or achieved as good of a consensus, if we were look-

ing at relational schemas, or OWL for that matter.

Fig. 4. We use a participative RAPID approach to maintain the ontology.

4 Evidence Ingestion Pipeline

Ingesting thousands of pieces of various types of evidence from multiple providers

across large teams requires a rich set of tools layered over the triplestore and organized

into an ingestion pipeline. Fig. 5 provides a simplified view of this pipeline.

Fig. 5. High-level view of the rich pipeline of tools used in RACK.

At the bottom is a SPARQL 1.1 compliant triplestore. For practical and program-

matic reasons, we use Apache Fuseki [10] for this stage of the program. Over that is the

Semantics Toolkit (SemTK) service layer [11][12]. A suite of semantics tools that has

been in development at GE for several years, SemTK is based upon the concept of

“nodegroups” [13] which are graphical depictions of a subgraph of interest, with addi-

tional annotations for automatic generation of queries including ingestion . SemTK in-

cludes the SPARQLgraph interface for visually editing nodegroups and ingestion map-

ping templates, running queries, and performing various utility functions. It also pro-

vides Java and REST APIs for asynchronous queries, ingestion, and utility functions.

8

Then there is a Python API [14] upon which several other tools are built, including a

user interface, RACK UI, which supports basic data loading and links to SPARQL-

graph, and a command-line interface.

The manifest format defines the large and complex data pa ckages that are used to

populate RACK. It is comprised of sub-folders of OWL ontology files, CSV data files,

nodegroup queries, ingestion templates, SemTK reports, and YAML files that describe

the manifest’s components and loading sequence.

As described in the previous section, SADL is used to compose the ontology, and

the SADL tools compile into OWL, which is then loaded via the manifest. Other im-

portant tools include the Scraping Toolkit, which accesses the ontology through the

semtk-python layer and is then used to build document scrapers which output CSV and

YAML files for the manifest. The Entity Resolution Tool uses semtk-python to access

both the ontology and previously loaded data to create CSV files that describe entities

which can be combined in an additional, cleaner copy of the data.

Curation of data from multiple sources involves the orchestration of many complex

processes. The pipeline introduced above allows us to load large ingestion packages

successfully and repeatably. RACK can ingest a data package of 2.5M triples in under

15 minutes, inclusive of type checking, URI lookup and linking, and verification of the

domains and ranges of all properties. The APIs allow other ARCOS performer teams

to build and integrate RACK features and capabilities into their own tools. The follow-

ing sections of this paper will describe key components of RACK in more details.

4.1 SemTK Nodegroups

The “nodegroup” is a fundamental concept of the SemTK layer upon which RACK’s

data ingestion and querying is built. A simple example is shown in Fig. 6. The node-

group is edited using SPARQLgraph by dragging classes from the ontology onto the

canvas and selecting desired properties. It represents a subgraph of interest for a partic-

ular query or queries. Pathfinding assists the editing process and may be based either

solely upon the ontology or account for existing instance data when choosing likely

paths. By default, a node represents not only the class shown, but all subclasses. Data

properties appear by name only, and object properties as links to additional nodes. The

graphical editor provides a rich set of annotations that allow properties to be selected

for return, labeled optional or minus, filtered, and have functions applied. Object prop-

erties may have operators such as * and + applied. Unions are supported. Although a

very useful subset of SPARQL is supported, nodegroups have yet to support the full

expressivity of SPARQL.

The right side of Fig. 6 shows SPARQL for a “select distinct” query that is auto-

generated by SemTK, with some prefixes removed and edits made for readability.

Query types such as count, construct, ask, and delete are all supported. Nodegroups are

stored in a “nodegroup store” and referenced by id. When applied to a different

SPARQL connection, “FROM” or “USING” clauses are updated appropriately. Stored

nodegroups support the concept of “runtime constraint ,” which allow the APIs to assist

in sending along constraints such as ?requirement_id = “Req1” when a query is exe-

cuted. It should be noted that since the SPARQLgraph editor is ontology -driven, all

9

SPARQL-generated queries (and more importantly, the ingestion process described be-

low) are consistent with the ontology.

Fig. 6. Simple nodegroup and auto-generated SPARQL

4.2 SemTK Ingestion Templates

Building upon the nodegroup concept are ingestion templates. A template consistent

with the nodegroup in Fig. 6 is shown in Fig. 7. A template maps the data in each line

of a CSV file to a nodegroup such that the triples representing one nodegroup subgraph

will be inserted for each line of the CSV.

The right side of the template shows the names of four columns in a target CSV file.

The left shows where each maps to the nodegroup. With certain exceptions related to

lookup and CSV validation features, empty or missing values are pruned from the node-

group before the line of CSV data is inserted.

The ingestion process supports many features beyond the scope of this paper. How-

ever, a few of them are critical to the RACK ingestion process. Most importantly is the

URI Lookup feature. Note that all the bolded rows in the ingestion template (which

represent classes) are set to “—Generate UUID,” meaning that random URI’s will be

generated during ingestion and not built from strings in the CSV. The darkened boxes

near ?SYSTEM and ?system_id indicate the instance of the class SYSTEM will be

looked up in the target graph using the property identifier (the property with object

?system_id) and the value from the column system_id.

When looking up URIs, the template provides the options of create-if-missing, er-

ror-if-missing, and error-if-exists. For the first two more commonly used options, once

the URI is found, other properties will be added to the existing data. RACK uses these

features to store all data with random URIs and avoid the need to publish and enforce

standards for URI construction across different program performers. Instead, data is

looked up by identifier.

In addition to error-if-missing, the ingestion process also checks the format of all

data presented as URIs, dates, times, numbers, etc. and prevents ingestion of any data

that is not properly formatted. This works alongside the ontology-driven nodegroup

used to ingest each row, which guarantees that the types, properties, domains, and

10

ranges in all the triples conform to the ontology. These represent RACK’s first level of

data verification on incoming data before it enters the triplestore.

Fig. 7. An ingestion template.

4.3 Automatic Ingestion Templates (“Ingest by Class”)

The SemTK nodegroup and template-based ingestion process described above is both

powerful and very flexible. We determined that a less flexible standardized ingestion

template would speed understanding and adoption of ingestion across the many per-

formers on the program. To this end, a standard ingestion template can be automatically

generated for any given class.

RACK’s auto-generated class ingestion templates have the following attributes.

There is one instance of the target class that is looked up by ?identifier in the mode

create-if-missing. This means that an instance of the target class will be created if

needed, but if one already matches the ?identifier, then the data from the row will be

added to the existing instance. Each data property has a corresponding column in the

CSV. Each outgoing object property’s object will also be looked up by its identifier,

using a column name of the format: <propertyShortName>_identifier. The objects of

object properties are looked up in the mode error-if-missing. This has the positive effect

of preventing ingestion of links to non-existent instances. It does, however, force data

to be ingested in a specific order such that object property objects always exist. In cases

where circularities exist, custom templates must be used instead of these auto -generated

versions.

RACK provides additional features to ease the use of auto-generated templates.

There are API calls to get a copy of the nodegroup for inspection, and to get sample

CSV files compatible with the template. Nodegroups have all properties set to optional

11

so they may also be used to generate SELECT or CONSTRUCT queries to explore

ingested data.

Despite the loss of expressivity, the forced ordering of loading, and in many cases

loss of performance compared to customized ingestion templates, these auto -generated

templates have proven very easy to understand and use. Most of the data ingestion in

RACK to date has leveraged this feature.

3.3.1 Checking Quantified Cardinality.

SemTK has a copy of the ontology including cardinality constraints available to it dur-

ing ingestion, but it is not practical to enforce quantified cardinality during the ingestion

process. Actual counts will be lower than cardinality limits while ingestion is incom-

plete. With multiple-step ingestion packages, it is not possible to report such errors

during a single ingestion. Actual counts exceeding cardinality limits would be possible

but inefficient.

We chose instead to provide a SemTK REST function for checking quantified car-

dinality that can be run after ingestion of the entire dataset is complete. This is available

in the reports feature, described in a later section, and accessible through various APIs.

The cardinality check reads through the ontology and runs a SPARQL query for each

cardinality restriction. It returns a table of violations consisting of the following fields:

• class – the class with the restricted property

• property – the property being restricted

• restriction – type of restriction (max, min, qualified)

• limit – cardinality limit declared in the model and violated in the data

• subject – the instance of the class that violates the restriction

• actual_cardinality – the actual cardinality of the property for this subject

4.4 Ingestion Packages

To maintain a clean separation of data curation and data exploration, and to conform to

the data owner’s specification that data be stored locally , RACK supports an archive

format that contains a complete copy of the ontology, datasets, queries, and reports.

These “ingestion packages” can be generated using our data curation tools and ensure

that the resulting RACK state is easy to reproduce for multiple users and across multiple

reloads.

This reproducibility has been important for enabling us to make sweeping changes

as the ontology and dataset evolved without sacrificing the ability for users to work

with past versions of the data. Each ingestion package comes complete with the appro-

priate version of the ontology. Internally the ingestion packages are structured as zip

files conta ining the various component OWL, CSV, and JSON files indexed by YAML

files. Manifest files indicate how the content should be loaded into RACK. Model and

data manifest files describe the sequence in which OWL or CSV files are loaded, which

triplestore graphs to load them to, and which ingestion templates to use for each. Man-

ifests may also specify nodegroups (for queries or custom ingestion templates) to be

loaded to the nodegroup store. Beyond the data and ontology, an ingestion package

12

contains enough information to indicate target graphs, clear data, perform entity reso-

lution and other maintenance tasks performed at load-time.

Significant support has been built to facilitate the use of ingestion packages within

our program. The RACK command line interface3 supports automatically building in-

gestion package zip files given a set of manifest files. Ingestion packages may be loaded

into RACK using the command line interface or a simple RACK user interface page

(highlighted later in section 6). Further, as zip files, ingestion packages may be easily

shared between users and reliably reproduced into any given RACK installation. Nota-

bly, these operations require no semantic expertise and therefore lower the barrier to

entry for using RACK.

4.5 Scraping Toolkit

The norm for system development is for a multitude of tools and methodologies to be

used, each creating evidence supporting certification. Generically, data curation must

extract raw data from source material, perform data transformation on that raw data to

define it per the ontology, and format it as an ingestion package. One of the support

tools provided with RACK is the Scraping Toolkit (STK)4 that facilitates the collection

of evidence into ingestible packages. Fundamentally, the STK is a Python library that

is auto-generated from the ontology. The STK provides methods for collecting the ev-

idence that are automatically curated into fully formed ingestion packages from raw

evidence using the ingestion templates.

Raw sources of evidence are processed by creating a Python script that iden tifies the

individual pieces of evidence. Scripts start with “CreateEvidenceFile”, a method that

initializes a RACK-DATA.xml file that is used to collect bits of evidence as they are

found while processing the source material. When evidence is found, there are “Add”

methods that append evidence to the RACK-DATA.xml file. Each data class has its

own “Add” method that is customized to its ontological definition, with optional pa-

rameters for each property. As additional evidence is found while processing the source

material, the RACK-DATA.xml is continually expanded until the end of the script at

which time the “createCDR” method processes the RACK-DATA.xml to create a fully

formed ingestion package. This process simplifies the creation of the transformation

scripts by not requiring the data provider to have to sort and manage interspersed data,

but rather can just record all information that is found as it comes while processing the

source material—the processing in “createCDR” curates and combines evidence.

Python works well as it is an easy, well known programming language and there is

a large library of existing modules that can be used. Regular Expressions in Python are

easy to use and libraries for XML, DOCX, and even source code exist that can be com-

bined with the STK to make data extraction from nearly any source relatively simple.

3 https://github.com/ge-high-assurance/RACK/tree/master/cli
4 https://github.com/ge-high-assurance/RACK/tree/master/ScrapingToolKit

13

4.6 Entity Resolution

Any time data is collected from multiple sources there’s a possibility of creating differ-

ent instances within the same data graph even though it’s meant to be the same piece

of evidence. Small inconsistencies that a human might miss are inconsistent capitaliza-

tion or the use of different types of dashes. While it is generally preferable to have all

these disconnects addressed as part of the scraping process this is not always possible.

To accommodate this inevitability within RACK, we perform entity resolution to

resolve these issues without modifying the source data graphs. In the RACK ontology ,

a SAME_AS class is defined with two object properties: primary and secondary. When

a user identifies instances within the data graph that should be combined , a new

SAME_AS instance is created that connects the two instances. To aid in this process,

we created an Entity Resolution Tool that evaluates the likelihood of possible matches

based on a set of rules guided by the ontology. For example, two instances that have

the same identifier, and one’s type is a super class of the other would have a high like-

lihood representing the same evidence, as would two instances with the same class with

identifiers that only differ by a hyphen. Alternatively, two instances that represent evi-

dence from the same source material with nearly identical identifiers (for example,

SRS_Req1, SRS_Req2) will have a lower probability of representing the same evi-

dence. These rules can be customized, and the Entity Resolution Tool will extract pos-

sible matches from the data based on class compatibility, score them based on the de-

fined rules, and present the results to a user for final determination.

While this creates a relationship within the data graph, usage of this relationship in

queries would be complicated as now every node within the search would have to allow

for this potential. Rather than leave this complication to the user to deal with, we col-

lapse these SAME_AS relationships into a single, additional resolved data graph. This

cleaner copy of the data graph has all the instance data from the source graphs except

any object that was identified as a secondary is merged into the primary. Any conflicts

related to this merge is resolved by using the primary’s data. This new graph allows

queries to be run that do not have to account for the SAME_AS complexities while

leaving the original source graphs untouched and available for review. Maintaining the

source graph is still necessary for providing providence of the evidence—from source

material to the final evidence graph a clear line can still be drawn.

5 Evidence Exploration

Our vision for RACK is that data exploration will be accomplished with tools built by

users on top of the RACK APIs. We have built query nodegroups that serve both as

stand-alone data verification tools, and as samples for data retrieval that is performed

by such tools. Further, RACK includes a generic reporting tool that allows queries to

be organized into sets that are of interest to a particular role, and repeatably executed

in bulk into a summary page.

14

5.1 Queries

The RACK tool includes over 30 pre-defined queries5 in the form of nodegroups that

are pre-loaded into the SemTK nodegroup store during ingestion of manifests.

A dozen of these queries are meant as follow-ups to cardinality checking. They query

instances of and give additional information about data that has violated a particular

cardinality constraint such as a REQUIREMENT without a description. This additional

information proves useful in troubleshooting ingestion problems. But other queries that

check constraints are slightly more complex than can be easily expressed in SADL. In

one example, the REQUIREMENT was intended as an abstract superclass, so a query

is provided to check for instances of this class. Pre-defined data verification queries can

check for OR conditions, such as finding requirements that do not either satisfy another

requirement or govern a system component.

Other queries show structure of the evidence. They take a runtime constraint of an

entity such as a REQUIREMENT, SYSTEM, or HAZARD and produce tree or table

output showing how requirements or systems roll up to each other. In the case of HAZ-

ARDs, the sample query shows the entity from which the hazard was derived, and the

requirement tree that attempts to mitigate it, if any.

Finally, there are queries that demonstrate how to check the evidence in an assurance

case. Examples include finding requirements with no passed tests, or those specifically

with failures, or those with no tests at a ll. These query nodegroups are intended to be

useful as well as demonstrative of how users can write their own as they manually ex-

plore the data or build tools on top of RACK APIs.

5.2 Reports

Nodegroups can be assembled—along with a few special functions—into reports,

which can be stored as JSON files and drag-and-dropped into SPARQLgraph, or in the

nodegroup store and accessed by id. A simple editor using jsoneditor [15] inside of

SPARQLgraph allows users to assemble the queries that impact their specific role (i.e. ,

was the data loaded properly vs. is the evidence complete vs. are all systems governed

by REQUIREMENTs with passing TESTs) and re-run the group of queries in a single

step.

The “special functions” include the cardinality checker described earlier, and a sim-

ple count of the number of instances of each class. Each nodegroup may be executed

as SELECT DISTINCT to tables, or as CONSTRUCT queries to network graph s. For

tables, success or failure may be defined with simple row count constraints. So, a query

for bad data (e.g., an INTERFACE without a source) that returns no rows simply shows

up as success, whereas one that finds rows is labelled failure and the table of results

included.

Although not intended to replace evidence-checking applications that may be built

on RACK, the report provides a powerful ability to run a large number of queries in

5 https://github.com/ge-high-assurance/RACK/tree/master/RACK-Ontology/nodegroups

15

one step and produce pages of output which are easy to scan for issues, and which

provide some level of interaction (such as sorting and filtering tables).

6 Impact and Lessons Learned

RACK has broad adaptation in the ARCOS research community, including teams at

Lockheed Martin, SRI, GrammaTech, STR, RTX, Honeywell, and more. The commu-

nal ontology allows data providers (TA1 teams) to ingest their evidence, and in some

cases, to extend the ontology with subclasses and sub-properties germane to their tools.

Lockheed Martin’s tool called CertGATE produces Evidential Assurance Case Frag-

ments (EACFs), which are structured arguments linked to pieces of evidence that are

ingested into RACK. Similarly, SRI’s DesCert team created an extensive ontology ex-

tension6 to capture the evidence produced by their multitude of tools [16]. The evidence

"interface" in RACK enabled software and documentation analysis tools, like the one

developed by the A-CERT7 team lead by GrammaTech, to uniformly capture evidential

claims: claim that a certain property holds about the system, link the claim to the rele-

vant design and implementation elements, and supply raw evidence supporting the

claim. The assurance case research teams (TA3s) have also broadly integrated RACK

into their tools. STR’s ARBITER currently automates the harvesting of data from

RACK, organizes it as guided by assurance reasoning strategies, and presents a candi-

date assurance case for review by an end user via a browser-based GUI. Similarly,

RTX’s AACE, an Automatic Assurance Case Framework, instantiates security case

patterns using data provided by its evidence manager, which is informed by RACK

[17][18]. Honeywell’s Clarissa tool maps RACK evidence into logic programming,

which led to research breakthroughs such as target constrained natural query language

built on top of the RACK ontology within a principled, structured case adhering to

Assurance 2.0 methodology [19].

One lesson learned in working on the ARCOS program and serving as the evidence

curator and ontology maintainer is that users need help with triplification. Non-seman-

tic experts need help getting data into the triplestore. Requesting RACK users provide

their certification evidence in the form of triples would have required extensive training

and subsequent debugging and may have jeopardized the approach. So, we introduced

the performer teams to SemTK and default class ingestion templates, which use the

ontology to map CSV files to triples while performing significant verification. To make

the tool programmatically interactive, we provided Java and REST APIs, and we also

provided Python-based command line interfaces. These interfaces helped, but still some

users struggled with installation. The game changer was a Dash8-based RACK UI web

page that lessened the friction for end users to load data into RACK (Fig. 8). By turning

data ingestion into a 1-click process, data providers can focus on delivering high quality

data instead of agonizing over multi-step installation. Data consumers indirectly reap

these benefits because the easier it is to ingest high quality data in to RACK, the bigger

6 https://github.com/ge-high-assurance/RACK/blob/master/overlays/SRI-Ontology/ontology
7 https://grammatech.github.io/prj/acert/
8 https://dash.plotly.com/

16

the treasure trove of information to mine to show certification standards compliance.

The user simply zips up the ontology files and data files into an ingestion package,

along with the manifest that lists the underlying model footprint and load steps. On

ARCOS, the target DoD system contained approximately 170 CSV data files. We are

also developing an integrated environment called RITE (RACK Integrated cerTifica-

tion Environment)9, which integrates SADL and RACK. This will allow users to write

or modify an ontology and quickly prove its usability via sample data. It will also assist

users in composing ingestion packages, which as noted, can contain hundreds of data

files.

Fig. 8. RACK UI page with 1-click data load and 1-click data verification.

7 Conclusions

In this paper we described how we were able to bring the Semantic Web stack into the

aviation certification domain. The graph view and recursive graph query operators in

SPARQL are an intuitive fit to evidence curation. The ability to write an ontology with

natural support for subclasses, sub-properties, and cardinality constraints, and to write

inferences to ensure model compliance were a natural fit . Our most recent ingestion

package consists of approximately 2.5M triples. RACK has been integrated into the

tools of at least six other performer teams.

Acknowledgement and Disclaimer. Distribution Statement A. Approved for public

release: distribution unlimited. This research was developed with funding from the De-

fense Advanced Research Projects Agency (DARPA). The views, opinions and/or find-

ings expressed are those of the authors and should not be interpreted as representing the

official views or policies of the Department of Defense or the U.S. Government

9 https://github.com/ge-high-assurance/RITE

17

References

1. ARCOS Homepage, https://www.darpa.mil/program/automated-rapid-certification-of-soft-

ware.html, last accessed 2023/04/14.

2. psac-template, https://studylib.net/doc/26041621/psac-template, last accessed 2023/07/28.

3. Overview of Rational® DOORS®, https://www.ibm.com/docs/en/engineering-lifecycle-

management-suite/doors/9.6.0?topic=overview-rational-doors, last accessed 2023/07/28.

4. McMillan, C., Crapo, A., Durling, M., Li, M. et al., “Increasing Development Assurance for

System and Software Development with Validation and Verification Using ASSERT™,”

SAE Technical Paper 2019-01-1370, 2019, doi:10.4271/2019-01-1370.

5. Crapo, A. and Moitra, A.: Toward a unified English-like representation of semantic. In: In-

ternational Journal of Semantic Computing, vol. 7, no. 3, pp. 215-236 (2013).

6. SADL GitHub Page, https://github.com/SemanticApplicationDesignLanguage/sadl, last

accessed 2023/04/14.

7. OWL Homepage, https://www.w3.org/OWL, last accessed 2023/04/14.

8. Xtext Homepage, http://www.eclipse.org/Xtext/, last accessed 2023/04/14.

9. Moitra, A., Cuddihy, P., Siu, K., Archer, D., Mertens, E., Russell, D., Meng, B., Interrante,

J., Quick, K., Robert, V.: A semantic reference model for capturing system development

and evaluation. In: International Conference on Semantic Computing (ICSC), Laguna Hills

(2022).

10. Fuseki Homepage, https://jena.apache.org/documentation/fuseki2, last accessed 2023/4/18.

11. Cuddihy, P., McHugh, J., Williams, J.W., Mulwad, V., Aggour, K.S.: SemTK: A seman-

tics toolkit for user-friendly SPARQL generation and semantic data management. In: 17th

International Semantic Web Conference (ISWC), Industry and Blue Sky Ideas Track,

Monterey, CA, (2018).

12. Semantics Toolkit GitHub age, https://github.com/ge-semtk/semtk, last accessed

2023/4/18.

13. Kumar, V.S., Cuddihy, P., Aggour, K.S.: NodeGroup: a knowledge-driven data manage-

ment abstraction for industrial machine learning. In: Proceedings of the 3rd International

Workshop on Data Management for End-to-End Machine Learning, pp. 1-4. (2019).

14. Semtk-python GitHub Page, https://github.com/ge-semtk/semtk-python3, last accessed

2023/4/18.

15. Jsoneditor GitHub Page, https://github.com/josdejong/jsoneditor, last accessed 2023/4/13.

16. Shankar, N., Bhatt, D., Ernst, M., Kim, M., Varadarajan, S., Millstein, S., Navas, J., Bi-

atek, J., Sanchez, H., Murugesan, A. and Ren, H.: DesCert: Design for Certification. arXiv

preprint arXiv:2203.15178 (2022).

17. Wang, T. E., Daw, Z., Nuzzo, P., & Pinto, A.: Hierarchical contract-based synthesis for as-

surance cases. In: Proceedings of NASA Formal Methods: 14th International Symposium,

NFM 2022, Pasadena, CA, pp. 175-192. (2022).

18. Oh, C., Naik, N., Daw, Z., Wang, T. E., & Nuzzo, P: ARACHNE: Automated validation of

assurance cases with stochastic contract networks. In: Proceedings of Computer Safety,

Reliability, and Security: 41st International Conference (SAFECOMP 2022), Munich,

Germany, pp. 65-81. (2022).

19. Bloomfield, R., Rushby, J.: Assurance 2.0: a manifesto. In:arXiv preprint

arXiv:2004.10474 (2020).

https://www.darpa.mil/program/automated-rapid-certification-of-software.html
https://www.darpa.mil/program/automated-rapid-certification-of-software.html
https://studylib.net/doc/26041621/psac-template
https://www.ibm.com/docs/en/engineering-lifecycle-management-suite/doors/9.6.0?topic=overview-rational-doors
https://www.ibm.com/docs/en/engineering-lifecycle-management-suite/doors/9.6.0?topic=overview-rational-doors
https://github.com/SemanticApplicationDesignLanguage/sadl
https://www.w3.org/OWL
http://www.eclipse.org/Xtext/
https://jena.apache.org/documentation/fuseki2/
https://github.com/ge-semtk/semtk-python3
https://github.com/ge-semtk/semtk-python3

