
Solving The IoT Cascading Failure Dilemma
using A Semantic Multi-agent System

Amal Guittoum1,2[0000−0002−3701−9114], François Aı̈ssaoui1[0000−0001−6772−2161],
Sébastien Bolle1[0000−0002−6022−4482], Fabienne Boyer2[0000−0002−4603−4041], and

Noel De Palma2[0000−0003−4638−7266]

1 Orange Innovation, Meylan, France
{firstname.lastname}@orange.com

https://www.orange.fr
2 University of Grenoble Alpes – LIG, Grenoble, France

{firstname.lastname}@univ-grenoble-alpes.fr
https://www.liglab.fr/en

Abstract. Managing interdependent Internet of Things (IoT) devices
can be challenging because different actors, e.g., operators and service
providers, propose siloed Device Management (DM) solutions that are
unable to handle cascading failures across multiple devices. To address
this issue, we propose a novel approach based on a cooperative Multi-
agent System (MAS) allowing siloed DM solutions to manage IoT cascad-
ing failures automatically and coordinately. The proposed MAS leverages
Semantic Web standards to establish a common understanding of device
dependencies and failures. It relies on the Digital Twin technology to
represent dynamic device dependencies accurately for failure root cause
identification. Our approach has been effective in handling cascading
failures in Smart Home scenarios, reducing time to repair failure, sav-
ing Customer Care costs, and minimizing resource consumption in IoT
infrastructure such as energy consumption.

Keywords: IoT Failure Management · Multi-agent system · Ontology ·
Semantic Digital Twin · Interoperability · Collaboration

1 Introduction

The Internet of Things (IoT) is gaining widespread popularity across multiple
domains, such as healthcare and transportation. The pivotal factor for creating
value in IoT is IoT devices that can perform tasks with minimal human interven-
tion. To ensure smooth IoT operations, monitoring and managing these devices
is essential. This is referred to as IoT Device Management (DM).

In today’s IoT systems, DM is provided by siloed DM platforms, e.g., Amazon
Web Service (AWS)3, Orange Live Objects4, governed by different actors, which
can be operators, service providers, or device manufacturers [1,19,37]. These DM

3 https://aws.amazon.com/fr/iot-device-management/
4 https://liveobjects.orange-business.com/

https://www.orange.fr
https://www.liglab.fr/en
https://aws.amazon.com/fr/iot-device-management/
https://liveobjects.orange-business.com/


2 A. Guittoum et al.

platforms integrate devices built by different manufacturers to perform key DM
functions such as firmware updates and Failure Management (FM). However,
they are facing a strong limitation regarding the management of Cascading Fail-
ure dilemmas that arise when the failure of one device instigates the failure of
dependent devices and applications managed by different DM actors [44].

Cascading failures are particularly problematic because they generate more
customer calls to customer care applications of DM actors. Their mitigation
usually requires human intervention, which increases the cost of Customer Care.
For example, the Orange company reports a cost of 20€ for one customer call
and 100€ for sending a technician, where customers perform 100 calls per week
to request IoT device recovery. Moreover, failures are one of the main causes of
energy waste in connected environments. Studies show that 25–45% of HVAC
energy consumption is wasted due to failures [25]. Despite cascading failures
leading to business and environmental damages, there is no existing solution for
managing them in multi-actor IoT systems, to the best of our knowledge.

In this paper, we address this open research challenge and propose a practi-
cal solution allowing siloed DM actors to manage cascading failures in an auto-
matic and coordinated manner. This solution relies on a cooperative Multi-Agent
System (MAS)5empowered by Semantic Web and Digital Twin technologies.
More precisely, we rely on cOllaborative caScading fAilure Management Agent
(OSAMA), a semantic agent to be integrated into the legacy DM platforms in or-
der to help them understand, collaborate and make effective decisions regarding
Cascading Failure Management (CFM). OSAMA exploits a set of Semantic Web
standards, such as ontologies, in order to simplify failure information exchange
and enhance the interoperability among siloed DM platforms. It leverages the
Semantic Digital Twin technology6, modeling dynamic dependency relationships
among IoT devices for failure root cause identification. Upon failure, OSAMA
agents start a collaborative protocol that allows them to automatically identify
the roots of the failures and recover the failed devices.

The contribution of this work includes (i) The IoT-F ontology describing IoT
device failures and their recovery actions; (ii) The OSAMA agent leveraging the
Belief-Desire-Intention model (BDI) [32] to enable collaborative CFM; (iii) A
collaborative CFM protocol; (iv) A proof of concept for the proposed solution
demonstrating its potential impact in reducing time to repair failure, saving Cus-
tomer Care costs and minimizing resource consumption in IoT infrastructures.
Moreover, we provide plans for large adoptions of our solution in the DM market.

This paper is organized as follows: We begin by providing the necessary back-
ground information to facilitate comprehension of our work. Next, we present a
motivating use case. Then, we detail our proposed solution for CFM. Finally, we
discuss the evaluation results, related work, and avenues for future research.

5 MAS refers to a network of software agents that operate independently while be-
ing loosely connected to address complex problems that are beyond the individual
capacities or knowledge of each agent.

6 A Semantic Digital Twin is a virtual and synchronized representation of real-world
entities and processes built using a semantic description.



Solving The IoT Cascading Failure Dilemma 3

Table 1: Acronyms used in this paper
Acronym Meanning

BDI Belief Desire Intention

CFM Cascading Failure Management

DKG Dependency Knowledge Graph

DM IoT Device Management

DMP Device Management platform Provider

FKB Failure Knowledge Base

FM Failure Management

FMEA Failure Mode Effect Analysis

MAS Multi-Agent System

MN device MaNufacturer

OSAMA cOllaborative caScading fAilure Management Agent

SP Service Provider

2 Background

2.1 Overview of Legacy Solutions

Current IoT systems are managed by multiple actors, each having its legacy
solution for managing failures on its IoT devices as part of its customer care
services. We have conducted a market-based study7 on the FM capabilities of
these siloed DM actors. As a result, we identify the following profiles with distinct
FM capabilities, including Device Manufacturers (MN), DM Platform Providers
(DMP), and Service Providers (SP).

MNs build and deliver IoT devices to end users and IoT suppliers. Mostly,
MNs do not have DM platforms to perform DM operations on their IoT devices.
However, they may propose a mobile application-based solution in order to al-
low end users to perform basic DM operations on IoT devices such as firmware
update. Moreover, they may acquire information about IoT device failures, their
causes, effects, and recovery actions. This failure information is usually identified
during the design and test stage for risk assessments using several approaches
such as Failure Mode Effect Analysis (FMEA) [13]. It may be represented in ta-
bles used by customer care services to recover failures manually or build support
pages to help end users manage failures on their devices [40]. DMPs propose a
DM platform that allows several DM operations such as firmware update and
device reboot. These DM platforms propose DM as a service solution for end
users and enterprises to help them manage their IoT devices. They integrate
IoT devices built by different MNs. Some of these DM platforms propose fail-
ure detection features using Machine Learning (ML) 8 or alarm-based system 9.
They may recover elementary failures on IoT devices remotely using DM opera-
tions. However, they do not acquire end-to-end solutions for automatic FM and

7 This study is limited by the information available online.
8 https://www.avsystem.com
9 https://aws.amazon.com/fr/iot-device-management/

https://www.avsystem.com
https://aws.amazon.com/fr/iot-device-management/


4 A. Guittoum et al.

are limited when the failure spreads across IoT devices managed by different
DM platforms. SPs ensure IoT connectivity and provide IoT services via various
devices such as Orange’s LiveBox for connectivity and Samsung’s SmartThings
hub for home automation services. Each SP proposes its own proprietary DM
platform for managing its devices. Proprietary DM platforms proposed by SP
allow similar features as the DMP DM platform. Moreover, SPs own failure
information on their provided devices.

2.2 Complex IoT Device Dependency

Dependency relationships between IoT devices cause failures to propagate across
them. In our previous work [17], we provided a taxonomy for dependencies
between IoT devices that exacerbate cascading failure propagation, including
(1)Direct dependencies when IoT devices utilize each other’s services (service de-
pendency), and (2)Indirect dependencies that are generated due to interactions
between sensors and actuators via the physical environment (environment-based
dependency), or created by applications running on top of IoT devices, even
when an application acts on a set of devices based on the state of other devices
(state-based dependency) or when it forwards data flows between them (data-
based dependency). These dependency relationships are abundant and dynamic.

2.3 IoT Failures

IoT integrates physical processes with digital connectivity, often using three com-
ponents represented by devices, connectivity protocols, and cloud platforms [8].
While failures may occur in any of these components, IoT device failures are
more common due to several factors, such as their minimal computational re-
sources [28]. Failures on IoT devices are divided into two main classes: (1) Fail-
stop failure when an IoT device becomes unresponsive to external requests; (2)
Non-fail stop failure occurs when IoT device response diverges from the correct
response, such failed responses are classified in the literature [9,36,27,28] into
five categories: High Variance: when a device oscillates between states faster
than the environment dictates; Stuck-at : when a device is expected to change its
state, but it fails to do so; Spike: when the numeric state of a device increases or
decreases at a faster rate than what is determined by the environment; Outlier :
when a device reports incorrect state for a single poll; Calibration: when sensor
data shows an offset, i.e., it has a different gain than the actual ground truth
value. Cascading failures occur when one device’s failure (fail or non-fail stop)
spreads to other devices through dependencies.

3 Motivating Use Case

We consider a smart home managed by five DM actors. It illustrates the cascad-
ing failure scenarios that are difficult to overcome with market DM solutions.



Solving The IoT Cascading Failure Dilemma 5

12

1 Presence sensor

2 Window lock

3 Door lock

4 Air conditoner

5 Temperature sensor

6 Smoke sensor 13 Water valve

14 Leak detector

12 SmartThings Hub

7 Alarm

8 Light control Unit

9 Light bulb

10 Wi-Fi repeater

11 Gateway
13

Fig. 1: Smart home architecture

3.1 Smart Home Scenario Architecture

The smart home scenario (see Figure 1) consists of three intelligent systems
deployed in a home consisting of a living room and a kitchen: 1) Light man-
agement system: Relies on a light sensor, presence detection sensors, light
bulbs installed in the living room and the kitchen, and a light control unit. The
latter controls light using the light measurement service supplied by the light sen-
sor, the presence detection services of the presence sensors, and the light bulbs’
services. 2) Temperature management system: Controls the home temper-
ature using a temperature sensor and an air conditioner. It is mainly based on
automation rules10 1–3 described in Table 3. 3) Security control system:
Launches an alarm when intruders, fires, or leaks are detected. It consists of an
alarm that uses the presence detection services provided by the presence sensors
to detect intruders. The alarm also uses temperature, smoke, and leak sensors’
services for fire and leak detection. This system is reinforced by rules 4–7.

A gateway connects devices in the living room to the Internet, while a Wi-Fi
repeater connects the kitchen devices. The SmartThings platform11 [33] enables
automation rules described in Table 3 using a SmartThings Hub. Devices in the
smart home are managed by five DM actors with different profiles each proposing
its own solution for managing devices integrated into its system (see Table 2).

3.2 Illustration of Cascading Failure Dilemma

Due to the dependencies among IoT devices, a failure of one of them can gener-
ate multiple cascading failures. Take Scenario 01 (see Table 4) as an example, in
which a cascading failure occurs due to a high variance failure on the leak detec-
tor. The failure affects the alarm and the water valve, which are state-dependent

10 Automation rules allow the automated composition of IoT services in a connected
environment.

11 SmartThings is Samsung’s IoT platform that enables automation rules across IoT
devices in Smart Homes.



6 A. Guittoum et al.

Table 2: DM actors managing the Smart Home
DM actors Profile Managed devices

Orange
DMP

Leak detector, water valve,
temperature sensor, windows
door

SP Gateway, WI-FI repeater

Samsung SP SmartThings Hub

Amazon DMP
Alarm, lights bulb
airconditioner, smoke sensor,
light control unit

Philips MN
Motion sensor, light bulbs,
light control unit
windows, door, alarm

Kelvin MN
Temperature sensor,
airconditioner, leak detector,
water valve

Table 3: The smart home au-
tomation rules
No. Type Automation Rule

1 Comfort

Adjust the air conditioner
regarding the temperature
returned by the temperature
sensor.

2 Comfort
Open the two windows
when the air conditioner
is deactivated.

3 Comfort

Close the two windows
and turn on the air conditioner
when the temperature
exceeds a threshold.

4 Security

Turn on the alarm and
unlock the door and
both windows upon
detection of fire.

5 Security
Turn on the alarm
and close the water valve
when leak is detected.

6 Security

Notifies the User, closes
the windows, closes the door,
and turns on the alarm
when detecting an intruder
while the User is
out of the home.

7 Security
Set light bulbs to red
when the alarm is activated.

Table 4: Cascading Failure scenarios
Scenario Root cause Impacted devices Detected at

1
High Variance on the
leak detector

Alarm
Water Valve
Light bulbs

Light bulbs

2
High Variance
on Smoke sensor

Alarm
Light bulbs
door
windows

Door

3
Stuck at no motion on
the motion sensor

Light control
unit
Light bulb

Light bulbs

4
Outlier on the
temperature sensor

Window
Airconditioner

Airconditioner

5
Stuck at smoke detected
on the smoke sensor

Alarm
Light bulbs
Door
Windows

Alarm

6
Spikes on the
temperature sensor

Window
Airconditioner

Airconditioner

7
Fail stop on the
WIFI repeater

Alarm,
light bulb
smoke sensor,
water valve

Alarm

8
Stuck at leak detected
on the leak detector

Alarm
Water Valve
Light bulbs

Water valve

on the leak detector (see Rule 5 in Table 3). Additionally, the light bulbs are
affected as they are state-dependent on the alarm, as per Rule 7. Such cascading
failures pose a significant challenge for DM actors. In this case, the alarm and
light bulbs are managed by the Amazon DM platform, whereas the water valve
and leak detector are managed by the Orange DM platform (see Table 2). As
a result, these siloed DM actors cannot identify the failure’s root cause. Fur-
thermore, the failure recovery information is distributed across different device
manufacturers: Kelvin and Philips, which further complicates the situation.



Solving The IoT Cascading Failure Dilemma 7

Fig. 2: Overview of Semantic Multi-OSAMA For Collaborative CFM

4 Semantic Multi-OSAMA For Collaborative CFM

MAS enables the integration of multiple legacy systems by developing an agent
wrapper around them, enabling their participation in collaborative problem-
solving and decision-making processes [42]. Relying on this advantage, we pro-
pose a MAS to help legacy DM solutions automatically manage cascading failure
dilemmas. Our solution consists of a set of cooperative agents called OSAMA
to be integrated by DM actors in their legacy solutions. These OSAMAs adopt
a BDI model to handle cascading failures. They collaborate according to a col-
laborative CFM protocol to recover from cascading failures that spread across
devices managed by different actors.

Within their shared environment, OSAMAs are provided by four (04) Arti-
facts encapsulating external services that they can explore at runtime to ease
CFM (see Figure 2): 1) Monitoring Artifact : Allows to monitor IoT devices
and detect failures using legacy DM platforms; 2) Diagnosis Artifact : Allows
to identify failure type and its compensatory actions using Failure Knowledge
Base (FKB); 3) Dependency Artifact : Thanks to Semantic Digital Twins, this
artifact allows to automatically access an accurate view of dynamic dependency
relationships between IoT devices in order to ease cascading failure root cause
identification; 4) Recovery Artifact : Allows to execute recovery actions on IoT
devices using legacy DM platforms. In the following, we discuss the OSAMA
BDI model, artifacts, and the Collaborative CFM Protocol.

4.1 OSAMA BDI model

The OSAMA design follows a BDI model, which is helpful in developing au-
tonomous agents in various domains thanks to its flexibility, robustness, and
transparency [38]. The BDI agent model aims at programming rational agents
based on human mental attitudes of beliefs, desires, and intentions [7,38]. Beliefs
correspond to an agent’s understanding of its surroundings, other agents, and it-
self. Desires refer to the conditions an agent wants to achieve, and intentions are



8 A. Guittoum et al.

Table 5: OSAMA Internal and External Actions
Action Type Description

sendCFMRequest(devicei, OSAMAk) Internal

Send by the OSAMA that initiates
the recovery of a detected cascading failure
scenario requesting the OSAMAk to
check and recover the devicei.

responseCFMRequest(device, OSAMAk) Internal

Send by the OSAMA that participates
in the recovery of a cascading failure
scenario involving devicei, to the
OSAMAk, the initiator of the cascading
failure recovery.

requestDiagnosis(OSAMAk, devicei, S) Internal

Send by the OSAMA to request diagnosis
information from the OSAMAk for devicei
having the symptoms12 S, when it could not
perform diagnosis by itself.

getDiagnosisAgent(devicei) External

Allows an OSAMA to get candidate
OSAMAd able to perform diagnosis on
device devicei when it could not
perform diagnosis by itself.

getDeviceState(devicei) External
Allows an OSAMA to check whether
the devicei is failed or not by accessing
the monitoring artifact.

getDeviceSymptoms(devicei) External
Allows an OSAMA to get symptoms
of the devicei by accessing the
monitoring artifact.

getDependency(devicei) External
Allows an OSAMA to get a list
of devices to which the devicei depends
on by accessing the dependency artifact.

recover(recoveryAction, devicei) External
Allows an OSAMA to perform
the recoveryAction on the devicei
by accessing the recovery artifact.

diagnosis(devicei, symptoms) External

Allows an OSAMA to get diagnosis
information such as proposed recovery
action for the failed devicei based
on a set of symptoms by accessing
the diagnosis artifact.

the commitments to achieving those desires. In order to accomplish its desires,
an agent utilizes a collection of plans executed in specific contextual circum-
stances. These plans consist of a series of actions that an agent must undertake,
given the conditions implied by its belief base. The belief base is updated based
on events that the agent perceives from its surrounding environment.

Based on the explained BDI model terminology, we define the OSAMA
as a tuple < Evt,Blf, P l, Act >, where: Evt= {evt1, evt2, ..., evtn} represents
a set of failure events perceived by the OSAMA through the monitoring ar-
tifact or reported by other OSAMAs during CFM. A failure event evti =
(devicek, sourceType, source), where sourceType indicates the failure is detected
by monitoring artifact or other OSAMA specified by source. Failure events al-
low the OSAMA to update its Belief Base and take actions to handle failures;
Blf= {blf1, blf2, ..., blfn} represents positive ground literals in a first-order logi-
cal language describing IoT devices state such as blf i

j = failed(devicei) if devicei
is failed, recovered(devicei) otherwise. It is updated when receiving failure events
or recovering a failed device; Act represents a set of internal and external ac-
tions that the OSAMA performs for CFM. Internal actions are executed by the
OSAMA, while external actions access shared artifacts that abstract external

12
Symptoms refers to device characteristics describing device failed states such as memory usage.



Solving The IoT Cascading Failure Dilemma 9

services deployed in the OSAMA environment (See Table 5); Pl= {p1, p2, ..., pn}
represents OSAMA plans. A plan pi ≡ evt → Acti has an event evt, including
adding or deleting failure beliefs and receiving CFM requests. Such an event
triggers a subset of OSAMA actions Acti to handle failures and CFM requests.

4.2 Diagnosis Artifact

This artifact embeds a Failure Knowledge Base (FKB) that allows OSAMAs
to get failure information such as possible compensatory actions, given a set of

IoT-F:FailureMode

IoT-F:FailStop

IoT-F:NonFailStop

IoT-F:CommunicationFailure

IoT-F:DeviceType

SAREF:Device

SAREF:Sensor SAREF:Actuator

SAREF:Measurement

IoT-F:FailureCause

IoT-F:happensAt

IoT-F:hasE ect

IoT-F:hasCause

IoT-F:hasCompensatory

Action

IoT-F:Symptom

IoT-F:hasDeviceType

SAREF:makesMeasurement

IoT-F:FailureE ect IoT-F:Symptom

IoT-F:ConnectivityFailure

IoT-F:SoftwareFailure

IoT-F:HardwareFailure

IoT-F:BatteryFailure

IoT-F:NonVolatile

MemoryError

IoT-F:RadioFailure

IoT-F:BLEFailure

IoT-F:CellularFailure

IoT-F:SoftwareUpdate

IoT-F:FirmwareUpdate

IoT-F:SoftwareRestart

IoT-F:HardwareRestart

IoT-F:Calibration

IoT-F:HighVariance

IoT-F:Outlier

IoT-F:Spike

IoT-F:StuckAt

IoT-F:OmissionFailure

IoT-F:BatteryLevel

IoT-F:CPUUsage

IoT-F:MemoryUsage

IoT-F:Temperature

IoT-F:TimingFailure

...

...

SubClassOf

ObjectProperty

Class

Fig. 3: IoT-F: IoT Failure Ontology

failure symptoms provided by the monitoring artifact, thanks to the SPARQL
queries. We assume that each DM actor generates an FKB involving its governed
failure information (see Section 2.1). These FKBs are built using an ontology
called IoT-F 13 [14] (see Figure 3) that we developed using the ontology engi-
neering methodology NeOn [41]. The main purpose of the IoT-F ontology is to
allow OSAMAs to share a global understanding of heterogeneous and distributed
failure information. However, it has other intended usages such as assisting DM
actors in structuring their failure information, characterized by heterogeneity,
incompleteness, and ambiguity [40]. The IoT-F ontology reuses the standard-
ized ontology SAREF 14. Its architecture is based on two levels inspired by the
work [13]: 1) The top level is based on the FMEA concepts, which provide
a generic model for failure description in any domain of interest. We reused
FMEA concepts proposed in [13], which have been inspired by relevant stan-
dards such as IEC6081215 and ISO1337216; 2) The application-specific level rep-

13 https://iotfontology.github.io/
14 https://saref.etsi.org/core/v3.1.1/
15 https://webstore.iec.ch/publication/26359
16 https://www.iso.org/standard/52256.html

https://iotfontology.github.io/
https://saref.etsi.org/core/v3.1.1/
https://webstore.iec.ch/publication/26359
https://www.iso.org/standard/52256.html


10 A. Guittoum et al.

resents failures in IoT systems. To build the application-specific level, we reused
a set of non-ontological resources that describe relevant information about IoT
failure, such as literature taxonomies [28,9,36,29] for IoT failure, failure cause,
and recovery actions taxonomies, and market DM models mainly Matter17 and
TR-18118. The main concept of the IoT-F ontology is IoT-F:FailureMode rep-
resenting IoT failures associated with an IoT device type IoT-F:DeviceType,
described by: a set of symptoms IoT-F:Symptom representing failure symptoms,
causes IoT-F:FailureCause, effects IoT-F:FailureEffect, and possible compen-
satory actions IoT-F:CompensatoryAction. Each of these classes is specialized
at the application-specific level to describe IoT failures.

4.3 Dependency Artifact

This artifact allows OSAMAs to identify failure root causes through the analy-
sis of dependency relationships among IoT devices. It incorporates a framework,
developed in our previous work [17], that enables automatic inference and anal-
ysis of dynamic dependency relationships among IoT devices using Semantic
Digital Twins. Namely, the dependency relationships are represented as an IoT
Dependency Knowledge Graph (DKG). The DKG serves as a Digital Twin view,
representing the current devices and their dependencies.

In conceptual terms, the framework includes an ontology called IoT-D19 that
enables a shared representation of IoT dependencies across heterogenous DM
solutions. The IoT-D ontology extends the standardized ontology SAREF to
describe a set of contextual data that delineate direct and indirect dependen-
cies among devices (refer to Section 2.2). By leveraging the IoT-D ontology,
the framework automatically constructs the DKG through a three-step process:
Context extraction, Entity resolution, and Dependency inference.

1. The context extraction step retrieves the context data, as described in the
IoT-D ontology, from the siloed DM solutions and transforms it into KGs.

2. The entity resolution (ER) step aggregates duplicated entities found in the
extracted context KGs, such as devices with different representations. This
step relies on the advanced features of the SHACL standard 20, namely
SHACL rules and SHACL functions. The idea is to use a SHACL rule to infer
the owl:sameAs relationships between duplicated entities in the extraction
KGs. This SHACL rule uses SHACL functions to compute similarity met-
rics between attributes of two entities and then decide on the inference of
the owl:sameAs relationships between them. SHACL functions may embed
several similar functions. In our work, we used string similarity functions.

3. The dependency inference step builds the DKG by inferring dependency re-
lationships in the aggregated KGs. It leverages a set of SHACL rules to infer

17 https://csa-iot.org/all-solutions/matter/
18 https://usp-data-models.broadband-forum.org/
19 https://iotdontology.github.io/
20 https://www.w3.org/TR/shacl-af/

https://csa-iot.org/all-solutions/matter/
https://usp-data-models.broadband-forum.org/
https://iotdontology.github.io/
https://www.w3.org/TR/shacl-af/


Solving The IoT Cascading Failure Dilemma 11

dependency relationships among IoT device representations by reasoning on
their contextual relationships provided in the aggregated context KGs.

In the DKG, IoT device representations are annotated with information about
the OSAMAs that manage them, such as the OSAMA communication modality,
using the FOAF:Agent class. This annotation allows OSAMAs to communicate
with each other while exploring the DKG for failure root cause identification.

From a technical standpoint, the dependency artifact is integrated into the
Orange Digital Twin platform Thing in the future(Thing’in)21, which provides a
set of APIs for OSAMAs to query the DKG when identifying failure root causes.

4.4 Monitoring and Recovery Artifacts

These artifacts embed monitoring and recovery functions of the legacy DM plat-
form to allow OSAMA to monitor IoT devices, detect failures, and execute re-
covery actions. The monitoring artifact proactively sends failure events to its
associated OSAMA. The recovery artifact allows OSAMA to execute recovery
actions remotely, thanks to the remote management capabilities of legacy DM
platforms. Note that we have chosen to reuse legacy DM platforms for monitor-
ing and recovery as most of them provide such capabilities [39]. This could boost
usability and save integration costs by avoiding the development of a solution
from scratch, which consists in integrating heterogenous IoT devices through
APIs to be accessed by OSAMAs for monitoring and recovery.

4.5 Collaborative CFM Protocol

Using the artifacts mentioned above, the OSAMAs collaborate with each other
to solve cascading failure dilemmas according to a collaborative CFM protocol.
We specialized the OSAMA into three different profiles, including OSAMA-SP,
OSAMA-DMP, and OSAMA-MN, each having specified missions and artifacts
according to their FM capabilities (see Section 2.1): OSAMA-SP and OSAMA-
DMP are responsible for managing cascading failure requests. The first has
full FM capabilities to manage failure on its devices. It collaborates with other
OSAMA-SPs and OSAMA-DMPs for CFM. The latter manages failures collab-
oratively with OSAMA-MNs by requesting failure information owned by them.

Based on these profiles, the collaborative CFM protocol is described in Al-
gorithm 1. The protocol is executed by OSAMA-SP and OSAMA-DMP when
a failure event is reported on a device (line 2). OSAMA starts by updating the
belief base in order to activate failure plans (line 3). Then, it requests device
symptoms from the monitoring artifact (line 5). Next, depending on its profile,
it either performs the diagnosis by itself (lines 6-8) or requests a diagnosis from
other OSAMAs (lines 9-13) to get possible recovery actions. Next, it recovers the
IoT device by executing the proposed compensatory action using the recovery
artifact (line 14). If the device is still in a failed state (line 15), the OSAMA

21 https://tech2.thinginthefuture.com/

https://tech2.thinginthefuture.com/


12 A. Guittoum et al.

Algorithm 1 Collaborative CFM Protocol
1: BEGIN
2: if failure event evt = (devicei, sourceType, source) arrives then
3: Update the belief base Blf with predicate failed(devicei)
4: [Local Failure Plan]
5: S ← getDeviceSymptoms(devicei)
6: if Profile=SP then
7: recovery← diagnosis(devicei, S)
8: end if
9: if Profile=DMP then

10: OSAMAd← getDiagnosisAgent(devicei)
11: requestDiagnosis(OSAMAd, devicei, S)
12: Wait for proposed recovery action recovery from OSAMAd.
13: end if
14: recover(recovery, devicei)
15: if getDeviceState(devicei) = failed then
16: [Cascading Failure Plan]
17: DKG ← getDependency(devicei)
18: for (devicek, OSAMAk) in DKG do
19: sendCFMRequest(devicek, OSAMAk)
20: Wait for response OSAMAk
21: end for
22: recover(recovery, devicei)
23: if getDeviceState(devicei) = failed then
24: Notify customer care service
25: end if
26: Update the belief base Blf with predicate recovered(devicei)
27: if sourceType = OSAMA then
28: responseCFMRequest(devicei, source)
29: end if
30: end if
31: end if
32: END

launches the plan for CFM: it queries the DKG of the failed device (line 17);
for each device in the DKG, it requests cascading failure check from OSAMA
managing it (line 18-21). Requested OSAMA deals with requests following the
same algorithm by propagating on their turn the CFM request if they could not
recover the failure. They respond when no more devices exist to explore (lines
27-29). After receiving all the responses, the OSAMA initiating the CFM request
recovers the device (line 22) and notifies the customer care service if it is still
in a failed state (lines 23-25). Then, it updates its belief base considering the
device as recovered (line 26).

Let us illustrate the CFM protocol in Scenario 01 (see Table 4). In this sce-
nario, a high variance failure is detected in the light bulbs by Amazon’s OSAMA.
To address this issue, Amazon OSAMA requests assistance from Philips OSAMA,
the MN of the light bulbs, to diagnose and obtain recovery actions. Subsequently,
Amazon OSAMA executes the proposed recovery plan; however, the light bulbs
still report a high variance failure. The Amazon OSAMA assumes that the fail-
ure is due to a cascading failure and initiates the CFM, which involves retrieving
the DKG describing devices that the light bulbs depend on. The DKG refers to
the alarm device, which is managed by Amazon OSAMA. Collaboratively, Ama-
zon OSAMA and Philips OSAMA diagnose the alarm device and execute the
recovery plan. However, the alarm device still reports a high variance failure.
Amazon OSAMA continues the CFM approach by retrieving the DKG of the
alarm device, which refers to the leak detector managed by Orange OSAMA.
Amazon OSAMA requests assistance from Orange OSAMA, which collabora-
tively diagnoses the leak detector with the assistance of Kelvin OSAMA, the
MN of the leak detector. After diagnosing and recovering the leak detector, Or-



Solving The IoT Cascading Failure Dilemma 13

ange OSAMA notifies Amazon OSAMA, which notices that the alarm and light
bulbs have returned to normal, successfully concluding the CFM request.

5 Evaluation

We implemented the OSAMAs with the JaCaMo framework (version 1.1)22,
which allows adaptable and scalable MAS management and coordination in
complex environments [5]. Within the JaCaMo framework, the CFM protocol
described in Algorithm 1 is implemented using the Jason23 BDI technology al-
lowing OSAMA agent to handle failure events in a parallel and coherent manner.
The OSAMAs artifacts are implemented with the Cartago24 technology that al-
lows agents to access resources and services within their shared environment.

Reasoning in the diagnosis artifact is implemented with Apache Jena (version
3.4.0)25. To better represent a multi-actor deployment, we deployed theOSAMAs
associated with the motivating use case in an Orange cloud infrastructure with
the following resource: 1000 MIPS as CPU and 2GB as requested memory.

Based on these experimentation settings, we performed qualitative and quan-
titative evaluations of the proposed solution: The qualitative evaluation has been
performed on the smart home use case presented in Section 3, by checking how
our OSAMAs perform regarding cascading failure scenarios presented in Ta-
ble 4. As described above, the smart home includes 17 IoT devices managed by
five DM actors and interconnected through 46 dependencies described by the
DKG. Each DM actor was associated with an OSAMA agent. The experiment
has consisted in injecting failures in OSAMA agents’ belief bases and letting
them collaboratively perform CFM. Regarding the quantitative evaluation, it
consisted of 1) measuring the completion time of the collaborative CFM proto-
col and 2) comparing our solution with the Orange legacy one based on simulated
IoT infrastructures using our extension of the simulator iFogSim [18] that we
refer to as FMSim. The result is discussed in the following.

Performance Evaluation. We evaluate the performance of the collabo-
rative CFM protocol performed by the use case OSAMAs (see Table 2) in a
cloud-based deployment. We measured the completion time of the collaborative
CFM protocol on cascading failure scenarios involving devices with different de-
pendency depths since this latter is the parameter that impacts the number of
message exchanges between the OSAMAs during the collaborative CFM. We
found that it takes, on average 5s (see Figure 5a), which we consider acceptable
compared to the Orange legacy solution taking from 15 to 20 min.

Moreover, this performance can be enhanced more by reducing message ex-
change between OSAMAs using ML capabilities such as predicting the root cause
of a cascading failure or offloading them to the edge to reduce latency. The DKG
could also be deployed at the edge, as Thing’in platform allows this feature.

22 https://github.com/jacamo-lang/jacamo
23 https://jason.sourceforge.net/wp/
24 https://cartago.sourceforge.net/
25 https://github.com/apache/jena

https://github.com/jacamo-lang/jacamo
https://jason.sourceforge.net/wp/
https://cartago.sourceforge.net/
https://github.com/apache/jena


14 A. Guittoum et al.

Fig. 4: Simulation Topology

Resource Consumption. Failures in IoT infrastructures can result in a
significant loss of resources, as they make the infrastructure circulate useless and
failed data and execute failed tasks. To show the impact of OSAMA in reducing
such resource loss, we compared the resource consumption of IoT infrastructures
managed by OSAMAs with those managed by the Orange legacy DM solutions
using the simulator FMSim, our extension for the iFogSim simulator. The latter
is a widely used Discrete Event Simulator for Fog and IoT because of its flexi-
bility, scalability, and accessibility [30]. It uses a Sense-Process-Act model based
on sensors, application modules, and actuators. Sensors send data to applica-
tion modules deployed in Fog devices, which send actions as events to actuators
according to a defined application logic. However, iFogSim does not support
failure simulation on IoT devices. To this end, we developed FMSim [16], an
extension for iFogSim allowing failure injection and recovery simulation on IoT
devices. FMSim allows us to inject cascading failures (scenarios 1–6 described
in Table 4) in simulated IoT infrastructures with different configurations (see
Figure 4), and measure resource consumption in the two cases: 1) The time
to delete failure is set to OSAMA recovery time, and 2) The time to delete
failure is set to legacy solution recovery time, represented by the average of
failure recovery time of the Orange legacy solution taking from 15 to 20 min.
Resource consumption is represented by energy consumption, network usage,
IoT application execution time, and the cost of executing IoT applications in
the cloud. We report in Figure 5b the relative resource gain achieved by our
approach compared to legacy approaches deployed within the Orange organiza-
tion. Specifically, in Configuration 4, we observed resource gains of 16 Mjoule,
650 bytes in terms of energy consumption and network usage respectively, which
indicates that managing failures on IoT infrastructure using our solution instead
of the legacy solution saves 16 Mjoule in energy consumption and 650 bytes in
network usage. These gains can be attributed to the faster repair time achieved
by OSAMAs compared to legacy solutions. As a result, OSAMAs enable swift re-



Solving The IoT Cascading Failure Dilemma 15

2 4 8 16
Dependency KG Depth

0

1000

2000

3000

4000

5000

6000

7000
C
o
m
p
le
ti
o
n
 T
im

e
 (
m
s)

Collaborative CFM Protocol

(a) CFM completion time as a function of the DKG depth

Config1 Config2 Config3 Config4
Configuration

101

102

103

R
e
so
u
rc
e
 G
a
in

Energy(MJoule)

Network Usage(Bytes)

Execution Time(s)

Cloud Cost(Million cost Unit)

(b) Resources gain of using OSAMA instead of legacy so-
lution

Fig. 5: Experiment Results

covery from resource-intensive failures, such as High Variance, thereby reducing
resource loss in IoT infrastructure.

6 Related Work

IoT failure management consists of three steps: failure detection, failure diagno-
sis for failure type and root cause identification, and failure recovery. IoT failure
management is only partly treated in the literature, as most efforts focus on
IoT failure detection [21,20,24], often notifying users to act themselves [28]. Few
works have been proposed for IoT failure diagnosis. Early solutions propose a
model-based approach, which consists of a mathematical model that describes
the running behavior of devices [25]. Then, this model is used to estimate de-
vice output. The differences between the estimated and measured outputs are
monitored to detect failures and determine their type [22]. Despite model-based
approaches providing high accuracy models with low computation [3], they still
need to be adapted for complex systems such as IoT [11]. To fill this gap, fail-
ure diagnosis techniques have evolved into data-driven approaches that analyze
failure from signals or operational data using machine learning methods. These
approaches leverage sensor device data to build models for fault identification
and characterization [23]. Several algorithms were proposed for IoT fault diag-
nosis to detect and determine faulty devices and the type of fault [6,10,46,23].
However, the availability and quality of learning data of all possible fault types
of large-scale systems such as IoT could be impossible [43].

The work [11] argues that knowledge-based failure diagnosis is especially
well-suited for complex or multi-actor systems for which detailed mathematical
models are unavailable, and diagnosis learning data are governed by different
actors. These approaches rely on an FKB that contains failure diagnosis infor-
mation provided by experts at the design or the operational level of devices.
Experts-based fed of FKB ensures more accurate diagnosis results [12]. Several
ontologies to generate FKB have been proposed for a range of assets such as
Loaders [45], Cyber-physical system [34,35,2], Wireless Sensor Network [4], and



16 A. Guittoum et al.

Folio ontology for IoT systems [40]. To the best of our knowledge, the latter is
the only proposed work to describe IoT failures. However, expressive classifica-
tion for IoT failure behaviors, recovery actions, and failure symptoms is missing
in this ontology. Moreover, the proposed approaches for IoT failure diagnosis do
not address automatic failure root cause identification.

Regarding the failure recovery, some technical frameworks have been pro-
posed in [26,28,31,29]. However, they rely mainly on device replication and re-
placement to recover from failure, which is costly and ineffective. Moreover, all
existing solutions do not consider the practical reality: IoT is managed by
multiple actors using siloed and heterogenous DM platforms, where
devices and failure information are governed by different DM actors.

7 Conclusion and Future Work

In this paper, we presented our practical solution to help market DM actors
address the dilemma of IoT cascading failures. It consists of a set of cooperative
agents called OSAMAs, allowing siloed DM actors to manage cascading failures
in an automatic and coordinated manner.

Our solution has shown how Semantic Web standards, e.g., ontologies and
SHACL, unlock several challenges to solve the IoT cascading failure dilemma,
such as efficiently storing, querying, and reasoning on abundant and heteroge-
nous data related to IoT device dependencies and failures.

The evaluation results showed the significant impact and potential business
savings of the proposed solution by reducing time to repair failures and mini-
mizing resource waste in connected environments. We considered several design
choices to ease and accelerate the adoption of the proposed solution by market
DM actors, such as 1) the adoption of the BDI model that reflects human-like
behavior, which eases the integration of the proposed solution by the DM ac-
tors, 2) the use of the FMEA model to design the IoT-F ontology, which has
shown its usability in the literature based on a System Usability Scale (SUS)
tests [13], and 3) the reuse of legacy platform features within the OSAMA agent
for monitoring and recovery to save costs and accelerate integration efforts.

We have several plans for large-scale deployment and adoption of our solu-
tion in the device management market: The main plan consists in refining our
solution based on further experimentation and user feedback within our device
management team in the Orange company, but also with Orange partners and
relevant stakeholders to ensure the practical applicability and adoption of our
approach, since it involves the collaborative effort of all device management ac-
tors. Another potential plan is to submit our solutions as a standard draft to
standardization organizations in which Orange is involved, such as the European
Telecommunications Standards Institute (ETSI) or the Connectivity Standards
Alliance (CSA), to enable collaborative improvement and widest adoption of the
proposed solution by several device management actors and experts.

Supplemental Material Availability Source Code for IoT-F ontology [14], OSAMA
agents[15], and FMSim simulator[16] is available from GitHub.



Solving The IoT Cascading Failure Dilemma 17

References

1. Aı̈ssaoui, F., Berlemont, S., Douet, M., Mezghani, E.: A semantic model toward
smart iot device management. In: Barolli, L., Amato, F., Moscato, F., Enokido,
T., Takizawa, M. (eds.) Web, Artificial Intelligence and Network Applications. pp.
640–650. Springer International Publishing, Cham (2020)

2. Ali, N., Hong, J.E.: Failure detection and prevention for cyber-physical
systems using ontology-based knowledge base. Computers 7(4) (2018).
https://doi.org/10.3390/computers7040068, https://www.mdpi.com/2073-431
X/7/4/68

3. Alsabilah, N., Rawat, D.B.: Anomaly detection in smart home networks us-
ing kalman filter. In: IEEE INFOCOM 2021 - IEEE Conference on Com-
puter Communications Workshops (INFOCOM WKSHPS). pp. 1–6 (2021).
https://doi.org/10.1109/INFOCOMWKSHPS51825.2021.9484507

4. Benazzouz, Y., keir Aktouf, O.E., Parissis, I.: A fault fuzzy-ontology for large scale
fault-tolerant wireless sensor networks. Procedia Computer Science 35, 203–212
(2014). https://doi.org/10.1016/j.procs.2014.08.100, knowledge-Based and Intelli-
gent Information & Engineering Systems 18th Annual Conference, KES-2014 Gdy-
nia, Poland, September 2014 Proceedings

5. Boissier, O., Bordini, R., Hubner, J., Ricci, A.: Multi-Agent Oriented Program-
ming: Programming Multi-Agent Systems Using JaCaMo. Intelligent Robotics and
Autonomous Agents series, MIT Press (2020)

6. Borhani, A., Zarandi, H.R.: Thingsdnd: Iot device failure detec-
tion and diagnosis for multi-user smart homes. 2022 18th European
Dependable Computing Conference (EDCC) pp. 113–116 (9 2022).
https://doi.org/10.1109/EDCC57035.2022.00028, fault detection on sensors
in smart home settings

7. Bratman, M.: Intention, Plans, and Practical Reason. Cambridge: Cambridge, MA:
Harvard University Press (1987)

8. Celik, Z.B., Tan, G., Mcdaniel, P.: Iotguard: Dynamic enforcement of security and
safety policy in commodity iot. Proceedings 2019 Network and Distributed System
Security Symposium (2019)

9. Chakraborty, T., Nambi, A.U., Chandra, R., Sharma, R., Swaminathan, M.,
Kapetanovic, Z., Appavoo, J.: Fall-curve: A novel primitive for iot fault detec-
tion and isolation. In: Proceedings of the 16th ACM Conference on Embedded
Networked Sensor Systems. p. 95–107. SenSys ’18, Association for Computing Ma-
chinery, New York, NY, USA (2018). https://doi.org/10.1145/3274783.3274853

10. Chen, Y., Zhen, Z., Yu, H., Xu, J.: Application of fault tree analysis and fuzzy
neural networks to fault diagnosis in the internet of things (iot) for aquaculture.
Sensors 17(1) (2017). https://doi.org/10.3390/s17010153

11. Chi, Y., Dong, Y., Wang, Z.J., Yu, F.R., Leung, V.C.M.: Knowledge-based fault
diagnosis in industrial internet of things: A survey. IEEE Internet of Things Journal
9(15), 12886–12900 (2022). https://doi.org/10.1109/JIOT.2022.3163606

12. Chi, Y., Wang, Z.J., Leung, V.C.M.: Distributed knowledge inference framework for
intelligent fault diagnosis in iiot systems. IEEE Transactions on Network Science
and Engineering 9(5), 3152–3165 (2022)

13. Emmanouilidis, C., Gregori, M., Al-Shdifat, A.: Context ontology development for
connected maintenance services. IFAC-PapersOnLine 53(2), 10923–10928 (2020).
https://doi.org/10.1016/j.ifacol.2020.12.2833, 21st IFAC World Congress

https://doi.org/10.3390/computers7040068
https://www.mdpi.com/2073-431X/7/4/68
https://www.mdpi.com/2073-431X/7/4/68
https://doi.org/10.1109/INFOCOMWKSHPS51825.2021.9484507
https://doi.org/10.1016/j.procs.2014.08.100
https://doi.org/10.1109/EDCC57035.2022.00028
https://doi.org/10.1145/3274783.3274853
https://doi.org/10.3390/s17010153
https://doi.org/10.1109/JIOT.2022.3163606
https://doi.org/10.1016/j.ifacol.2020.12.2833


18 A. Guittoum et al.

14. Guittoum, A.: IoT-F ontology documentation. https://github.com/Orange-Ope
nSource/collaborativeDM-IoTF-ontology-documentation

15. Guittoum, A.: OSAMA agents in the Smart home use case , https://github.com
/Orange-OpenSource/collaborativeDM-OSAMA-agent

16. Guittoum, A.: The FMSim simulator. https://github.com/Orange-OpenSource/
collaborativeDM-FM-Simulator

17. Guittoum, Aissaoui, B., Boyer: Inferring threatening iot dependencies using se-
mantic digital twins toward collaborative iot device management. In: Proceed-
ings of the 38th ACM/SIGAPP Symposium on Applied Computing. SAC ’23,
Association for Computing Machinery, New York, NY, USA (2023), https:

//doi.org/10.1145/3555776.3578573
18. Gupta, H., Dastjerdi, A.V., Ghosh, S.K., Buyya, R.: ifogsim: A toolkit for modeling

and simulation of resource management techniques in internet of things, edge and
fog computing environments (2016)

19. Jia, Y., Yuan, B., Xing, L., Zhao, D., Zhang, Y., Wang, X., Liu, Y., Zheng, K.,
Crnjak, P., Zhang, Y., Zou, D., Jin, H.: Who’s in control? on security risks of dis-
jointed iot device management channels. In: Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security. p. 1289–1305. CCS ’21,
Association for Computing Machinery, New York, NY, USA (2021)

20. Kapitanova, K., Hoque, E., Stankovic, J.A., Whitehouse, K., Son, S.H.: Be-
ing smart about failures: Assessing repairs in smart homes. In: Proceed-
ings of the 2012 ACM Conference on Ubiquitous Computing. p. 51–60. Ubi-
Comp ’12, Association for Computing Machinery, New York, NY, USA (2012).
https://doi.org/10.1145/2370216.2370225

21. Kodeswaran, P., Kokku, R., Sen, S., Srivatsa, M.: Idea: A system for efficient failure
management in smart iot environments. MobiSys 2016 - Proceedings of the 14th
Annual International Conference on Mobile Systems, Applications, and Services
pp. 43–56 (6 2016). https://doi.org/10.1145/2906388.2906406

22. Lazarova-Molnar, S., Shaker, H.R., Mohamed, N., Jorgensen, B.N.: Fault detection
and diagnosis for smart buildings: State of the art, trends and challenges. In: 2016
3rd MEC International Conference on Big Data and Smart City (ICBDSC). pp. 1–7
(2016). https://doi.org/10.1109/ICBDSC.2016.7460392

23. Li, J., Guo, Y., Wall, J., West, S.: Support vector machine based fault detection
and diagnosis for hvac systems. International Journal of Intelligent Systems Tech-
nologies and Applications 18, 204 (01 2019)

24. Najari, N., Berlemont, S., Lefebvre, G., Duffner, S., Garcia, C.: Robust variational
autoencoders and normalizing flows for unsupervised network anomaly detection.
In: Barolli, L., Hussain, F., Enokido, T. (eds.) Advanced Information Networking
and Applications. pp. 281–292. Springer International Publishing, Cham (2022)

25. Najeh, H.: Diagnosis in building : new challenges. Theses, Université Grenoble
Alpes ; École nationale d’ingénieurs de Gabès (Tunisie) (Dec 2019)

26. Nishiguchi, Y., Yano, A., Ohtani, T., Matsukura, R., Kakuta, J.: Iot fault man-
agement platform with device virtualization. IEEE World Forum on Internet of
Things, WF-IoT 2018 - Proceedings 2018-January, 257–262 (5 2018)

27. Norris, M., Celik, Z.B., Mcdaniel, P., Tan, G., Venkatesh, P., Zhao, S., Sivasubra-
maniam, A.: Iotrepair: Systematically addressing device faults in commodity iot.
2020 IEEE/ACM Fifth International Conference on Internet-of-Things Design and
Implementation (IoTDI) pp. 142–148 (2020)

28. Norris, M., Celik, Z.B., Venkatesh, P., Zhao, S., McDaniel, P., Sivasubramaniam,
A., Tan, G.: Iotrepair: Flexible fault handling in diverse iot deployments. ACM
Trans. Internet Things 3(3) (jul 2022). https://doi.org/10.1145/3532194

 https://github.com/Orange-OpenSource/collaborativeDM-IoTF-ontology-documentation
 https://github.com/Orange-OpenSource/collaborativeDM-IoTF-ontology-documentation
https://github.com/Orange-OpenSource/collaborativeDM-OSAMA-agent
https://github.com/Orange-OpenSource/collaborativeDM-OSAMA-agent
 https://github.com/Orange-OpenSource/collaborativeDM-FM-Simulator
 https://github.com/Orange-OpenSource/collaborativeDM-FM-Simulator
https://doi.org/10.1145/3555776.3578573
https://doi.org/10.1145/3555776.3578573
https://doi.org/10.1145/2370216.2370225
https://doi.org/10.1145/2906388.2906406
https://doi.org/10.1109/ICBDSC.2016.7460392
https://doi.org/10.1145/3532194


Solving The IoT Cascading Failure Dilemma 19

29. Ozeer, U.I.Z.: Autonomic resilience of distributed IoT applications in the Fog.
Theses, Université Grenoble Alpes (Dec 2019)

30. Perez Abreu, D., Velasquez, K., Curado, M., Monteiro, E.: A comparative analysis
of simulators for the cloud to fog continuum. Simulation Modelling Practice and
Theory 101, 102029 (2020), modeling and Simulation of Fog Computing

31. Power, A.: A predictive fault-tolerance framework for IoT systems. Ph.D. thesis,
Lancaster University (Aug 2020). https://doi.org/10.17635/lancaster/thesis/1063

32. Rao, A.S.: Agentspeak(l): Bdi agents speak out in a logical computable language.
In: Van de Velde, W., Perram, J.W. (eds.) Agents Breaking Away. pp. 42–55.
Springer Berlin Heidelberg, Berlin, Heidelberg (1996)

33. Samsung: SmartThings rule. https://developer-preview.smartthings.com/d
ocs/automations/rules/, online; accessed 6 avril 2022

34. Sanislav, T., Mois, G.: A dependability analysis model in the context of cyber-
physical systems. In: 2017 18th International Carpathian Control Conference
(ICCC). pp. 146–150 (2017)

35. Sanislav, T., Zeadally, S., Mois, G.D., Fouchal, H.: Reliability, failure de-
tection and prevention in cyber-physical systems (cpss) with agents. Con-
currency and Computation: Practice and Experience 31(24), e4481 (2019).
https://doi.org/https://doi.org/10.1002/cpe.4481, e4481 cpe.4481

36. Sharma, A.B., Golubchik, L., Govindan, R.: Sensor faults: Detection methods and
prevalence in real-world datasets. ACM Trans. Sen. Netw. 6(3) (jun 2010)

37. Shibuya, M., Hasegawa, T., Yamaguchi, H.: A study on device management for iot
services with uncoordinated device operating history. ICN 2016 p. 84 (2016)

38. Silva, L.d., Meneguzzi, F., Logan, B.: Bdi agent architectures: A survey. In:
Bessiere, C. (ed.) Proceedings of the Twenty-Ninth International Joint Conference
on Artificial Intelligence, IJCAI-20. pp. 4914–4921. International Joint Conferences
on Artificial Intelligence Organization (7 2020), survey track

39. Sinche, S., Raposo, D., Armando, N., Rodrigues, A., Boavida, F., Pereira, V., Silva,
J.S.: A survey of iot management protocols and frameworks. IEEE Communica-
tions Surveys & Tutorials 22(2), 1168–1190 (2020)

40. Steenwinckel, B., Heyvaert, P., Paepe, D.D., Janssens, O., Hautte, S.V., Dimou,
A., Turck, F.D., van Hoecke, S., Ongenae, F.: Towards adaptive anomaly detection
and root cause analysis by automated extraction of knowledge from risk analyses.
In: SSN@ISWC (2018)

41. Suárez-Figueroa, M.C., Gómez-Pérez, A., Fernández-López, M.: The NeOn
Methodology for Ontology Engineering, pp. 9–34. Springer Berlin Heidelberg,
Berlin, Heidelberg (2012)

42. University, C.M.: Intelligent Software Agents , https://www.cs.cmu.edu/~softa
gents/multi.html

43. Wilhelm, Y., Reimann, P., Gauchel, W., Mitschang, B.: Overview on hy-
brid approaches to fault detection and diagnosis: Combining data-driven,
physics-based and knowledge-based models. Procedia CIRP 99, 278–283 (2021).
https://doi.org/10.1016/j.procir.2021.03.041, 14th CIRP Conference on Intelligent
Computation in Manufacturing Engineering, 15-17 July 2020

44. Xing, L.: Cascading failures in internet of things: Review and perspectives on
reliability and resilience. IEEE Internet of Things Journal 8(1), 44–64 (2021)

45. Xu, F., Liu, X., Chen, W., Zhou, C., Cao, B.: Ontology-based method for fault
diagnosis of loaders. Sensors 18(3) (2018). https://doi.org/10.3390/s18030729

46. Zhang, H., Zhang, Q., Liu, J., Guo, H.: Fault detection and repairing for intelligent
connected vehicles based on dynamic bayesian network model. IEEE Internet of
Things Journal 5(4), 2431–2440 (2018)

https://doi.org/10.17635/lancaster/thesis/1063
 https://developer-preview.smartthings.com/docs/automations/rules/
 https://developer-preview.smartthings.com/docs/automations/rules/
https://doi.org/https://doi.org/10.1002/cpe.4481
https://www.cs.cmu.edu/~softagents/multi.html
https://www.cs.cmu.edu/~softagents/multi.html
https://doi.org/10.1016/j.procir.2021.03.041
https://doi.org/10.3390/s18030729

	Solving The IoT Cascading Failure Dilemma using A Semantic Multi-agent System 

