
LDkit: Linked Data Object Graph Mapping
Toolkit for Web Applications

Karel Kĺıma1, Ruben Taelman2 and Martin Nečaský1

1 Department of Software Engineering, Faculty of Mathematics and Physics,
Charles University, Prague, Czechia

{karel.klima,martin.necasky}@matfyz.cuni.cz
2 IDLab, Department of Electronics and Information Systems,

Ghent University – imec, Ghent, Belgium
ruben.taelman@ugent.be

Abstract. The adoption of Semantic Web and Linked Data technologies
in web application development has been hindered by the complexity of
numerous standards, such as RDF and SPARQL, as well as the challenges
associated with querying data from distributed sources and a variety of
interfaces. Understandably, web developers often prefer traditional solu-
tions based on relational or document databases due to the higher level of
data predictability and superior developer experience. To address these
issues, we present LDkit, a novel Object Graph Mapping (OGM) frame-
work for TypeScript designed to provide a model-based abstraction for
RDF. LDkit facilitates the direct utilization of Linked Data in web ap-
plications, effectively working as the data access layer. It accomplishes
this by querying and retrieving data, and transforming it into Type-
Script primitives according to user defined data schemas, while ensuring
end-to-end data type safety. This paper describes the design and imple-
mentation of LDkit, highlighting its ability to simplify the integration
of Semantic Web technologies into web applications, while adhering to
both general web standards and Linked Data specific standards. Further-
more, we discuss how LDkit framework has been designed to integrate
seamlessly with popular web application technologies that developers are
already familiar with. This approach promotes ease of adoption, allow-
ing developers to harness the power of Linked Data without disrupting
their current workflows. Through the provision of an efficient and intu-
itive toolkit, LDkit aims to enhance the web ecosystem by promoting the
widespread adoption of Linked Data and Semantic Web technologies.

Keywords: Linked Data · Developer experience · Data abstraction.

1 Introduction

The Semantic Web and Linked Data have emerged as powerful technologies to
enrich the World Wide Web with structured and interlinked information [3].
Despite their potential, the adoption of these technologies by web application
developers has been hindered the challenging nature of querying distributed

2 K. Kĺıma et al.

Linked Data in web applications [4], referred to as the expressivity/complexity
trade-off.

Expressivity in Linked Data typically pertains to the ability to represent
rich semantics and relationships between resources, often using ontologies and
vocabularies [11]. The more expressive the data model, the more accurately
and precisely it can represent the intended meaning and relationships between
entities.

On the other hand, complexity refers to the difficulty in querying, process-
ing, and managing the data. As the expressiveness of the Linked Data model
increases, so does the complexity of the underlying query language, such as
SPARQL [9], and the processing algorithms required to handle the data. This
can lead to increased development effort, computational resources, and time
needed to work with the data.

In order to leverage Linked Data in web applications, developers need to
overcome these challenges. In recent years, several projects have been developed
that address these needs, most prominently the Comunica [19] query engine, and
LDflex [23], a domain-specific language for querying and manipulating RDF.
These tools abstract away some of the complexity of Linked Data by simplify-
ing querying mechanisms, without sacrificing expressiveness. Nevertheless, the
Linked Data tooling ecosystem for web application development remains limited,
as the tools and libraries available today may not be as mature or feature-rich
as those for more established web development technologies.

In the past decade, the landscape of web development has undergone signif-
icant changes, with web technologies maturing considerably. The emergence of
powerful web application frameworks, such as React3 and Angular4, has led to a
rapid increase in the development and deployment of front-end web applications.
The rise of TypeScript5, a strongly typed programming language that builds on
JavaScript, has brought a variety of benefits to the whole web ecosystem. The
addition of a static typing system allows for strict type checking at compile-time,
leading to improved code quality, enhanced developer productivity, and better
tooling support. These technologies have provided developers with robust tools,
enabling them to create sophisticated and feature-rich web applications more
efficiently than ever before.

The growing complexity of web applications has highlighted the need for
new types of data abstractions. Traditional data access patterns may no longer
be sufficient to address the unique challenges posed by modern web develop-
ment, such as the architecture split between back-end and front-end systems, or
integrating with diverse APIs.

To address the needs of modern web developers, we introduce LDkit, a novel
Linked Data abstraction designed to provide a type-safe and developer-friendly
way for interacting with Linked Data from within web applications. LDkit en-
ables developers to directly utilize Linked Data in their web applications by

3 https://react.dev/
4 https://angular.io/
5 https://www.typescriptlang.org/

LDkit: Linked Data Object Graph Mapping Toolkit for Web Applications 3

providing mapping from Linked Data to simple, well-defined data objects; it
shields the developer from the challenges of querying, fetching and processing
RDF data.

In this paper, we present the design and implementation of LDkit, highlight-
ing its ability to simplify the integration of Semantic Web technologies into web
applications and improve the overall developer experience. By providing an ef-
ficient and intuitive toolkit, LDkit aims to promote the widespread adoption of
Linked Data and Semantic Web technologies in web applications.

The rest of the paper is organized as follows. Section 2 introduces the related
work, and Section 3 discusses requirements for LDkit as a viable Linked Data
abstraction. Section 4 provides overview of design, implementation and embed-
ding of LDkit in web applications, followed by Section 5 that evaluates LDkit
from three distinct perspectives, including a real-world usage of the framework.
We conclude in Section 6 and identify directions for future research.

2 Related Work

2.1 Web application data abstractions

There are various styles of abstractions over data sources to facilitate access
to databases in web development. These abstractions often cater to different
preferences and use cases.

Object-Relational Mapping (ORM) and Object-Document Mapping (ODM)
abstractions map relational or document database entities to objects in the pro-
gramming language, using a data schema. They provide a convenient way to in-
teract with the database using familiar object-oriented paradigms, and generally
include built-in type casting, validation and query building out of the box. Ex-
amples of ORM and ODM libraries for JavaScript/TypeScript include Prisma6,
TypeORM 7 or Mongoose8. Corresponding tools for graph databases are typi-
cally referred to as Object-Graph Mapping (OGM) or Object-Triple Mapping
(OTM) [14] libraries, and include Neo4j OGM 9 for Java and GQLAlchemy10 for
Python.

Query Builders provide a fluent interface for constructing queries in the pro-
gramming language, with support for various database types. They often focus
on providing a more flexible and composable way to build queries compared
to ORM/ODM abstractions, but lack convenient development features like au-
tomated type casting. A prominent query builder for SQL databases in web
application domain is Knex.js11.

Driver-based abstractions provide a thin layer over the database-specific drivers,
offering a simplified and more convenient interface for interacting with the database.

6 https://www.prisma.io/
7 https://typeorm.io/
8 https://mongoosejs.com/
9 https://github.com/neo4j/neo4j-ogm

10 https://github.com/memgraph/gqlalchemy
11 https://knexjs.org/

4 K. Kĺıma et al.

An examples of a driver-based abstraction heavily utilized in web applications
is the MongoDB Node.js Driver12.

Finally, API-based Data Access abstractions facilitate access to databases
indirectly through APIs, such as RESTful or GraphQL APIs. They provide
client-side libraries that make it easy to fetch and manipulate data exposed
by the APIs. Examples of API-based data access libraries include tRPC 13 and
Apollo Client14.

Each style of abstraction caters to different needs and preferences, ultimately
the choice of abstraction style depends on the project’s specific requirements and
architecture, as well as the database technology being used. There are however
several shared qualities among these libraries that contribute to a good devel-
oper experience. All of these libraries have static type support, which is especially
beneficial for large or complex projects, where maintaining consistent types can
significantly improve developer efficiency. Another aspect is good tooling support :
these libraries often provide integrations with popular development tools and
environments. This support can include autocompletion, syntax highlighting,
and inline error checking, which further enhances the developer experience and
productivity. Furthermore, most of these libraries offer a consistent API across
different database systems, which simplifies the process of switching between
databases or working with multiple databases in a single application. Finally,
abstracting away low-level details allows developers to focus on their applica-
tion’s logic rather than dealing with the intricacies of the underlying database
technology.

2.2 JavaScript/TypeScript RDF libraries

JavaScript is a versatile programming language that can be utilized for both
front-end development in browsers and back-end development on servers. As
Linked Data and RDF have gained traction in web development, several JavaScript
libraries have emerged to work with RDF data. These libraries offer varying lev-
els of RDF abstraction and cater to different use cases.

Most of the existing libraries conform to the RDF/JS Data model specifica-
tion [2], sharing the same RDF data representation in JavaScript for great com-
patibility benefits. Often, RDF libraries make use of the JSON-LD (JavaScript
Object Notation for Linked Data) [17], a lightweight syntax that enables JSON
objects to be enhanced with RDF semantics. JSON-LD achieves this by intro-
ducing the concept of JSON-LD context, which serves as a dictionary that maps
JSON keys to RDF property and type IRIs. This mapping allows for JSON ob-
jects to be interpreted as RDF graphs, and can also be used independently of
JSON-LD documents.

One of the most comprehensive projects is Comunica [19], a highly modu-
lar and flexible query engine for Linked Data, enabling developers to execute

12 https://github.com/mongodb/node-mongodb-native
13 https://github.com/trpc/trpc
14 https://github.com/apollographql/apollo-client

LDkit: Linked Data Object Graph Mapping Toolkit for Web Applications 5

SPARQL queries over multiple heterogeneous data sources with extensive cus-
tomizability.

LDflex [23] is a domain-specific language that provides a developer-friendly
API for querying and manipulating RDF data with an expressive, JavaScript-like
syntax. It makes use of JSON-LD contexts to interpret JavaScript expressions
as SPARQL queries. While it does not provide end-to-end type safety, LDflex is
one of the most versatile Linked Data abstractions that are available. Since it
does not utilize a fixed data schema, it is especially useful for use cases where
the underlying Linked Data is not well defined or known.

There are also several object-oriented abstractions that provide access to
RDF data through JavaScript objects. RDF Object15 and SimpleRDF 16 enable
per-property access to RDF data through JSON-LD context mapping. LDO
(Linked Data Objects)17 leverage ShEx [15] data shapes to generate RDF to
JavaScript interface, and static typings for the JavaScript objects. Soukai-solid18

provides OGM-like access to Solid Pods19 based on a proprietary data model
format.

Except for LDflex, the major drawback of all the aforementioned Linked Data
abstractions is that they require pre-loading the source RDF data to memory. For
large decentralized environments like Solid, this pre-loading is often impossible,
and we instead require discovery of data during query execution [22]. While
these libraries offer valuable tools for working with RDF, when it comes to web
application development, none of them provides the same level of type safety,
tooling support and overall developer experience as their counterparts that target
relational or document databases.

In recent years, the GraphQL20 interface has gained popularity as an alterna-
tive to REST interfaces, due to its flexible data retrieval, strongly typed schema,
and the ability to group multiple REST requests into one. A notable element
of this interface is the GraphQL query language, which is popular among devel-
opers due to its ease of use and wide tooling support. However, GraphQL uses
custom interface-specific schemas, which are difficult to federate over, and have
no relation to the RDF data model.

That is why, in the recent years, we have seen several initiatives [20] [21] [1]
attempting to bridge the worlds of GraphQL and RDF, by translating GraphQL
queries into SPARQL, with the goal of lowering the entry-barrier for writing
queries over RDF. While these initiatives addressed the problems to some extent,
there are still several drawbacks to this approach. Most notably, it requires the
deployment of a GraphQL server, which is not always possible or desirable,
depending on the use case. Furthermore, this extra architectural layer may add
significant performance overhead.

15 https://github.com/rubensworks/rdf-object.js
16 https://github.com/simplerdf/simplerdf
17 https://github.com/o-development/ldo
18 https://github.com/NoelDeMartin/soukai-solid
19 https://solidproject.org/
20 https://graphql.org/

6 K. Kĺıma et al.

3 Requirements Analysis

The goal of LDkit is to provide a type-safe and developer-friendly abstraction
layer for interacting with Linked Data from within web applications. Based on
our research of common web data abstractions and Linked Data libraries, we
have identified a set of primary requirements for LDkit that are necessary to
achieve this goal.

R1 Embraces Linked Data heterogenity
The inherent heterogeneity of Linked Data ecosystem arises due to the de-
centralized nature of Linked Data, where various data sources, formats, and
ontologies are independently created and maintained by different parties [4].
As a result, data from multiple sources can exhibit discrepancies in naming
conventions, data models, and relationships among entities, making it diffi-
cult to combine and interpret the information seamlessly [12]. LDkit should
embrace this heterogeneity by supporting the querying of Linked Data from
multiple data sources and various formats.

R2 Provides a simple way of Linked Data model specification
The core of any ORM, ODM or OGM framework is a specification of a
data model. This model is utilized for shielding the developer from the com-
plexities of the underlying data representation. It is a developer-friendly
programming interface for data querying and validation that encapsulates
the complexity of the translation between the simplified application model
and the underlying data representation. In LDkit, the data model should be
easy to create and maintain, and separable from the rest of the application
so that it can be shared as a standalone artifact. LDkit should aim to offer
a comprehensive RDF data abstraction while simplifying the data structure
by default, ensuring efficient use in web applications. Simultaneously, it must
allow users to override the default behavior to fine-tune the processes of RDF
data querying, retrieval, and processing.

R3 Has a flexible architecture
A Linked Data abstraction for web applications needs to encompass several
inter-related processes, such as generating SPARQL queries based on the
data model, executing queries across one or more data sources, and trans-
forming RDF data to JavaScript primitives and vice-versa. In LDkit, each of
these processes should be implemented as a standalone component for max-
imum flexibility. A flexible architecture allows LDkit to adapt to varying use
cases and requirements, making it suitable for a wide range of web applica-
tions that leverage Linked Data. Developers can customize the framework
to their specific needs, modify individual components, or extend the func-
tionality to accommodate unique requirements. Finally, as Linked Data and
web technologies evolve, a flexible architecture ensures that LDkit remains
relevant and can accommodate new standards, formats, or methodologies
that may emerge in the future.

R4 Provides solid developer experience
LDkit can achieve a good developer experience by focusing on several key

LDkit: Linked Data Object Graph Mapping Toolkit for Web Applications 7

aspects. First, LDkit should provide a clear and intuitive API to make the
learning curve more manageable for developers new to the framework. Sec-
ond, the toolkit should leverage TypeScript’s type safety features, enabling
better tooling support and error prevention. This provides developers with
instantaneous feedback in the form of autocomplete or error highlighting
within their development environment. Third, LDkit must ensure compat-
ibility with popular web application libraries and frameworks, allowing de-
velopers to incorporate LDkit into their existing workflows more easily. By
focusing on these aspects, LDkit can create a positive developer experience
that fosters rapid adoption and encourages the effective use of the framework
for reading and writing Linked Data in web applications.

R5 Adheres to existing Web standards and best practices
LDkit should adhere to both general web standards and web development
best practices, and Linked Data specific standards for several reasons. First,
compliance with established standards ensures interoperability and seam-
less integration with existing web technologies, tools, and services, thereby
enabling developers to build on the current web ecosystem’s strengths. Sec-
ond, adhering to Linked Data specific standards fosters best practices and
encourages broader adoption of Linked Data technologies, contributing to
a more robust and interconnected Semantic Web. Finally, compliance with
existing web standards allows for the long-term sustainability and evolution
of the LDkit framework, as it can adapt and grow with the ever-changing
landscape of web technologies and standards.

4 LDkit

We have designed LDkit OGM library according to the aforementioned require-
ments. In this section, we provide a high level perspective of LDkit capabilities
and discuss some of its most important components.

Let us illustrate how to display simple Linked Data in a web application,
using the following objective:

Query DBpedia for persons. A person should have a name property and a
birth date property of type date. Find me a person by a specific IRI.

The example in Listing 1.1 demonstrates how to query, retrieve and display
Linked Data in TypeScript using LDkit in only 20 lines of code.

On lines 4-11, the user creates a data Schema, which describes the shape of
data to be retrieved, including mapping to RDF properties and optionally their
data type. On line 13, they create a Lens object, which acts as an intermediary
between Linked Data and TypeScript paradigms. Finally, on line 18, the user
requests a data artifact using its resource IRI and receives a plain JavaScript
object that can then be printed in a type-safe way.

Under the hood, LDkit performs the following:

– Generates a SPARQL query based on the data schema.
– Queries remote data sources and fetches RDF data.

8 K. Kĺıma et al.

1 import { createLens } from "ldkit";

2 import { dbo, xsd } from "ldkit/namespaces";

3

4 const PersonSchema = {

5 "@type": dbo.Person,

6 "name": dbo.birthName,

7 "birthDate": {

8 "@id": dbo.birthDate,

9 "@type": xsd.date,

10 },

11 } as const;

12

13 const Persons = createLens(PersonSchema, {

14 sources: ["https://dbpedia.org/sparql"]

15 });

16

17 const adaIri = "http://dbpedia.org/resource/Ada_Lovelace";

18 const ada = await Persons.findByIri(adaIri);

19

20 console.log(ada.name); // "The Hon. Augusta Ada Byron"

21 console.log(ada.birthDate); // Date object of 1815-12-10

22

Listing 1.1. LDkit usage example

– Converts RDF data to JavaScript plain objects and primitives.

– Infers TypeScript types for the provided data.

4.1 Data schema

On the conceptual level, a data schema is a definition of a data shape through
which one can query RDF data, similar to a data model for standard ORM
libraries. Specifically, the schema describes a class of entities defined by RDF
type(s) and properties.

We have designed the LDkit schema based on the following criteria:

– LDkit can generate SPARQL queries based on the schema.

– LDkit can use the schema as a mapping definition between RDF and JavaScript
primitives (both ways).

– LDkit can infer a correct TypeScript type from the schema.

– Developer can adjust the resulting data shape; specifically, they can require
some properties to be optional or arrays.

– Developer can nest schemas within other schemas.

– Developer can reuse and share schemas independently of LDkit.

– Schemas must be easy to create and should be self-explanatory.

LDkit: Linked Data Object Graph Mapping Toolkit for Web Applications 9

A schema is a plain TypeScript object that follows the formal specification
defined in Listing 1.2. LDkit schemas are based on JSON-LD context format, and
simple JSON-LD contexts can be easily transformed to LDkit schemas. Having
the schema defined in TypeScript allows for end-to-end data type safety. In
addition, developers may benefit from autocomplete features and syntax checks
within their development environment, to aid schema reuse and composition.

1 type Schema = {

2 "@type": Iri | Iri[];

3 [key: string]: Iri | Property;

4 }

5 type Property = {

6 "@id": Iri;

7 "@type"?: DatatypeIri;

8 "@context"?: Schema;

9 "@optional"?: true;

10 "@array"?: true;

11 "@multilang"?: true;

12 }

13 type Iri = string

14 type DatatypeIri = /* supported data type, e.g. xsd:date */

Listing 1.2. Formal specification of LDkit schema in TypeScript

4.2 Reading and writing data

In LDkit, reading and writing data is realized through Lens.
A data Lens turns a particular data Schema to an interactive entity reposi-

tory. Conceptually, a Lens represents a collection of data entities that conform
to the specified Schema. The interface of Lens follows the data mapper archi-
tectural pattern, facilitating bidirectional transfer of data between an RDF data
store and in-memory data representation of entities, which are plain JavaScript
objects. In background, Lens handle building and executing SPARQL queries,
data retrieval and transformation according to the data Schema.

A Lens instance provides the following data access interface:

– find([where], [limit]): entity[] retrieves all entities that correspond to the
data schema, optionally applies additional conditions and limit

– findByIri(iri): entity retrieves an entity with a particular resource IRI
– count([where]): number counts all entities that correspond to the data

schema, optionally applies additional conditions
– insert(...entities) creates new entities in the data source
– update(...entities) updates entity properties in the data source
– delete(...iris) removes entities from data source based on their IRI

10 K. Kĺıma et al.

When any of these methods are invoked, LDkit creates an appropriate SPARQL
or SPARQL UPDATE [7] query and execute it against the underlying data
source. Consequently, in order to modify data, the data source must permit up-
date operations. The algorithm that generates the queries is complex, as it takes
into account payload of the interface methods, as well as data schema, therefore
its description is out of scope of this article.

The presented interface is similar to other data mapper-based TypeScript
frameworks and covers all basic data reading and manipulation. Listing 1.3
demonstrates how this interface may be used to retrieve and update a data
entity.

1 const Persons = createLens(PersonSchema);

2

3 const alanIri = "http://dbpedia.org/resource/Alan_Turing";

4 const alan = await Persons.findByIri(alanIri);

5

6 alan.name = "Not Alan Turing"; // fictitious name

7 alan.birthDate = new Date("1900-01-01"); // fictitious birth date

8 await Persons.update(alan);

Listing 1.3. Example of reading and writing data in LDkit

While the Lens interface is expressive enough to cover common cases of work-
ing with data that are structured in a relational fashion, it may be insufficient or
inconvenient for some advanced use cases, such as working with large arrays pos-
sibly containing thousands of items. While LDkit supports reading such arrays,
modifying them with operations like insert a value to array or remove a value
from array may be cumbersome to perform through the standard interface. For
these cases, the Lens exposes advanced methods for the developer to interact
directly with RDF, either in the form of SPARQL query or RDF quads:

– query(sparqlQuery) retrieves entities based on a custom SPARQL query
– updateQuery(sparqlQuery) performs a SPARQL UPDATE query on the

data source
– insertData(quads[]) inserts RDF quads array to data source
– deleteData(quads[]) removes RDF quads array from data source

4.3 Data sources and Query engine

In LDkit, a Query engine is a component that handles execution of SPARQL
queries over data sources. The query engine must follow the RDF/JS Query
specification [18] and implement the StringSparqlQueryable interface.

LDkit ships with a simple default query engine that lets developers exe-
cute queries over a single SPARQL endpoint. It is lightweight and optimized for

LDkit: Linked Data Object Graph Mapping Toolkit for Web Applications 11

browser environment, and it can be used as a standalone component, indepen-
dently of the rest of LDkit. The engine supports all SPARQL endpoints that
conform to the SPARQL 1.1 specification [9].

LDkit is fully compatible with Comunica-based query engines. Comunica
[19] provides access to RDF data from multiple sources and various source types,
including Solid pods, RDF files, Triple/Quad Pattern Fragments, and HDT files.

4.4 Current limitations

While the presented data model of LDkit reduces complexity of SPARQL and
RDF, it introduces some trade-offs, as it is not as expressive. First, reverse rela-
tions are not yet supported. That could be useful for scenarios when one needs
to display incoming links. In order to achieve this, the developer needs to pro-
vide a custom SPARQL query that would produce a graph corresponding to the
specified schema. Second, there is the issue of multiplicity of RDF properties:
contrary to the world of relational databases, where each cell in a table usually
corresponds to a single value, the world of Linked Data does not have this con-
straint. As a result, there may be an unknown number of triples with the same
RDF property linked to a particular resource. This may either be by design, if
the data is supposed to represent a set of values, or the data may be of poor
quality and there may be some duplicates. Ultimately, the developer needs to
choose, whether they prefer to read one, albeit random, value, or an array of
values that may be redundant.

4.5 LDkit components

Thanks to its modular architecture, components comprising the LDkit OGM
framework can be further extended or used separately, accomodating advanced
use cases of leveraging Linked Data in web applications. Besides Schema, Lens
and Query engine already presented, there are other components and utilities
that can be used by developers to facilitate working with Linked Data. The
Decoder and Encoder components transform data from RDF to JavaScript plain
objects and vice-versa based on the provided data schema. The QueryBuilder

generates SPARQL CRUD queries based on a data schema. Furthermore, there
is a universal SPARQL query builder available, allowing for type-safe SPARQL
query composition, and a set of utilities for working with RDF quads. Finally,
LDkit also includes Namespaces definitions for popular Linked Data vocabular-
ies, such as Dublin Core [5], FOAF [6] or Schema.org [16].

This level of flexibility means that LDkit could also support other query
languages, such as GraphQL.

4.6 LDkit distribution and sustainability

The TypeScript implementation of LDkit is available under the MIT license
on GitHub at https://github.com/karelklima/ldkit, via the DOI 10.5281/zen-
odo.7905468, and the persistent URL https://doi.org/10.5281/zenodo.7905468,
and has an associated canonical citation [13].

https://github.com/karelklima/ldkit
https://doi.org/10.5281/zenodo.7905468

12 K. Kĺıma et al.

Following the standard practices, LDkit is published as an NPM package21

and as a Deno module22. To make adoption easy for new developers, documen-
tation and examples are available at https://ldkit.io or linked from the GitHub
repository.

In order to demonstrate our commitment to the long-term maintenance and
improvement of LDkit, we have developed a comprehensive sustainability plan.
Our team guarantees a minimum of five years of ongoing maintenance, during
which we will be dedicated to addressing any issues, optimizing performance,
and ensuring compatibility with the evolving Linked Data landscape. LDkit has
already been adopted by several academic and non-academic projects, with more
projects set to incorporate it in the future. This growing user base helps to guar-
antee ongoing interest and support for the framework. As LDkit continues to be
used in new research projects, our team will work closely with the academic com-
munity to gather feedback and identify areas for further improvement. Finally,
we have identified several features that are not yet included in LDkit but will
enhance its capabilities and usefulness in the future. Our team will actively work
on incorporating these features into LDkit, ensuring its continued relevance and
applicability to a wide range of use cases. By implementing this sustainability
plan, we aim to ensure that LDkit remains a valuable and dependable resource
for web developers and researchers working with Linked Data, both now and in
the years to come.

5 Evaluation

In this section, we present the evaluation of LDkit from three distinct perspec-
tives to provide a comprehensive assessment of the framework’s capabilities.
First, we discuss the primary requirements that LDkit aims to address and how
it satisfies these needs. Second, we demonstrate a real-world use case of LDkit
to showcase its practical applicability in web applications. Finally, we examine
the framework’s performance.

5.1 Requirements reflection

Earlier in this paper, we presented a list of five primary requirements that LDkit
must meet in order to provide a developer-friendly abstraction layer for inter-
acting with Linked Data from within web applications.

LDkit provides a simple way of Linked Data model specification (R2) through
schema, which is a flexible mechanism for developers to define their own custom
data models and RDF mappings that are best suited for their application’s
requirements. The schema syntax is based on JSON-LD context, and as such it
assumes its qualities: it is self-explanatory and easy to create, and can be reused,
nested, and shared independently of LDkit.

21 https://www.npmjs.com/package/ldkit
22 https://deno.land/x/ldkit

https://ldkit.io

LDkit: Linked Data Object Graph Mapping Toolkit for Web Applications 13

Thanks to the flexible data model definition and interoperability with the
Comunica query engine, LDkit effectively embraces Linked Data heterogenity
(R1) by providing means to query Linked Data from various data sources, for-
mats, and vocabularies. Furthermore, its modular architecture (R3) allows for a
high level of customization. LDkit components can be adapted and extended to
accommodate unique requirements, or used standalone for advanced use cases.

LDkit offers good developer experience (R4) in several ways. Its API for
reading and writing Linked Data is simple and intuitive, and should feel familiar
even to the developers new to RDF, as it is inspired by interfaces of analogous
model-based abstractions of relational databases. By incorporating end-to-end
data type safety, which is the biggest differentiator from LDflex, LDkit provides
unmatched tooling support, giving developers instantaneous feedback in the form
of autocomplete or error highlighting within their development environment. The
official website of LDkit23 contains comprehensive documentation, along with a
step-by-step ”getting started” guide for new developers, and includes examples of
how to use LDkit with popular web application frameworks, such as React. These
aspects contribute to a positive developer experience and encourage effective use
of LDkit in web applications.

Finally, LDkit adheres to and employs existing Web and Linked Data stan-
dards (R5), such as JSON-LD or SPARQL, to ensure interoperability and seam-
less integration with existing Web technologies. LDkit follows RDF/JS data
model [2] and query [18] standards, making it compatible with other existing
Linked Data tools, such as Comunica, and contributing to a more robust Linked
Data ecosystem for web developers.

5.2 Real world usage

LDkit is used in a project for the Czech government24 that aims to build a
set of web applications for distributed modeling and maintenance of government
ontologies25. The ensemble is called Assembly Line (AL). It allows business glos-
sary experts and conceptual modeling engineers from different public bodies to
model their domains in the form of domain vocabularies consisting of a business
glossary further extended to a formal UFO-based ontology [8]. The individual
domain vocabularies are managed in a distributed fashion by the different parties
through AL. AL also enables interlinking related domain vocabularies and also
linking them to the common upper public government ontology defined centrally.
Domain vocabularies are natively represented and published26 in SKOS (busi-
ness glossary) and OWL (ontology). The AL tools have to process this native
representation of the domain vocabularies in their front-end parts. Dealing with
native representation would be, however, unnecessarily complex for the front-end

23 https://ldkit.io/
24 https://slovnik.gov.cz
25 https://github.com/datagov-cz/sgov-assembly-line is the umbrella repository

that refers to the repositories of individual tools (in Czech)
26 https://github.com/datagov-cz/ssp (in Czech)

https://slovnik.gov.cz
https://github.com/datagov-cz/sgov-assembly-line
https://github.com/datagov-cz/ssp

14 K. Kĺıma et al.

developers of these tools. Therefore, they use LDkit to simplify their codebase.
This allows them to focus on the UX of their domain-modeling front-end features
while keeping the complexity of SKOS and OWL behind the LDkit schemas and
lenses. On the other hand, the native SKOS and OWL representations of the
domain models make their publishing, sharing, and reuse much easier. LDkit
removes the necessity to transform this native representation with additional
transformation steps in the back-end components of the AL tools.

5.3 Performance

To evaluate the performance of LDkit, we considered a typical use case of working
with data in web applications: displaying a list of data resources. Specifically,
we envisioned a scenario of building a Web book catalog. For this catalog, our
objective was to obtain a list of books from the DBpedia27 SPARQL endpoint
so that we can display it to end users. We have designed three experiments, and
in each case, we query DBpedia for a list of 1000 books, using the LDkit built-
in query engine. The experiments are identical except for the data schema; its
complexity increases with each test case. For reproducibility purposes, we have
shared the experiments on GitHub28.

Our initial assumption was that LDkit should not add significant performance
overhead, and that the majority of the execution time would be spent on querying
the SPARQL endpoint, since this is often the primary bottleneck when dealing
with remote data sources.

To assess LDkit performance, we measured total execution time and sub-
tracted the time it took to query DBpedia.29 Table 1 displays the resulting
average times for each scenario and, for illustration purposes, includes a number
of RDF quads that were returned by the data source.

Scenario schema Book
− t i t l e

Book
− t i t l e
− author (Person)

− name

Book
− t i t l e
− author (Person)

− name
− country
− language
− genre

Query time 255ms 359ms 2751ms

LDkit time 23ms 38ms 45ms

Total time 278ms 397ms 2796ms

Number of quads 217 3955 7123
Table 1. LDkit performance evaluation results

27 https://dbpedia.org/sparql
28 https://github.com/karelklima/ldkit/tree/main/tests/performance
29 Each scenario was run 10 times, and was executed using Deno JavaScript runtime.

The experiment was performed on a PC with 2.40 GHz Intel i7 CPU and 8 GB RAM

LDkit: Linked Data Object Graph Mapping Toolkit for Web Applications 15

Our findings indicate that, even with the increasing complexity of the sce-
narios, LDkit maintained its performance without any substantial degradation.
Since LDkit uses data schema to generate SPARQL queries that are eventu-
ally passed to a pre-configured query engine, the overall performance will be
therefore determined mostly by the query engine itself, which may employ ad-
vanced strategies for query processing, such as query optimization or caching
[10], leading to improved query execution times.

6 Conclusion

Web application development is a rather specific software engineering discipline.
When designing a website, or any other user-facing application for that matter,
the developers need to think about the product side and user interface first. In
short, they need to figure out what to display to users and how. Building a great
user interface and experience is the primary objective. Hence, the ever-evolving
web application tooling provide sophisticated abstractions and enable develop-
ers to focus on what matters the most – the end user. Popular web application
frameworks, such as React, employ declarative programming paradigm, and the
use of visual components as the application building blocks. Modern data ac-
cess solutions are seamlessly integrated to application frameworks, to allow for
easy access to data, simplified to the application domain model, in a declara-
tive way. In that regard, from the point of view of a front-end developer, the
web application architecture, and even more so data architecture, are almost an
afterthought.

In this paper, we presented LDkit, a developer-friendly tool that enables
using Linked Data within web applications in an easy and intuitive way.

LDkit is the result of a decade-long effort and experience of building front-
end web applications that leverage Linked Data, and as such it is a successor to
many different RDF abstractions that we have built along the way. It is designed
to cater to the mindset of a web developer and help them focus on data itself
and how to best present them to the users, abstracting away the complexity of
querying, processing and adapting Linked Data.

In our future work, we aim to further extend the capabilities of LDkit, and
we plan to build more sophisticated solutions for assisted generating of LD-
kit schemas and entire front-end applications from RDF vocabularies or data
sources, allowing for rapid prototyping of Linked Data-based applications.

In conclusion, we believe that LDkit is a valuable contribution to the Linked
Data community, providing a powerful and accessible tool to seamlessly integrate
Linked Data into web applications. Throughout this paper, we have presented
evidence to support this claim, demonstrating how LDkit addresses specific web
development needs and how it can be utilized in real-world scenarios. We are
confident that LDkit will contribute to further adoption of Linked Data in web
applications.

16 K. Kĺıma et al.

References

1. Angele, K., Meitinger, M., Bußjäger, M., Föhl, S., Fensel, A.: Graphsparql: A
graphql interface for linked data. In: Proceedings of the 37th ACM/SIGAPP Sym-
posium on Applied Computing. pp. 778–785 (2022)

2. Bergwinkl, T., Luggen, M., elf Pavlik, Regalia, B., Savastano, P., Ver-
borgh, R.: Rdf/js: Data model specification (May 2022), https://rdf.js.org/
data-model-spec/

3. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American
284(5), 34–43 (2001)

4. Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. International
Journal on Semantic Web and Information Systems 5(3), 1–22 (2009)

5. Board, D.U.: Dcmi metadata terms. https://www.dublincore.org/

specifications/dublin-core/dcmi-terms/ (2020)
6. Brickley, D., Miller, L.: FOAF vocabulary specification. http://xmlns.com/foaf/

spec/ (2014)
7. Gearon, P., Passant, A., Polleres, A.: Sparql 1.1 update. https://www.w3.org/TR/

sparql11-update/ (March 2013)
8. Guizzardi, G., Botti Benevides, A., Fonseca, C.M., Porello, D., Almeida, J.P.A.,

Prince Sales, T.: Ufo: Unified foundational ontology. Applied Ontology 17(1), 167–
210 (2022)

9. Harris, S., Seaborne, A.: Sparql 1.1 query language. https://www.w3.org/TR/

sparql11-query/ (March 2013)
10. Hartig, O.: An overview on execution strategies for linked data queries. Datenbank-

Spektrum 13, 89–99 (2013)
11. Heath, T., Bizer, C.: Linked data: Evolving the web into a global data space,

Synthesis Lectures on the Semantic Web: Theory and Technology, vol. 1. Morgan
& Claypool Publishers (2011)

12. Hogan, A., Umbrich, J., Harth, A., Cyganiak, R., Polleres, A., Decker, S.: An
empirical survey of linked data conformance. Journal of Web Semantics 14, 14–44
(2012)

13. Kĺıma, K., Beeke, D.: karelklima/ldkit: 1.0.0 (May 2023).
https://doi.org/10.5281/zenodo.7905469, https://doi.org/10.5281/zenodo.

7905469

14. Ledvinka, M., Křemen, P.: A comparison of object-triple mapping libraries. Se-
mantic Web 11(3), 483–524 (2020)

15. Prud’hommeaux, E., Boneva, I., Labra Gayo, J.E., Kellog, G.: Shape Expressions
Language (ShEx) 2.1 (October 2019), https://shex.io/shex-semantics/

16. Schema.org: Schema.org: Vocabulary. https://schema.org/ (2011), accessed:
yyyy-mm-dd

17. Sporny, M., Longley, D., Kellogg, G., Lanthaler, M., Lindström, N.: Json-ld 1.1.
W3C Recommendation, Jul (2020)

18. Taelman, R., Scazzosi, J.: Rdf/js: Query specification (2023), https://rdf.js.
org/query-spec/

19. Taelman, R., Van Herwegen, J., Vander Sande, M., Verborgh, R.: Comunica:
a modular sparql query engine for the web. In: Proceedings of the 17th Inter-
national Semantic Web Conference (Oct 2018), https://comunica.github.io/

Article-ISWC2018-Resource/

20. Taelman, R., Vander Sande, M., Verborgh, R.: Graphql-ld: linked data querying
with graphql. In: ISWC2018, the 17th International Semantic Web Conference.
pp. 1–4 (2018)

https://rdf.js.org/data-model-spec/
https://rdf.js.org/data-model-spec/
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
http://xmlns.com/foaf/spec/
http://xmlns.com/foaf/spec/
https://www.w3.org/TR/sparql11-update/
https://www.w3.org/TR/sparql11-update/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/
https://doi.org/10.5281/zenodo.7905469
https://doi.org/10.5281/zenodo.7905469
https://doi.org/10.5281/zenodo.7905469
https://shex.io/shex-semantics/
https://schema.org/
https://rdf.js.org/query-spec/
https://rdf.js.org/query-spec/
https://comunica.github.io/Article-ISWC2018-Resource/
https://comunica.github.io/Article-ISWC2018-Resource/

LDkit: Linked Data Object Graph Mapping Toolkit for Web Applications 17

21. Taelman, R., Vander Sande, M., Verborgh, R.: Bridges between graphql and rdf.
In: W3C Workshop on Web Standardization for Graph Data. W3C (2019)

22. Taelman, R., Verborgh, R.: Evaluation of link traversal query execution
over decentralized environments with structural assumptions. arXiv preprint
arXiv:2302.06933 (2023)

23. Verborgh, R., Taelman, R.: Ldflex: a read/write linked data abstraction for front-
end web developers. In: The Semantic Web–ISWC 2020: 19th International Se-
mantic Web Conference, Athens, Greece, November 2–6, 2020, Proceedings, Part
II 19. pp. 193–211. Springer (2020)

	LDkit: Linked Data Object Graph Mapping Toolkit for Web Applications

