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Abstract. In order to improve the adoption of knowledge graphs (KG)
in everyday work, non-technical users must be empowered to not only
view but to write data in a KG. Whereas most available software tools
focus on displaying information, the presented solution helps business
users to execute write operations for correcting wrong values or insert-
ing missing values. SPARQL edit is a Web application that enables users
without any knowledge of SPARQL or RDF to view query results and in-
stantly edit RDF literal values of the knowledge graph. The main concept
can be summarized as ’editable SPARQL result table’. If a user modifies
the value of an RDF literal in the view, a generic view-update algorithm
translates the change into a SPARQL/Update query that updates the
correct RDF triple in the KG. Similar to the view update problem in
databases, there are restrictions of the SPARQL language features that
can be used for creating a view with unambiguous updates to the graph.

1 Introduction

The application of Semantic Web technologies in enterprises has received in-
creasing attention from both the research and industrial side. Information is
often stored in a knowledge graph (KG), ”a graph of data intended to accumu-
late and convey knowledge of the real world, whose nodes represent entities of
interest and whose edges represent relations between these entities”[19]. There
are openly available knowledge graphs such as DBpedia, Wikidata or Freebase
and commercial enterprise-related KGs. Enterprise knowledge graphs (EKG) are
designed for the use inside a company with applications from search and recom-
mendations, commerce and finance to social networks [19]. The adoption of KGs
for connecting data and knowledge inside an organisation was popularised by the
big tech corporations, namely Google, Facebook, Microsoft, eBay and IBM [22].
EKG can be seen as an implementation of linked enterprise data by means of
a ”semantic network of concepts, properties, individuals and links representing
and referencing foundational and domain knowledge relevant for an enterprise”
[15]. Despite their different application domains, EKGs have common features:
EKGs integrate data from different internal and external heterogeneous data
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sources resulting in millions or billions of nodes and edges. Ontologies are typi-
cally used to define relationships between concepts and serve as a data schema.
Artificial intelligence is used for knowledge extraction from unstructured data or
for reasoning, the inference of new facts from existing ones. Every EKG requires
an initial refinement and techniques to keep the graph up-to-date with corporate
operations to guarantee a high quality knowledge base.

KGs can be built with different graph-structured data models but EKG
are typically labelled property graphs or directed edge-labelled graphs built
upon the Resource Description Framework (RDF) [9], the standard data model
for the Web of Data. This paper focuses on RDF KGs that are queried with
SPARQL [17], the query language of the Semantic Web.

The life-cycle of a KG can be divided into the creation, hosting, curation and
the deployment phase [28]. In the creation and hosting process the KG is built
from semantically annotated data which was generated by mapping data from
heterogeneous sources into the graph format. The curation process includes tasks
for cleaning and enriching in order to improve the correctness and completeness
of the newly created KG. If errors are detected, the mapping rules are modified
to correct the graph output. Even after the KG cleaning, there are still faulty
values in the graph data that cannot be found by cleaning algorithms or the
data engineers. There is still the need for manual changes after the deployment,
e.g. for updating values or the correction of wrong values.

To simplify the work with KGs, the effort for maintaining and updating
single values in a KG must be reduced. Instead of contacting a data engineer
or re-executing the whole creation process, non-expert users should be able to
update wrong values immediately by themselves. However, non-technical users
are usually not familiar with with RDF graph structures and the SPARQL query
language. This leads to the overarching research question of how to enable lay
users to update single values in an EKG. This question can be divided into more
specific sub-questions:

– Is it possible to create an editable view of KG data where changes made by
the user are automatically handed back to the original graph?

– Can we automatically translate a change to a SPARQL query result (view)
into a SPARQL/Update query? Under what circumstances can an algorithm
create unambiguous database updates?

– Which requirements and features are necessary for an end-user application?

This paper presents SPARQL edit, a demo implementation of a generic solution
that allows users to display arbitrary SPARQL query results in a table with
editable input fields for RDF literal results. We explain an algorithm that trans-
lates the user’s changes into a SPARQL/Update query that alters the correct
RDF triples in the KG. The view-update algorithm constructs a SPARQL/Up-
date query from the initial SPARQL/Select query, the query results and the
changed RDF literal value. Similar to the view update problem in databases,
there are restrictions to the SPARQL language features that can be used in-
side the initial query. This paper evaluates the benefits and shortcomings of this
generic approach and discusses restrictions to the SPARQL grammar. Our main



SPARQL edit: Editing RDF Literals in Knowledge Graphs 3

contribution is the practical study of a SPARQL-based view-update application
for the use with RDF knowledge graphs.

The following section introduces a practical application example that show-
cases the functioning of SPARQL edit. Section 3 describes related read-write
Linked Data systems and the relation to the view update problem which is
known from relational databases. The view-update algorithm and its restrictions
are discussed in section 4. It is followed by the description of the implementation
in section 5 and a study of the applicability of the presented solution in terms
of performance and collaborative work in section 6.

2 Practical Example

The concept of SPARQL edit is based on the assumption that users are familiar
with working on tabular data in spreadsheets. Graph data from a KG is presented
in a table where cells of RDF literal solutions can be edited. A user story for the
application in an enterprise environment is the correction of a product catalog
in the EKG: While preparing the delivery bill for a customer, Bob notices that
the billing software fetched an incorrect weight attribute for a product from the
EKG. Bob wants to update the product weight in the EKG but he is not familiar
with SPARQL. Bob opens SPARQL edit in his browser and loads the ‘Product
Catalog View’ configuration that Alice from the IT department shared with him.
SPARQL edit then displays a table with the product data. After filtering the
table rows, Bob changes the cell with the wrong weight value and submits the
change which is immediately applied to the company’s EKG.

product/98765

schema:Product
rdf:type

Metal cover ABC123 Type 2
schema:name

http://www.wikidata.org/entity/Q30
schema:countryOfOrigin

624141007349
Datatype: xsd:integer

schema:gtin

1.50 m
schema:width

1.20 m
schema:depth

schema:weight

schema:QuantitativeValue
rdf:type

10.5
Datatype: xsd:decimalschema:value

KGMschema:unitCode

Namespaces:
rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
xsd: http://www.w3.org/2001/XMLSchema#
schema: http://schema.org/ 

Base:  
http://example.org/

Fig. 1. Product graph from a fictional graph G of a dataset D

Figure 1 shows a graph of the exemplary product whose weight property shall
be changed. After loading the ’Product Catalog View’ in the SPARQL edit Web
application, Bob filters the displayed table for the desired product with a certain
GTIN number. He uses the form controls to change the weight value as shown in
figure 2. The ’Product Catalog View’ has been created with the SPARQL/Select
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query from listing 1.1. When Bob changes the weight value, the algorithm gener-
ates the SPARQL/Update query shown in listing 1.2. If Bob submits his change,
the application will send this update query to the graph store and refresh the
values in the table by re-executing the original SPARQL/Select query. After the
initial loading of the view, the literal update process consists of four steps:

1. Algorithm generates a SPARQL/Update query
2. SPARQL/Update query from step 1 is sent to the SPARQL server
3. Original SPARQL/Select query of the view is rerun
4. User interface is updated with values from step 3

3 Related Work

Different software tools have been developed to support users who do not know
the concepts of RDF and Semantic Web and also expert users in their work with
Linked Data and KG. Most tools and techniques focus on the exploration and
visualisation of semantically connected data which is either distributed across
the Web or stored in a central location. However, there are only few software
tools that allow users to execute write operations in a generic and reusable way.
Generic read-write systems without explicit mapping rules between the presen-
tation of data and the database struggle with the view update problem. This
section presents related read-write Linked Data systems and gives an introduc-
tion to the database view update problem. After this, solutions for creating
database-to-RDF mappings with write capabilities are listed.

3.1 Read-Write Linked Data Systems

Tabulator Following Tim Berners-Lee’s concept of a read-write Linked Data
Web, ”it is essential that the Data Web should not be read-only” [2]. Tim
Berners-Lee and his colleagues developed Tabulator [3], a Web of Data browser
with write capabilities that allows users to modify and extend information within
the browser interface. In Tabulator, changes to a resource are submitted back
to the Web server using an HTTP and SPARQL-based protocol. Berners-Lee et
al. [3] discuss the difficulties that arise with write functionality. These difficulties
are related to the view update problem which is described in section 3.2.

RDF-to-Form Mapping Software tools such as RDFauthor [32] facilitate
RDF editing by creating a bidirectional mapping between RDF data and Web
HTML forms by making use of semantic markup annotations like RDFa. Rdf
Edit eXtension (REX) [30] uses RDFa-like HTML attributes to create a map-
ping between an RDF graph and the model of the HTML form controls. When a
user changes a value in the form controls, REX generates and executes a SPAR-
QL/Update query based on the semantic annotations. Moreover, RDForms [11] is
a library for creating form-based RDF editors by using a templating mechanism
which uses bidirectional mapping rules to translate between the Web form and
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Fig. 2. Editing of an RDF literal value in the user interface of SPARQL edit

PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>
PREFIX schema : <http :// schema . org/>
SELECT ?product ?name ? g t in ?weight
FROM <http :// example . org / datase t /graph>
WHERE {

? product rd f : type schema : Product ;
schema : name ?name ;
schema : g t in ? g t in ;
schema : weight [

schema : va lue ?weight
]

FILTER ( lang (?name) = ’ en ’ )
}

Listing 1.1. SPARQL/Select query for the product catalog view in fig. 2

PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>
PREFIX xsd : <http ://www.w3 . org /2001/XMLSchema#>
PREFIX schema : <http :// schema . org/>
WITH <http :// example . org / datase t /graph>
DELETE { ? g 0 schema : va lue ”10.5”ˆˆ xsd : decimal . }
INSERT { ? g 0 schema : va lue ”8 .8”ˆˆ xsd : decimal . }
WHERE {

<http :// example . org /product /98765> rd f : type schema : Product ;
schema : name ”Metal cover ABC123 Type 2”@en ;
schema : g t in 624141007349;
schema : weight ? g 0 .

? g 0 schema : va lue ”10.5”ˆˆ xsd : decimal .
}

Listing 1.2. SPARQL/Update query generated for changing the weight RDF triple
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the RDF graph. In contrast to RDFauthor, REX and RDForms, SPARQL edit
does not require the upfront definition of mapping rules or form annotations. In
SPARQL edit, an algorithm automatically translates a change to a form control
into an appropriate SPARQL/Update query that will manipulate the underlying
RDF graph. Instead of embedding information in the HTML form, SPARQL edit
gathers the necessary inputs for the algorithm from the view defined by a SPAR-
QL/Select query and the current database state.

Solid Pod Managers Today, the read-write Linked Data Web is extended with
Social Linked Data (Solid)3, a new set of technical concepts and standards for
building a decentralized social Web. The key concept is the storage of personal
data in a user-managed personal online data store (Pod) whose resource man-
agement is based on the Linked Data Platform (LDP) [29]. With Solid, a new
category of read-write Linked Data tools emerged: Pod managers or browsers.
Pod managers can be seen as successors of LDP clients [34] that use Solid au-
thentication and authorization. Pod managers like SolidOS (Databrowser)4 or
PodBrowser5 provide a GUI for resource management and triple editing of RDF
documents in a Solid Pod. The Solid protocol [8] allows document updates via
HTTP PUT requests and via PATCH requests that include Notation 3 (N3) [1]
rules defining the update operation. Although the document-based update is dif-
ferent to our query-based approach, the N3 update rules have similarities with
the queries in SPARQL edit. A Solid InsertDeletePatch typically includes an
insertion, a deletion and a condition formula that is evaluated against the target
RDF document similar to a DELETE-INSERT-WHERE SPARQL/Update query.

PoolParty GraphEditor Besides the open-source tools, there are proprietary
solutions that are often incorporated into commercial Semantic Web or KG
platforms. PoolParty’s GraphEditor6 provides a graphical user interface that
guides users in the creation of views for graph editing. The proprietary tool
helps users to visually build queries, filter the results and perform inline editing
to single or multiple triples of the KG. GraphEditor automatically generates
a SPARQL query based on the selected graphs, the chosen properties from the
selected vocabulary as well as the user-defined filters and is able to ”refine triples,
create or change relations among their properties or their names and labels and
even create new resources” [27]. Since SPARQL edit has a similar motivation
as PoolParty’s GraphEditor – to build an easily usable application for directly
editing data in a KG – it shares the same design principle of having customizable
views on a KG and follows the same concept of in-line editing by means of
editable fields in query results. Whereas GraphEditor is strongly integrated in
the proprietary platform of PoolParty, SPARQL edit is a lightweight stand-alone
application that can be used with any SPARQL 1.1 query/update endpoint.

3 cf., https://solidproject.org/
4 cf., https://github.com/SolidOS/solidos
5 cf., https://github.com/inrupt/pod-browser
6 cf., https://www.poolparty.biz/poolparty-grapheditor
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3.2 Database View Update Problem

The (database) view update problem with its origin in the field of relational
databases describes the problem of translating updates on a view into equiva-
lent updates on the database. There are cases in which the translation of a view
update is not unique, ill-defined or even impossible. Calculated update queries
may create inconsistencies in the database or have side-effects on the derived
view [14]. In general, there are two opposed approaches for solving the view up-
date problem [14]: In the first approach, the view includes all permissible view
updates together with their translations. This approach requires the explicit
definition of translation rules on how to update the database for each possible
update operation in the view. The second solution are general view update trans-
lators which are based on the analysis of the conceptual schema dependencies
or on the concept of a view complement in order to create unique view update
translations. The database update is calculated from the view definition, the
view update, additional information and the current database state. This auto-
matic translation is comfortable because the database engineer must not define
the translation rules like in the first approach. However, the general approach
only allows a limited range of view updates that can be translated correctly and
the database engineer has to check if the calculated translations are right [14].
For answering the question whether a view is updatable, it is necessary to check
if the mapping from the database relations to the view is invertible and if a view
update has a translation [13].

The research for relational databases and the SQL query language can be
transferred to graph databases, RDF and SPARQL. Berners-Lee et al. [3] discuss
the problem of mapping changes in a Web page (presentation) to the underlying
Web data that may originate from different Web servers in the context of their
tool Tabulator. Whereas Tabulator is focused on linked documents on the Web,
SPARQL edit is working on views defined by SPARQL queries. SPARQL edit
belongs to the group of general view update translators that trade expressivity
for generality. We accepted the restrictions for the set of possible view updates
to create a lightweight tool which does not require much upfront configuration
and is therefore more efficient than developing a domain-specific application.

3.3 Database-to-RDF Mappings

Several techniques and software tools have been developed to create a (virtual)
RDF graph from a relational database (RDB) by applying specific mapping
rules. The use of an ontology-based mediation layer for accessing data from
relational databases is often labeled as Ontology-Based Data Access (OBDA).
RDB-to-RDF solutions like D2RQ [5], R2RML [31] and OBDA implementa-
tions such as Ontop [7] or Mastro [6] provide RDF views on relational databases
or expose a virtual SPARQL endpoint for querying. Although most RDB-to-
RDF and OBDA systems are limited to read operations, there have been efforts
to create a bidirectional read-write access by reversing the RDB-to-RDF map-
pings. OntoAccess [18] explicitly supports write access by means of translating
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SPARQL/Update operations to SQL. Information and integrity constraints for
the database schema are included in the mapping rules in order to identify up-
date requests that cannot be executed by the database engine. D2RQ++ and
D2RQ/Update are similar extensions to the D2RQ mapping platform which al-
low the execution of SPARQL/Update statements on the virtual RDF graph.
D2RQ++ and D2RQ/Update differ in the way they handle the translation of
SPARQL to a number of SQL statements [12]. Unbehauen and Martin [33] pre-
sented a solution for read-write access to graphs that are mapped with the
R2RML language. Ontology- and source-level updates have also been examined
for OBDA systems [10]. Writing RDF/SPARQL updates back into the RDB nat-
urally leads to the view update problem explained in section 3.2. The translation
of a SPARQL/Update query into one or more SQL statements is especially com-
plicated because SPARQL/Update can potentially modify the data and schema
triples at the same time [33]. Most solutions with write capabilities are limited
to basic relation-to-class and attribute-to-property mappings [20].

4 View-Update Algorithm

The result of a SPARQL/Select query Q is a solution sequence Ω, an unordered
list of zero or more solutions from graph pattern matching and operations on the
initial matching solutions. Each solution (mapping) µ ∈ Ω has a set of bindings
of variables to RDF terms µ : V → T [17]. In the JSON serialization of SPARQL
results [26], Ω is represented in an array which is the value of the bindings key
inside the results key. Each member (”result binding”) representing a solution
mapping µ is a JSON object that encodes the bound values, i.e. RDF terms, for
each variable v from Q. In the result table, each column represents a variable
and each solution produces a row.

4.1 Translation of a Literal Update into a SPARQL/Update Query

The SPARQL edit algorithm illustrated in figure 3 translates the change of a lit-
eral value l in the solution µed into a DELETE-INSERT-WHERE SPARQL/Update
query Q−. The basic idea behind the algorithm is to rebuild the original SPAR-
QL/Select query Q so that it only affects the single RDF triple whose object
literal value shall be changed. This is done by replacing every variable v ∈ V in
Q with the URIs or literal values from the solution µed ∈ Ω that is represented
in the row with the edited value. In order to have solution mappings for every
variable, Q is altered to select all variables (SELECT *). The triple patterns with
replaced variables are then used for building the update query Q−. In order to
output Q−, the algorithm requires the input of

– the original SPARQL/Select query (Q),
– the solution mapping/result binding (µed) for the edited table row
– and the previous and new literal values (lold, lnew).
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RDF graph 
G

solution sequence 
Ω

SPARQL/Select
Q

SPARQL/Update
Q-

solution mapping
μ

literal value
 l

v1        v2        ved        v4
variables

V
μ1 
μed 
μ3

Fig. 3. Principle of the SPARQL edit algorithm

Algorithm Steps The algorithm follows four sequential steps for building Q−:

1. In a first step, information about the edited literal value is collected. This
includes the name, datatype, language, old and new values of l.

2. Then, the graph patterns in the WHERE clause of Q are analysed. The algo-
rithm filters and stores Basic Graph Patterns (BGP) and Optional Graph
Patterns (OGP). The algorithm finds the triple pattern that includes the
particular variable ved in object position whose solution mapping µed was
edited. If the triple pattern is part of an OGP, the OGP must be treated
like a BGP.

3. In the third step, the WHERE clause for Q− is built. For each BGP that was
collected in the second step, all named variables are replaced with named
nodes (URIs) or concrete literal values from µed. A variable in subject posi-
tion is either set to a named node or, in case of an unnamed variable (blank
node), set to a named variable. Blank nodes are replaced with named vari-
ables so that the subject can be referenced later in the DELETE and INSERT

templates. Blank nodes are prohibited in a SPARQL/Update DELETE tem-
plate, because a new blank node never matches anything in the graph and
therefore never results in any deletion [24]. A predicate variable is always
replaced with a named node whereas a variable in object position is bound
to either a named node, a literal value or a blank node.

4. Next, the DELETE and INSERT templates for Q− are defined and the update
query is assembled. Both templates are built from the same triple pattern
which included ved. In case of the DELETE template, the triple’s object holds
the old value lold from µed. The triple in the INSERT template has the new
user-defined literal value lnew in the object position. Finally, Q− is completed
by replicating the prefixes of Q. If Q uses a FROM statement to specify the
default graph for the query, a matching WITH clause is added to Q−.

Insert Mode The algorithm is capable of generating SPARQL/Update queries
for updating existing literal values, but also for inserting missing RDF literals.
However, the insert mode has two prerequisites: First, the variable ved must
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be defined inside an optional graph pattern (OGP) in the WHERE clause of Q.
Otherwise, there would be no table row representing a solution mapping which
is missing a literal value for ved. The second requirement is that Ω includes at
least one solution mapping that binds ved to an RDF literal term µ : ved → lit.
This literal result is used as a template for new literals the user wants to insert.
The insert mode introduces a new edge case for the algorithm. If the OGP
is composed of an n-ary relation [25], the INSERT template has to include all
successive triples needed for the construction of a new blank node with the user-
defined literal. In practice, the insert mode is useful to fill in gaps in the KG
data which may originate from mapping incomplete data sources to RDF.

4.2 Query Restrictions

According to the two classes of solutions for the view update problem [14], the
SPARQL edit algorithm belongs to the general view update translators where
the database update is automatically calculated from the view definition (Q), the
view update (lnew) and the current database state (µed). However, this comfort-
able update generation only allows a limited range of view updates that can be
translated correctly. The database engineer who creates the views has to check
if the calculated translations are right.

The presented algorithm supports simple SPARQL/Select queries on the de-
fault graph specified with or without a single FROM clause. If the original query Q
defines a certain graph as the default graph with a FROM clause, a corresponding
WITH clause is attached to Q−. There can only be one WITH clause as it ”defines
the graph that will be modified or matched against for any of the subsequent
elements (in DELETE, INSERT, or WHERE clauses) if they do not specify a graph
explicitly” [24]. In the case of multiple FROM clauses, the default graph is the
RDF merge of the graphs which is ambiguous for any update translations. De-
spite that, the algorithm might be extended to support SPARQL/Select queries
with named graphs using the FROM NAMED clause. With explicitly named graphs,
the changed graph could be tracked and included in a SPARQL/Update query
of the form:

DELETE { GRAPH <g1>{ s p o } } INSERT { GRAPH <g1>{ s p o2 } }
USING NAMED <g1> WHERE { . . . }

The algorithm supports SPARQL/Select queries with a graph pattern that is
composed of one or more BGPs and OGPs that may contain triple patterns
with variables, blank nodes and filters (FILTER). The query can include filter
statements and solution sequence modifier (ORDER, LIMIT or OFFSET). When
creating Q−, the algorithm removes any filters because the replacement of the
variables with explicit values makes filters obsolete. Any other query constructs
are currently not supported by the algorithm. For example, the algorithm can-
not support SPARQL/Select queries with irreversible functions like aggregation
(GROUP BY) or bindings (BIND). Table 1 specifies the restrictions to the original
SPARQL 1.1 grammar. The restrictions have been studied empirically and must
be further examined based on the formal models for the SPARQL language. To
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help expert users with the creation of ”updatable” views, the query editor in
SPARQL edit marks queries which are not compliant with this subset of the
SPARQL grammar.

Table 1. Restricted SPARQL grammar for SPARQL edit in EBNF notation. The
table lists rules that differ from the original SPARQL 1.1 grammar [17]. Unsupported
language features are crossed out.

[2] Query ::=

Prologue
( SelectQuery | ConstructQuery | DescribeQuery

| AskQuery )
ValuesClause

[7] SelectQuery ::= SelectClause DatasetClause?* WhereClause
SolutionModifier

[9] SelectClause ::=
’SELECT’ ( ’DISTINCT’ | ’REDUCED’ )? (
( Var | ( ’(’ Expression ’AS’ Var ’)’ ) )+ | ’∗’ )

[13] DatasetClause ::=
’FROM’ ( DefaultGraphClause

| NamedGraphClause )

[18] SolutionModifier ::=
GroupClause? HavingClause? OrderClause?

LimitOffsetClauses?

[53] GroupGraphPattern ::= ’{’ ( SubSelect | GroupGraphPatternSub ) ’}’

[56] GraphPatternNotTriples ::=

GroupOrUnionGraphPattern |
OptionalGraphPattern | MinusGraphPattern
| GraphGraphPattern | ServiceGraphPattern |
Filter | Bind | InlineData

[83] PropertyListPathNotEmpty ::=
( VerbPath | VerbSimple ) ObjectListPath

( ’;’ ( ( VerbPath | VerbSimple )
ObjectList )? )∗

[98] TriplesNode ::= Collection | BlankNodePropertyList

[100] TriplesNodePath ::= CollectionPath | BlankNodePropertyListPath

[109] GraphTerm ::=
iri | RDFLiteral | NumericLiteral |

BooleanLiteral | BlankNode | NIL

Unambiguous Update Guaranty Due to the structural freedom of RDF and
the ambiguous nature of RDF blank nodes, it is possible to construct graphs
where Q− has unwanted side-effects on other RDF triples. In these edge cases
with RDF blank nodes, the graph pattern of Q− matches more than one RDF
triple in the graph. An example in the context of the product graph from figure 1
would be a product node which has two identical weight properties connected to
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two different blank nodes which have again the same predicate (schema:value)
and equal literals (e.g. "10.5"^^xsd:decimal). The two blank nodes might have
different triples apart from the value triple. In this special case, Q− from list-
ing 1.2 would change the weight literal value of the first and the second blank
node. To guarantee safe RDF literal updates for cases with RDF blank nodes,
an additional SPARQL/Select query Qcheck is used to verify that Q− updates
exactly one RDF triple. Qcheck is a simple SPARQL/Select query that uses the
WHERE clause from Q−. Depending on the size of its solution sequence |Ω|, we
can distinguish three cases:

– |Ω| = 0: The graph pattern matching has no result because the relevant
triples in the graph have been changed in the meantime.

– |Ω| = 1: The ideal case in which Q− will affect exactly one RDF triple.
– |Ω| ≥ 2: Q− is ambiguous and would alter more than one RDF triple.

URI Editing In principle, the algorithm could be generalized for editing not
only literal objects but also object URIs. However, changes to the URI of an
RDF triple’s object can have drastic effects on the whole graph. Any URI al-
teration could disconnect or connect parts of the graph. The consequences of a
URI modification for the graph structure cannot be foreseen from the tabular
representation. From a user perspective, a lay user should not be able to change
the graph structure by accident.

5 Implementation

SPARQL edit is designed as a standalone Web application which is usable on dif-
ferent devices without installation. SPARQL edit is implemented in JavaScript
and TypeScript as a React single-page-application that can be served from any
Web server or content delivery network. The application acts as a SPARQL client
and renders the query results as an HTML table with HTML5 input controls for
literal results. In order to simulate in-place editing of cells, a change submission
immediately triggers an update query and refreshes the table to give feedback to
the user. SPARQL edit requires that the SPARQL server provides an endpoint
for SPARQL 1.1 updates [24] and that it allows Cross-Origin Resource Sharing,
a browser security feature for cross-domain HTTP requests.

Similar to the approach of rdfedit [23], SPARQL edit uses configuration ob-
jects that are created by experts to simplify the work for non-technical users. Lay
users can simply load predefined ”SPARQL views” that include all information
that is necessary for SPARQL edit to create a certain table of data from a KG.
A ”SPARQL view” configuration is an RDF graph including information about:

– the SPARQL endpoint (query and update URL of an RDF dataset),
– the SPARQL/Select query for the view,
– metadata (description, originator, modification date, etc.) and
– the security mechanism for requests to the SPARQL server.
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view
management

view
creation/import

Fig. 4. Management of ”SPARQL views” in SPARQL edit

Instead of a back-end (database), the client-side application uses the HTML5
Web Storage to save view configurations in the browser. To allow for easy sharing
of view configurations, views can be exported to or imported from text-based files
in the JSON-LD RDF format. A KG expert is able to create and test a specific
view configuration, upload it to a Web server or a Solid Pod and share it with
one or more colleagues. In this way, non-technical users can work with predefined
views on the KG without knowledge about SPARQL and RDF. Figure 4 shows
the UI controls for the management of views in SPARQL edit.

6 Applicability

The applicability of the presented solution in an enterprise scenario concerns the
cooperation of several people and the performance in case of large data sets.

6.1 Performance

Many Linked Data exploration and visualisation solutions pay too little attention
to performance and scalability because they load a complete KG or dataset into
memory [4]. SPARQL edit only loads the SPARQL query results for a specific
view which is usually only a subset of the whole graph. Due to the SPARQL/Up-
date mechanism, single changes are applied directly via the SPARQL endpoint
of the KG without re-writing the graph and without writing any RDF files.

The execution times of RDF literal update cycles for different sizes of so-
lutions sequences are shown in figure 5. The comparison of the running times
for the four steps from section 2 reveal that the transmission and processing of
the SPARQL results are the key drivers for the execution time of a complete
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literal update cycle for growing numbers of query solutions. The algorithm and
the SPARQL/Update query are independent of the number of SPARQL results.
The algorithm is responsible for less than one percent of the total execution
time because it only uses the solution µed ∈ Ω which was modified. The running
time of the algorithm merely depends on the number of triple patterns in the
SPARQL/Select query. Experiments revealed a linear rise from 0.10 to 0.18

milliseconds on average when continuously increasing the number of triple pat-
terns with variables from two to thirty. The reason for the increase are several
loops over the triple patterns of Q in the algorithm.
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Fig. 5. Average execution times of the steps of a SPARQL edit literal update cycle

6.2 Concurrent Literal Editing

If two SPARQL edit users are concurrently editing the same triples of the same
graph, inconsistencies may occur because the algorithm uses a slightly outdated
state of the database for generating the update query Q−. When the user loads
a ”SPARQL view”, the application sends the specified SPARQL/Select query
Q to the specified SPARQL endpoint of a dataset D and receives the solution
sequence Ω. This Ω represents the solution for Q on a graph G ∈ D at the time
of the query evaluation. If relevant triples in G are modified by another user
before Q− is executed, Q− is ineffective because its triple patterns do not match
with the new triples in G. Although the ineffectiveness of Q− can be considered
as fail-safe, this behavior is very irritating to the user. This race condition can
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by prevented by means of the ambiguity check from section 4.2. Prior to Q−,
SPARQL edit executes the SPARQL/Select query Qcheck to verify that Q− will
update exactly one RDF triple. If Qcheck has no query results (|Ω| = 0), the
application notifies the user that the values of the selected table row have been
changed in the meantime. The user can reload the view to see the current state
of the KG.

6.3 Update Logging

Until today, an EKG is typically built with data from different databases which
is translated to RDF as part of the KG building pipeline. If the EKG is only used
for query answering, data changes are executed on the source databases and the
building pipeline is rerun to update the graph. But if triples are updated directly
in the KG, these changes would be lost after repeating the building pipeline. One
solution is the logging of every KG update so that it can be reapplied after every
new instantiation of the KG.

SPARQL edit offers a feature for logging the update queries that are exe-
cuted when a user changes an RDF literal value. On every literal update, a log
is inserted into a user-defined provenance graph Gprov ∈ D. Instead of executing
a separate insert query, the logging is included into Q− in order to take ad-
vantage of the transactional query execution at the SPARQL endpoint. Q− is
extended with additional insert statements for the update log. The update log is
modeled with PROV-O, the provenance ontology of the W3C [21], and includes
at least Q− itself and the captured execution time. Based on the timestamp for
the query execution, the SPARQL/Update queries from multiple editors can be
sorted chronologically. Following the principle of event sourcing, the states of
the database can be reconstructed by adding up update increments. A detailed
study of dynamic provenance for SPARQL updates was done by Halpin and
Cheney [16] who researched the combination of the W3C PROV model and the
semantics of SPARQL for RDF provenance.

If SPARQL edit demanded users to login, e.g. using Solid authentication,
the update logging could be used to track user activities – which user has made
which change at which time.

7 Conclusion

To improve the adoption of enterprise knowledge graphs, non-expert users must
be able to easily maintain and update single values in the graph. We present
SPARQL edit, a Web application that enables users without any knowledge
about SPARQL or RDF to view query results and instantly edit or insert miss-
ing RDF literal values. The browser application connects to a SPARQL end-
point and presents query results in an interactive table that helps users to make
changes to literal contents of the underlying RDF data. Expert users can create
configurations for loading specific views on the KG data and share them with
business users. The functionality, performance and applicability of our solution
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was studied by means of a demo implementation. In addition to the update al-
gorithm, the open-source application implements features for view management
and collaborative work.

The algorithm behind the SPARQL edit application translates a change in a
view into a SPARQL/Update query for updating the original KG. The generic
view update translation approach reduces the upfront work for data engineers.
In contrast to most existing read-write Linked Data tools, it is not necessary to
explicitly define RDF translation rules. However, the automatic update query
generation comes with restrictions which limit the possible views on the KG
data. Therefore, we defined restrictions to the SPARQL query language that are
necessary for the creation of ”updatable” views. Although the restrictions have
been studied empirically, they must be further examined based on the formal
models for the SPARQL query language. Furthermore, the generic approach
could be extended so that data engineers can define translations for problematic
cases that exceed the capabilities of the algorithm.

Resource Availability Statement: Source code for the view-update algorithm and
the Web application described in section 5 are available from Github7.
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