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Abstract. Knowledge graphs serve as crucial resources for various ap-
plications. However, most existing knowledge graphs present symbolic
knowledge in the form of natural language, lacking other modal in-
formation, e.g., images. Previous multi-modal knowledge graphs have
encountered challenges with scaling and image quality. Therefore, this
paper proposes a highly-scalable and high-quality multi-modal knowl-
edge graph using a novel pipeline method. Summarily, we first retrieve
images from a search engine and build a new Recurrent Gate Multi-
modal model to filter out the non-visual entities. Then, we utilize entities’
textual and type information to remove noisy images of the remaining
entities. Through this method, we construct a large-scale multi-modal
knowledge graph named MMpedia, containing 2,661,941 entity nodes
and 19,489,074 images. As we know, MMpedia has the largest collection
of images among existing multi-modal knowledge graphs. Furthermore,
we employ human evaluation and downstream tasks to verify the use-
fulness of images in MMpedia. The experimental result shows that both
the state-of-the-art method and multi-modal large language model (e.g.,
VisualChatGPT) achieve about a 4% improvement on Hit@1 in the en-
tity prediction task by incorporating our collected images. We also find
that the multi-modal large language model is hard to ground entities
to images. The dataset? and source code of this paper are available at
https://github.com /Delicate2000/MMpedia.
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1 Introduction

Knowledge Graph (KG) is an important resource and has been applied to various
applications such as text classification [6], recommendation [52] and question
answering [1]. KGs (e.g., DBpedia [21] and Wikidata [44]) contain a large volume
of symbol knowledge. The symbol knowledge is usually represented in the form
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Fig. 1. Traditional MMKG construction methods

of RDF triples < h,r,t >, where h and t are the head and tail entity respectively,
and r is the relation between h and t.

Problem Statement. However, most existing KGs illustrate the entity in
the form of natural language without other modal information such as visual or
audio [57]. This results in two problems. (1) In the cognitive domain, this situa-
tion limits machines’ ability to know the physical world. For example, for human
beings, we form the concept of cat based on the experience of living with a cat.
However, for machines, it is challenging to understand what cat is as humans
do, since symbols or text alone can not bridge the entity cat with the experi-
ence of cats. Hence, it is necessary to ground entities in KGs to corresponding
images, which provides visual experiences for machines. (2) In the application
domain, grounding entities in KGs to images can enhance machines’ perfor-
mance on various NLP tasks, including relation extraction (RE) [18], named
entity recognition [5] and recommendation [38]. In most cases, the integration of
visual features has the potential to resolve issues that are difficult to be compre-
hended from symbolic and textual representations. For example, in RE, given
the sentence JustinBieber (JB) and HaileyBaldwin (HB) arriving at LIV club
from the MNRE dataset [56], it is challenging to determine the social relation
between “JB” and “HB" because the text does not provide any semantics of their
relation. Fortunately, with the additional information (e.g., age and gender) from
images of “JB" and “HB", the relation (Couple) is easier to be inferred.

Hence, in this paper, we aim to help machines understand what the entity is
by providing high-quality images for KGs.

Limits of Previous MMKGs. Several multi-modal KGs (MMKGs) with
entities grounded to images have been proposed. These MMKGs are constructed
by collecting images from online encyclopedias (OEs) or web search engines
(WSEs) while either of them still has limitations in providing sufficient and
high-quality images for entities.

The first category considers OFs (e.g, Wikipedia) as the visual source since
they provide images (e.g, Wikimedia commons®) as auxiliary information to
depict entities. MMKGs built through this category include IMGpedia [13] and
Visualsem [2] with data-linking and image-text matching methods. The images
in them are relatively reliable and come with textual annotations. However, these
MMKGs are hard to scale due to the limited number of entities in OEs.
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For example, given an entity Acroma_ (band) in DBpedia, we can not find its
images because it is absent from Wikimedia commons as shown in Figure 1(a).

To improve scalability, the second category considers WSEs (e.g., Google) as
the visual source and ground the entity to its retrieved Top-K images. MMKGs
alone this line include Imagegraph [30], MMKG [26] and Richpedia [46], which
are constructed mainly through two methods: (1) generating unambiguous queries
with the entity type information from triples [30,26] and (2) employing clustering
and ranking information to select images retrieved from WSEs [46]. Neverthe-
less, these MMKGs suffer from relatively low image quality due to two reasons.
Firstly, both (1) and (2) overlook the removal of non-visual entities,
which leads to mismatched images. Non-visual entities lack a clear visual
representation and can not be described in images. For example, given the entity
Idealism, it is difficult to find an image that accurately reflects it. In contrast,
entities with specific visual representations are known as visual entities (e.g.,
Cat). Secondly, both (1) and (2) are limited to filtering noisy images re-
trieved from WSEs. For example, even with the unambiguous query Acroma
(band) generated by (1), some high-ranked images that do not match the cor-
responding entity still remain as shown in Figure 1(b). Furthermore, there are
many noisy images and they may belong to the same class (e.g., shirt in Figure
1(b)), making it challenging to remove them via (2).

Our idea and contribution. In this paper, we construct a large-scale
MMKG named MMpedia, which is both highly-scalable and high-quality. This
MMKG is built by a novel pipeline method that retrieves images from WSEs (the
second category) to ensure the scalability. To ensure image quality, we address
the above two issues: (1) non-visual entities in KG and (2) noisy images in WSEs.
Specifically, to solve (1), we model the non-visual entity filtering task as a binary
classification problem to judge whether the entity is visualizable. In this task, we
build a new Recurrent Gate Multi-modal model (RGMM) where the classifier
receives the multi-modal features extracted from multiple images and text. To
solve (2), we implement a double-filtering process. Firstly, we filter images not
depicting the given entity with the text information. To this end, we employ a
pre-trained image-text model (e.g, CLIP [32]) to compute the matching score
between the textual description and retrieved images. Secondly, we introduce
CV models to compare the types of objects in images with the pre-defined en-
tity type. Note that the type information is not leveraged in the query to match
with the context of images for two reasons. First, many noisy images with the
context containing type-based query are retrieved from WSEs. For example, the
context of shirt.img in Figure 1(b) is Acroma Band T-Shirt, which includes the
entity Acroma and type Band. Second, even with the type-based query, WSEs
would return images whose context does not include the type, making the type
information useless. For example, for the query Johnny G (Cyclist), the contexts
of most retrieved images do not have the type Cyclist. In contrast, our approach
removes noisy images directly using visual information, rather than relying on
the context. Our contributions are summarized as follows:
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— We propose a novel pipeline method to construct MMKGs, which consists of
the following steps: entity information collection, non-visual entity filtering,
entity-image matching and entity type detection.

— We construct a MMKG named MMpedia containing 2,661,941 entities and
19,489,074 images. As we know, MMpedia has the biggest image dataset
among existing MMKGs. The accuracy of our images reaches 84.91% after
human evaluation.

— Experimental results verify the effectiveness of our proposed method and col-
lected images. In the entity prediction task, both the state-of-the-art method
and multi-modal large language model (e.g., VisualChatGPT [50]) achieve
about a 4% improvement on Hit@1 by incorporating our collected images.

2 Related Work

We first introduce existing two opposite MMKG construction methods. One is
to label images with symbols and another is to grounding entities to images.
Then we introduce a closely related task cross-modal retrieval.

Labeling images with symbols can be mainly classified into two cate-
gories. The first way is to directly extract visual entities and relations from an
image. Chen et al. [8] propose NEIL to automatically extract generic relations
from online images. Krishna et al. [20] construct Visual Genome with the images
from YFCC100M [40] and MS-COCO [24]. However, they can only obtain lim-
ited relation categories. To address this problem, the second way is to extract
knowledge from multi-modal information [22,49]. GATA [22] and Resin [49] first
extract event knowledge from multimedia news and then link them to KGs. Al-
though they enrich relation categories, this way requires multi-modal data and a
pre-defined schema for different event types, which restricts the scale of MMKGs.

Grounding entities to images mainly includes two groups. One way is to
collect images from OEs. Ferrada et al. construct IMGpedia [13] by linking the
entity to Wikimedia Commons. Alberts et al. build VisualSem [2] that regards
Babelnet [29] as the visual source and addresses the known issue of noisy images
[10,4] via image-text matching. Images in OEs are commonly more qualified than
those retrieved from WSEs. However, this way is hard to provide images for all
entities due to entity differences between OEs and KGs. Another way is to collect
images from WSEs. Onoro et al. [30] collect images for FB15K [3] and construct
ImageGraph for answering visual-relational queries. Based on DBpedia, Yago
[37] and FB15K, Liu et al. [26] retrieve Top-20 images from WSEs and build
MMKG. Wang et al. [46] construct Richpedia via employing K-means on images
and remaining Top-20 images of each cluster. Although these works provide rich
visual resources for KGs, they have limitations on image quality.

Cross-modal retrieval (CMR) is mainly classified into two groups accord-
ing to the textual query: (1) object-centric and (2) scene-centric [17]. The former
compares the objects in the given text with the object in images for CMR. For
example, Corbiere et al. [11] retrieve images for fashion-related objects by train-
ing two independent uni-modal models with weakly annotated data. Wang et
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Fig. 2. The frame of our proposed pipeline method. We first collect entity information
and remove non-visual entities with a multi-modal classifier. Then, we take entities’
textual and type information to remove noisy images.

al. [45] propose SCAN to retrieve images based on the given food objects. The
latter considers the relation between multiple objects to retrieve the images. Liu
et al. [25] explicitly model objects and relations with GSMN. Mafla et al. [28]
propose StacMR, which utilizes GCN to obtain context representation of im-
ages and scene text. Cheng et al. [9] present ViSTA to encode image patches
and scene text with mid-level fusion. However, both of them focus on abstract
concepts (e.g., man) and are limited to grounding a specific entity to images.

3 MDMpedia construction

In this paper, we aim to construct a MMKG via providing high-quality images
for entities in KGs. For example, given the entity Acroma_ (band), we expect to
collect images about its members or live performances. To this end, we propose
a novel four-step pipeline method, as shown in Figure 2.

3.1 Entity information collection

In this step, we aim to collect entities’ textual and visual information for the
subsequent non-visual entity filtering and removal of noisy images. To acquire
textual information, we retrieve it from KGs as they provide high-quality ab-
stracts for entities. To obtain sufficient candidate images, we build a crawler
and retrieve images from a WSE. Specifically, given an entity, we first replace
its special characters with space as the query. Then we input the query into a
WSE and collect Top-n returned images. For example, the query for the entity
“Juan_Pablo Plada" is “Juan Pablo Plada" because WSEs (e.g., Google) are

confused by the character “ ".
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Fig. 3. The multi-modal fusion process of our Recurrent Gate Multi-modal model.

3.2 Non-visual entity filtering

Based on the collected entity information, we expect to remove the non-visual
entities which can not be characterized visually. To this end, we regard the task of
non-visual entity filtering as a binary classification problem f(m.) = 0/1. Given
an entity e, the input is its retrieved Top-n images and textual description and
the output is 0 (non-visual) or 1 (visual). f is denoted as a multi-modal classifier
and m, represents the embedding of multi-modal information.

Since WSEs easily introduce noisy images for entities and existing multi-
modal fusion methods have limitations in processing multiple images mixed with
noise data, we propose a Recurrent Gate based Multi-modal Model (RGMM)
as shown in Figure 3. The core idea of the model is a recurrent structure which
employs the Interactive Fusion Attention (IFA) module and gate mechanism to
select useful information for multi-modal fusion at each iteration.

Uni-modal feature extraction. Given the Top-n images and text of an
entity e, we utilize pre-trained uni-modal models to extract n image features pe
and text feature t.. Specifically, to achieve pe, we first obtain the embedding p}
of each image P; by a visual feature extractor (e.g., ResNet [16]). Then we feed
p} into a fully connected layer and return the transformed image representation
p;. Finally, we treat the list [p1, ..., Pn] as pe. This process can be formalized as

pi = ResNet(P;) € R™, p} = Wpp; + by € R% p. = [p1,...,pn), (1)

where W), € R%*% b, € R% are learnable parameters .

To achieve t., we first concatenate the text of e with the special tokens
(CLS), (SEP) and feed it into a pre-trained language model (e.g., BERT [12])
to obtain the text representation T”. Then, we employ average pooling on T” to
obtain t [34]. The process is computed as

Zk-‘rl ts
=0 ~? c Rdt,

T' = BERT(((CLS), wi, .., vk, {SEP))), te = =00

(2)
where [wy, ..., w] is a sequence of tokens from e’s text and ¢; € T” is the em-
bedding of the corresponding token.

Interactive Fusion Attention (IFA). After achieving two kinds of features
pe and t., we obtain the initial multi-modal representation my with p; € pe
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and t.. To this end, we build a IFA module to merge multi-modal information.
Specifically, we first employ two independent co-attention [27] layers for p; and
te. One refines p; with the textual information in ¢, and another refines t, with
the visual information in p;. The process is defined as

py = MHAH(Q = Wo,p1, K = Wk t.,V = Wy, t.), € R", (3)

t'e = MHAI(Q = Wo,te, K = Wi, 0’1,V = Wy,p'1 ), € R%, (4)

where M HAtt(-);, is h heads’ attention mechanism and Wg, Wi, Wy, are learn-
able parameters. Then we concatenate the co-attention outputs pj and ¢, and
fuse them with a self-attention layer, which is formalized as

my = SAtt(p) ®t.) = MHA®(Q, K,V = p) @tl), € R%, (5)

where @ represents concatenation. We denote Eq. (3) to (5) as IFA.

Recurrent structure. After achieving m4, we obtain the final multi-modal
representation me by iteratively fusing p;,2 < i < n into m; with IFA and a
gate mechanism. To begin with, we reverse the list of image features [pa, ..., Pn)
t0 S = [PnsPn—1y--.s P2] as the input of IFA. The reason is that the recurrent
structure tends to forget previously input information [54] and we expect RGMM
to lay emphasis on the features of high-ranked images sorted by WSEs. Next, at
the i-th step, we first feed the i-th image feature S[¢] and the multi-modal fusion
result at (¢ —1)-th step m}_; into IFA to obtain the multi-modal representation
m;, which is formalized as

m; = IFA(mi_,, S[i]). (6)

We then input m/_; and m; into the gate layer and outputs m}, which is also
the input of (i 4+ 1)-th step. The gate layer is defined as

Z = Sigmoid(Wy,m;+by,) € R* m/ = Zom;+(1—-Z)om,_, e R*, (7)

where W,,, € R“* b, c R% are learnable parameters, 1 € R%* donates as an
all-ones vector and ® represents element-wise production. Finally, we feed m
and the final multi-modal fusion result m!, into a residual block to obtain m.,
which reinforces the visual information in the Top-1 image.

After obtaining m., we feed it into a binary classifier. The classifier consists
of two fully connected layers and a softmax function. If the classifier outputs 0,

we judge the entity as non-visualizable.

3.3 Entity-image matching

In most cases, some images retrieved from WSEs (e.g., Google) do not depict
the corresponding entity. For example, given the query “Acroma (band)", WSE
returns some images of Acroma’s previous Facebook logo. Hence, we introduce
entity-image matching and employ a pre-trained image-text model named CLIP
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[32] to remove these images. For each entity, we treat its textual description and
retrieved images as input and CLIP outputs their matching score.

Specifically, given an entity e, we first feed its textual description T, into the
text encoding part of CLIP and return the embedding c.,,,, € R%. Then we
encode e’s retrieved images [P, ..., P,;] with the visual encoding part of CLIP.
After obtaining the embedding of text ce,,,, € R% and images ce,,,, € R™*%,
we employ outer product on them to compute the image-text matching degree.
The process can be formulated as

1
Cepone = ENCiet(Te), Ceimg — [Cimg7 e C?mg] = Encimage([Ph ey Pn])a (8)
1 T dn
cEscore = [Cscorm "‘702007“@] = cetemtce,img € R ) (9)
where ¢! € R represents the matching score between the text T, and image

_score

P;. If ¢, is lower than the pre-defined threshold, we remove P;.

3.4 Entity type detection

Although we have removed noisy images not depicting the corresponding entity
with model CLIP and the text information, some remaining images may still not
be the appropriate visual representation. For example, for the entity Acroma,
images such as a shirt with “Acroma" and a WordArt “ Acroma" are considered
valid by CLIP. These images illustrate the given entity but do not allow us to
associate Acroma with “band". Hence, in this paper, we take the type information
of entities to conduct further filtering. The core idea is to employ CV models
to detect the entity class from a candidate image and assess whether the result
aligns with the type information.

Specifically, given an entity e and one of its candidate images P;, we first
retrieve e’s type information A, from KGs (e.g., DBpedia). Then we map A, to
the expected entity classes C! = [Cf,C),...,C!] using a manually constructed
type-to-class list L4, ¢ (e.g., Band — [Person]), where class is from COCO [24]
and imagenet dataset [35]. After obtaining C?, we employ pre-trained CV models
YOLO [33] and VGG [36] to identify entity classes C, = [C1,Co, ..., Cp,] from
P;. Finally, we calculate the intersection of C’, and C, to determine whether P,
should be removed. This process is formalized as

Y = Q(Lasc(A),CV(R)) (10)

where 2(-) denotes the Boolean function judging whether the intersection is an
empty set. If the output is true, we remove the P;.

4 MDMpedia Analysis

In this section, we first report the dataset statistics of MMpedia and typical

MMKGs. Then we give a detailed analysis of the image quality and diversity.
MDMpedia statistics. We perform our proposed method on the KG DB-

pedia, which has a well-defined ontology and contains 7,195,709 entity nodes,
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Table 1. Comparison between MMpedia and typical MMKGs.®

KG Nodes Images Triples(KG)
IMGpedia [13] 14,765,300 14,765,300 -
Imagegraph [30] 14,870 829,931 564,010
MMEKGI26] 45,011 37,479 814,127
Richpedia[46] 29,985 2,915,770 -
VisualSem|2] 89,896 938,100 1,481,007

MMpedia (Ours) 2,661,941 19,489,074 5,960,965
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Fig. 4. The distribution of images per node (left) and most common numerical cate-
gories of entities (middle) and relations (right) in MMpedia.

633 relation categories, and 21,687,345 triples. Based on this KG, we construct
a MMKG named MMpedia, including 598 relation categories, 5,960,965 triples
and 19,489,074 images for 2,661,941 entity nodes. Table 1 reports the statistic
of our MMpedia and other typical MMKGs. MMpedia has the biggest image
dataset among existing MMKGs. Note that IMGpedia has the most entities
while it is built by data linking without powerful means to supervise the image
quality. To better understand MMpedia, we report the distribution of images
per node and high-frequency entity and relation categories in Figure 4. Around
45% of entities have one to five images and each entity has 7.3 images on av-
erage. For entities, we note that Person is the most numerous entity type of
all 362 categories, accounting for 28.57%. The number of Place, Thing, Work,
and ArchitecturalStructure also exceeds 10°. For relations, we observe that team,
birthPlace, starring, subdivision, writer, genre and location take a high propor-
tion in total of 598 categories, all exceeding 10°.

Image quality. Since there is no ground truth, we employ manual and auto-
matic evaluation to verify the image quality in MMpedia. For manual evaluation,
we invite three CV research students. The criteria is that if an image reflects
what the corresponding entity is, it is labeled as 1. Otherwise, it is labeled as
0. Before manual evaluation begins, we conduct a test for all participants. To
this end, we crawl 1,000 image-text pairs from Wikipedia and randomly select
100 correct and 100 incorrect pairs for each participant to evaluate. We start the
manual evaluation when every participant achieves a test accuracy of 95%. Dur-

5 We report triples of relations between entities in KG. The triples in IMGpedia and
Richpedia are relations between entities and images.
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ing the manual evaluation process, we randomly select 500 entities with 3,415
images. We also add 200 noisy images to assess the quality of the evaluation,
which provides a basis for final accuracy calculations. The three participants
recall 0.98, 0.96 and 0.99 of these noisy images, respectively. The current MM-
pedia achieves 84.91% accuracy on the weighted average and 81.14% on T@3,
where T@k means an image is labeled as 1 by k people. The Fleiss’ kappa [14]
is 0.836, showing the consistency of human evaluation. Additionally, to evaluate
the quality of images associated with "nodes pairs", we randomly select 500 pairs
of Top-1 images corresponding to the head-tail entities, which are sorted by the
proposed pipeline method. The average accuracy is 88.20% and the Fleiss’ kappa
is 0.859. For automatic evaluation, we introduce two downstream tasks to verify
the image quality in section 5.2.

Image diversity. Similarly, we employ human evaluation on 3,415 images
of 500 entities to verify the image diversity of MMpedia. We first evaluate each
entity’s diversity by calculating the percentage of similar image pairs. For ex-
ample, given an entity e with n. images, we will build n, = 0.5 * n, * (n. — 1)
image pairs. If there are s. similar image pairs, the diversity score d of e will
be d = % Then, we compute the average diversity of each entity as the
diversity score of the whole dataset. Finally, our current MMpedia reaches the
average diversity score of 90.07% and the Fleiss’ kappa is 0.807.

5 Experiment

Through the experiment, we expect to demonstrate the effectiveness of our pro-
posed pipeline method and collected images. We first report implementation
details of the pipeline method. Then we introduce entity prediction and relation
prediction to verify that our collected images are helpful for downstream tasks.
Finally, we give a detailed analysis on MMpedia construction.

5.1 Implementation details

We give detailed information about each step in the proposed method, including
the input-output, data analysis and hyperparameter settings.

Entity information collection collects 3,494,367 entities with the infor-
mation of type, textual description and candidate images. First, for 7,195,709
entity nodes in DBpedia, we remove 2,600,603 entity nodes that are similar to
others (e.g., Herbowo and Herbowo _ Tenure__1). Second, for the remaining
4,595,106 entities, we take SPARQL API” to retrieve the corresponding 3,668,041
textual descriptions and 4,264,106 type information from DBpedia and Wiki-
data. We remove entities missing the abstract or type. Finally, we crawl Top-20
images from Google for each entity. Since some entities have less than 20 images
in Google, there are 66,399,460 images for remained 3,494,367 entities.

Non-visual entity filtering judges 3,136,997 entities into visualizable and
357,370 entities into non-visualizable. We employ ResNet50 and BERT p4sp to

" https://dbpedia.org/sparql
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Fig. 5. Case studies of each step in proposed pipeline methods. The entities in KG are
marked in red, while entities depicted by noisy images are marked in blue.

embed the Top-5 images and the text respectively, where d,, = 2048 and d; = 768.
During the training process, we run for 50 epochs with a batch size of 32. We
choose AdamW as the optimizer and the learning rate is le-4.

Since the model is supervised and there is no public labeled data for non-
visual entity filtering, we construct a dataset based on Wordnet. We first sample
200 entities from Wordnet and research the path between the root node r and
them in the ‘hyponymy’ hierarchy. Given an entity e and its path, we observe two
regularities: (1) If pathLength|(e,r)| < 5 and the node “Abstraction" appears
in the path, e is commonly to be 0 (non-visualizable) and (2) If e is a leaf node
and the node “Abstraction" not appears in the path, e is commonly to be 1
(visualizable). Based on (1) and (2), we crawled 2,142 entities and give them
unsupervised labels. Then we collect their textual information and images from
DBpedia and Google, respectively. Finally, we invite three volunteers to revise
the unsupervised label based on the criteria that if the Top-5 images of an entity
reflect it, its label should be 1, and vice versa. The Fleiss’ kappa is 0.798 and we
revise the unsupervised label of an entity if it is corrected by three volunteers at
the same time. Note that these volunteers are different with those in section 4.
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Finally, we collect 1,182 visual entities and 960 non-visual entities and randomly
split them as 1328/406/408 for training, validation and testing respectively. Our
classifier reaches the F1 score of 92.88% on the test dataset.

To intuitively understand non-visualizable and visualizable, we give some
cases. As shown in Figure 5(a), it is hard to find an image reflecting Paleoclima-
tology, which is a scientific discipline, not a data table or a globe. By contrast,
images (right) reflect the corresponding entity, as shown in Figure 5(b) and 5(c).

Entity-image matching remains 2,785,592 entity nodes and 22,274,190
images. We introduce the pre-trained CLIP to perform FEntity-image matching.
We sample the images of 500 entities and conduct a statistical analysis on the
CLIP results. Finally, we define Mincprp = 29 as the threshold since we observe
that most noisy images have a CLIP score of lower than 29. Figure 5(b) gives
the cases to intuitively demonstrate the effectiveness of this step.

Entity type detection remains 2,661,941 entity nodes and 19,489,074 im-
ages. We first manually construct a type-to-class list containing 1,179 mappings,
where type is from DBpedia containing 141 entity type information and class
is from COCO and ImageNet containing 1080 image recognition classes (e.g.,
Ship — [Boat, Fireboat, Ocean liner]). Then we introduce YOLOv5 and VGG19
to perform image recognition. The input is 10,293,162 candidate images and
1,306,957 entity type information. For each image, the recognized entity class
consists of all results from YOLOv5 and Top-3 ones from VGG19. Figure 5(c)
gives the cases to intuitively demonstrate the effectiveness of this step.

5.2 Downstream tasks

To verify the usefulness of MMpedia, we employ its images in two real-world
tasks: (1) entity prediction and (2) relation prediction [53]. We conduct the
experiment on DB15K [26] which is a sub-graph of DBpedia. Since there are
non-visual entities in DB15K, we need to filter the triples. Specifically, we first
remove the triples if the head-tail entity can not find corresponding images in
MDMpedia. Then we further filter the triples containing one-shot relation or head-
tail entity. Finally, we remain 23,055 triples and split them as 16,384/ 3,389/
3,282 for training, validation and testing. The splitting principle is that entities
and relations in validation and test sets need to appear in the training set. The
vocabulary size is 5,239 and the number of relation categories is 158.

Entity prediction. Given a triple fact < h,r,t >, entity prediction requires
models to complete the missing head or tail information. Taking the tail entity
prediction as an example, the input is the image of i and the textual information
of < h,r >. For each test example, we first replace ¢ with all candidate entities
and then record the ranking of them in descending order based on the predicted
scores. We report four metrics: MRR, MR, Hit@Q1, and Hit@10, where MR and
MRR are the mean rank and reciprocal rank of all correct entities, respectively
and Hit@Qk represents the proportion of correct entities existing in Top-k.

First, to verify whether our collected images reflect the correspond-
ing entity, we design an A /B testing. The input of experiment A; is h and r
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Table 2. The performance of BERT-based models on the entity prediction task. We
highlight the data using our collected images in gray. 1 means that higher values provide
better performance while | means that lower values provide better performance.

Method Head Entity prediction Tail Entity prediction
MRRT MRJ Hit@Ql1 Hit@10t MRRt MRJ Hit@11 Hit@101
BERT 10.94 439.43 5.00 22.73 23.67 157.37 14.78  40.77

+ResNet50+Noise 10.91 441.36 5.09 22.09 23.61 152.84 14.20 42.23
+ResNet50+Our 12.27 423.43 5.94 2495 25.44 147.27 16.33 43.93
ViLT+Noise 10.70 639.71  4.88 2258 2290 249.83 14.47 40.74
ViLT+Our 12.08 596.34 5.45 26.02 24.60 226.54 16.30 42.47

Table 3. The result of SOTA MKGC and KGC models on the entity prediction task.

Method Head Entity prediction Tail Entity prediction
MRRt MRJ Hit@Ql1 Hit@Q10T MRR1 MRJ Hit@11 Hit@Q101
Translational Distance Models
ComplEX 22.98 1476.31 17.40 33.18 20.23 2125.34 15.39 29.77
RotatE 26.14 784.91 20.69 36.53 39.16 579.77 31.23 53.84
LineaRE 26.34 418.47 21.43 36.02 34.38 309.99 27.57 47.54

RSME+Google  25.90 622.46 20.78 35.01 40.78 308.95 33.00 55.48
RSME+Our 26.93 547.08 21.57 36.41 42,10 274.74 34.34 57.10
MoSE+Google 29.04 338.24 21.25 42.60 43.84 123.16 33.79 62.87
MoSE+Our 29.99 329.28 22.73 43.27 45.62 122.13 35.89 63.92
Pre-trained Language Models
KG-BERT 3.68 543.54 0.91 746  7.53 493.58 2.43  17.06
MKGformer+Google 29.01 379.07 22.82 40.13 44.62 135.50 35.83 61.61
MKGformer+Our 30.05 371.30 23.85 42.02 48.17 128.20 39.49 65.14

while experiment B; has two kinds of input: (1) h, » and h’s image in MMpe-
dia (+Our) and (2) h, r and an image of another entity (+Noise). For the input
“The r of h is [MASK]" of experiment Ay, we employ BE RT}s. as the backbone,
where a classifier is connected to the [MASK] representation. For the experiment
By, we introduce BERT+ResNet50 [43] and VILT [19] to predict ¢. As shown in
table 2, BERT+ResNet50 and ViLT with (+Our) outperform BERT, indicating
that image features are helpful for entity prediction. Moreover, both methods
with (+Noise) achieve no significant improvement than BERT, demonstrating
that the improvement is mainly due to the input image rather than the added
visual encoder. Hence, our collected images provide effective visual information.

Second, to evaluate whether our collected images improve the per-
formance of state-of-the-art (SOTA) multi-modal knowledge graph
completion (MKGC) models, we design an A/B testing. For each MKGC
model, the input of experiment As is h, r and h’s image crawled from Google
(+Google) while By is h, r and h’s image from MMpedia (+Our). We introduce
two SOTA MKGC models MoSE [55] and MKGformer [7]. Following them, we
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Table 4. The results of relation prediction.

Methods MRRT MR, Hit@l{ Hit@3] Hit@l0]
ComplEX 4148  26.11  24.38 55.30 69.35
RotatE 65.51 529  50.79 76.93 91.99
KG-BERT 73.36 295  57.86 88.48 96.92
RSME+Google 6834  4.03  51.86 83.21 93.60
RSME+Our 69.51  3.76  53.05 84.89 94.64
MoSE+Google 7224 620  59.08 83.58 93.48
MoSE+Our 7454  6.07  63.01 85.10 93.69
MKGformer+Google ~ 78.96  2.20  65.90 91.62 98.35

MKGformer+Our 80.34 2.12 68.31 91.74 98.57

also introduce four uni-modal KGC models ComplEX [42], RotatE [39], LineaRE
[31], KG-BERT [53] and one MKGC model RSME [47]. As shown in Table 3,
MKGC models +Our outperform other methods. Compared with MKGC models
+Google, MKGC models +Our achieve at most 3.5% improvement on Hit@1,
indicating that our collected images enhance MKGC models’ performance.

Relation prediction. Given a triple < h,?,¢ > , models are required to
complete the missing r. The input is h, t and two images of h and t respectively.
The evaluation metrics are the same as those in entity prediction.

To evaluate whether our collected images are useful to improve
MKGC models’ performance on relation prediction, we design an A/B
testing. For each MKGC model, the input of experiment A3 is h, ¢ and images (+
Google) while Bs is h,t and images (+Our). As shown in Table 4, MKGC mod-
els outperform uni-modal KGC models, indicating that the visual information
is beneficial for relation prediction. Compared with MKGC models +Google,
MKGC models +Our achieve at most 4.0% improvement on Hit@1. Hence, our
collected images enhance the model’s performance on relation prediction.

5.3 Detailed analysis

In this section, we make a detailed analysis on non-visual entity filtering, entity
type detection and the multi-modal large language model (M-LLM).

To verify whether images reflect non-visual entities, we still design
an A /B testing. For experiment Ay, the input is h and r. For experiment By, the
input is h, r and two kinds of h’s image: (1) +Google and (2) filtered by steps 3
and 4 (+Our w/o 2). We first select 6,657 triples from DB15K where h is non-
visualizable. Then we split the triples into 4,644 /970/1043 for training, validation
and testing. We denote this dataset as D,,,,. Finally, we also employ BERT-based
models to perform tail entity prediction. As shown in Table 5, either (+Google)
or (+Our w/o 2) do not enhance BERT’s performance, showing the necessity
of filtering non-visual entities. To evaluate our proposed RGMM, we compare it
with some typical SOTA multi-modal interaction methods. The baselines contain
BERT, MAS [48], MCAN [51], MIFN [23] and DRMM [41]. Among them, MIFN
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Table 5. Tail entity prediction on D,,. We denote w/o k as removing the step k.

Methods Input MRRT MRJ| Hit@l1t Hit@31 Hit@107
BERT (h, 1) 42.21 53.77 30.29 46.40 68.55
BERT- ResNet50 +Google 41.49 52.04 29.62 45.83 67.31

+Our w/o2 41.89 5947  29.91 46.60 68.36
+Google 39.99 104.76  29.15 46.02 60.88

ViLT +Our w/o2 40.26 94.64 29.82 45.35 60.79
100 4 BERT MAS DRMM 45 + Our + Our w/o 4 + Google
MCAN MIFN RGMM
95 1 40
90 35
85 30 4
80 25
75 T T T 20 T T T
Precision Recall F1 RSME MoSE MKGformer
Fig. 6. Non-visual entity filtering. Fig. 7. Entity type detection.

and DRMM can process multiple images. We train all models on the dataset
depicted in the section 5.1 with the same hyperparameters. As shown in Figure
6, RGMM can filter non-visual entities more effectively.

To evaluate whether entity type detection improves the image qual-
ity, we compare MKGC models’ performance on three kinds of images: (1) +Our,
(2) filtered without entity type detection (+Our w/o 4) and (3) +Google. For the
dataset depicted in section 5.2, we first replace the images of 844 entities with
those filtered via entity type detection. Then we also employ MKGC models to
conduct tail entity prediction. As shown in Figure 7, the performance of MKGC
models decreases on Hit@1, showing the effectiveness of entity type detection.

To evaluate whether M-LLMs generate high-quality images for the
given entity, we introduce VisualChatGPT (VCG). The input is the prompt
“Please generate an image of [entity]. [entity’s abstract]" and the output is a
generated image. We sample 200 entities from DBpedia and invite the partici-
pants in section 4 to evaluate the images generated by VCG. VCG achieves an
average accuracy of 0.29 and the Flessi’s Kappa is 0.870. The reasons for error
cases are mainly classified into two groups. The first group is an image depicting
another entity of the same type as the given entity, accounting for 59%. For ex-
ample, given the entity Masuisuimatamaalii Tauaua-Pauaraisa, VCG generates
a another _person.jpg as shown in Figure 8. The second group is an image of
another entity appeared in the given abstract, accounting for 28%. For example,
as shown in Figure 8, given the company Dean Markley, VCG generates a gui-
tar.jpg, where guitar appears in the given abstract. Hence, grounding entities to
images remains a challenge for M-LLMs. To evaluate whether our collected
images are helpful for M-LLMs, we randomly select 200 triples and compare
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T: Masuisuimatamaalii T: Dean Markl- —— (b1 +Google  —— +Our
Tauaua-Pauaraisa is a rugby ey is a compa-
sevens footballer who played... ny...for guitars...

40 +---

, Ground Truth, Given Entity, Entity in abstract Hi"c@1 Hit'@3 Hi"c@5 Hi"c@7 Hit'@10

Fig. 8. Case study of VCG. Fig. 9. The result of VCG.

the performance of VCG on three kinds of input: (1) h and r, (2) h, r +Our
and (3) h, r +Google. VCG is asked to reorder the list of candidate ¢ based on
the given h, r. The prompt consists of task definition, one positive example and
two negative examples [15]. As shown in Figure 9, our collected images improve
VCG’s performance on tail entity prediction.

6 Conclusion

In this paper, we present a large-scale MMKG named MMpedia. To this end, we
propose a novel pipeline method, which first collects images from a WSE and
filters non-visual entities with a multi-modal classifier, and then leverage enti-
ties’ textual and type information to remove noisy images. Through the pipeline
method, MMpedia is constructed, containing 2,661,941 entities and 19,489,074
images. As we know, MMpedia boasts the largest number of images among
existing MMKGs. Extensive experiments are conducted to demonstrate the ef-
fectiveness of our proposed method. Furthermore, the images in MMpedia are
helpful for different downstream tasks.
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