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Abstract. Knowledge Graph (KG) embedding methods represent KG
entities as vectors in an embedding space, and they have been success-
fully used for a variety of tasks, including link prediction and entity
classification. While some of the recent embedding methods outperform
traditional approaches on these tasks, their main drawback is the lack
of interpretability. Several methods for explaining predictions made by
KG embeddings have been proposed in the literature. However, none of
them targeted the problem of constructing model explanations for em-
beddings, i.e., interpretable KG representations that behave similarly to
embeddings on certain tasks. We address this problem and propose a
novel method for generating interpretable vectors for entity embeddings.
To achieve this, we employ embedded feature selection techniques to ex-
tract from the KG, on which the embedding model was trained, proposi-
tional features that are important for a given KG embedding model. Our
approach sheds light on the information in the KG captured by embed-
dings and provides valuable insights that can be used to further enhance
the embedding models. Additionally, we demonstrate the usefulness of
our method for explaining embedding-based entity similarity.

1 Introduction

Motivation. Knowledge Graphs (KG) describe facts about a certain domain of
interest by representing them using entities interconnected via relations. Existing
KGs such as YAGO [36], Freebase [5], and DBpedia [1] contain millions of facts
about people, places, organizations, etc. over hundreds of relations. For instance,
an example of a KG presenting information about companies, people, products,
and relations among them is presented on the left side of Fig. 1.

Deep learning techniques, such as Knowledge Graph embeddings (see [41]
for an overview) are increasingly being applied to solve various machine learning
tasks (e.g., link prediction [6,39,43] or entity classification [31,18]) that use KGs
as input data. However, these techniques typically learn a latent representation
for the entities of interest, which is often not comprehensible to humans. Thus,
deep learning techniques are usually considered to be black boxes.
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Fig. 1: Embedding-guided feature vector generation for KG entities

State-of-the-Art and its Limitations. There has been a surge of interest in
understanding how deep learning models work. Two distinct types of explana-
tions have emerged: prediction explanations and model explanations [9]. While
prediction explanations justify a particular prediction generated by a given black-
box model, different definitions for model explanations exist in the literature
(see, e.g., [22] for an extensive discussion). In this work, with model explana-
tions we refer to the identification of parts of the input data that contributed
most to the construction of the model, also known as feature importance-based
model explanations [4]. Several works have focused on constructing prediction
explanations for embeddings [32,7,3,14]. E.g., [32] generates explanations for
the link prediction task by perturbing the training data, while [7] constructs
prediction explanations for link prediction and triple classification using entity
co-occurrence statistics. However, none of the above methods target the problem
of computing model explanations, which are complementary to prediction expla-
nations and can be exploited for model analysis. Some methods [35] construct
interpretable embeddings, but these are not designed to explain or analyze other
deep learning-based models. In this paper, we address the respective issue.

Our Approach and Contributions. We present a novel method (see Fig. 1 for
overview), which computes explainable vectors for entity embeddings and gen-
erates KG embedding model explanations in the form of KG features important
for the given embedding model.

Our method proceeds as follows. First, we extract propositional features from
the KG and express them in Description Logic [2]. Then, we use these features
to construct Boolean vectors (a.k.a. feature vectors) for each entity relying on
its neighborhood. For example, in the KG from Fig. 1, the Boolean feature vec-
tor representation of the entity siemens contains the information that siemens
produces some products that are exported to canada and audi is among its com-
petitors. Next, given a pre-computed embedding model that we want to explain
(i.e., a function mapping entities to vectors in some d-dimensional space), we
train a regression random forest on the task of reconstructing embedding-based
entity representations using features defined in the first step of our method.
The regression random forest model ranks features based on their importance
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for the reconstruction task. We consider the highest-scoring features as the KG
embedding model explanations.

Intuitively, the obtained feature vector and embedding entity representations
are two ways of representing entities in the KG. Thus, if there is a regression
model that can accurately reconstruct KG embeddings from feature vector-based
representations, then the feature vectors and the embeddings contain comparable
information. We use the list of the computed most important features as an
explanation for the KG embedding model. Finally, we reduce the Boolean feature
vector of each entity such that it contains only the features that exist in the list
of most important features obtained in the previous step. For instance, in the
KG from Fig. 1, the resulting Boolean feature vector representation for siemens
will contain only selected features.

Our main contributions are summarized as follows:

– We present an automated method for generating model explanations for
KG embeddings in the form of KG features most relevant for the given
embedding. These identified important KG features are used to construct
interpretable feature vector representations (entity-level explanations) for
each KG entity, approximating their respective embedding vectors.

– We empirically demonstrate that the generated interpretable feature vec-
tors behave similarly to the respective entity embeddings on the entity and
relation classification tasks.

– We show how the interpretable entity representations generated by our method
can facilitate the analysis of the behavior of embedding models.

– We provide evidence that our interpretable entity representations can be
leveraged to explain similarities between entity embeddings.

2 Preliminaries

Knowledge Graphs. Knowledge Graphs (KGs) represent interlinked collec-
tions of factual information, encoded as a set of ⟨subject predicate object⟩ triples,
e.g., ⟨bmw produces autos⟩ which can also be represented as ground binary pred-
icates in predicate logic format, e.g., produces(bmw , autos). A signature of a KG
G is ΣG = ⟨R,E⟩, where R is a set of binary predicates, i.e., relations and E
is a set of constants, i.e., entities, in the knowledge graph G. Concepts can be
built over KGs following the Description Logic (DL) [2] syntax. In this work we
mainly rely on concepts described in Tab. 1.
KG Embeddings. Deep learning methods (in particular, KG embeddings) have
been proposed to perform different machine learning tasks on top of KGs, such
as link prediction or entity classification. KG embeddings aim at representing
all entities and relations in a continuous vector space, usually as vectors or
matrices called embeddings. Embeddings can be used to estimate the likelihood
of a triple being true via a scoring function: f : E ×R × E → R, or to classify
entities [31,18,46,44]. In this work, we only make use of entity-based embedding
representations leaving the exploitation of relation embeddings for future work.
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DL concept Informal description
∃r.⊤ Existence of some relation r
∃r.{e} Existence of some relation r to the entity e
∃R.{e} Existence of any relation to the entity e
∃r1.∃r2...∃rk.⊤ Existence of a chain of relations r1, r2, . . . , rk
≤ kR.⊤, ≥ kR.⊤ Less (greater) than or equal to k overall number of relations

Table 1: Description Logic concepts where r is an (atomic) relation or its inverse,
R is any relation or its inverse, e is an entity, ⊤ is the universal (top) concept.

Thus, without loss of generality, we assume that an embedding model is given a
function: E : E 7→ Rd, which maps entities from E to d-dimensional real vectors.

One of the earliest and most popular embeddings is e.g., TransE [6], which
embeds entities and relations as vectors and assumes vs+vr ≈ vo for true triples,
where vs,vr,vo are vector embeddings for subject s, relation r and object o, resp.
The likelihood that the above assumption holds should be higher for triples in
the KG than for those outside. The learning process is done by minimizing the
error induced by the respective assumption given the considered loss function.

Several KG embeddings that are based on graph neural networks have also
been proposed in the literature (e.g., [40]) and, to the best of our knowledge,
currently, they demonstrate the state-of-the-art performance on link prediction
and entity classification tasks [47,12]. One of the prominent representatives of
this group of embeddings is CompGCN [40], which leverages a variety of entity-
relation composition operations from KG embedding techniques as well as several
existing multi-relational graph convolutional neural network methods.

3 Embedding-Guided Feature Construction

KG embedding models achieve promising results on different popular tasks; how-
ever, they are not interpretable. To address this issue, our work aims at providing
insights into the effectiveness of pre-computed KG embedding models in captur-
ing information in the KG by identifying the most important features in the
training data for the embedding models and generating interpretable feature
vector representations for KG entities. This can help in improving KG embed-
ding models traditionally considered as black boxes.

More formally, given a KG G and an embedding model E : E 7→ Rd, which
maps KG entities to numerical vectors, we aim at investigating the following
questions: (a) Can we find a set of features F and an encoding F of entities using
these features such that a function W exists that maps feature-based encoding
F(e) of any entity e ∈ E to E(e)? (b) If we use F(E) instead of E(E) as the
input for downstream tasks, do we get similar results for these tasks?

In this section, we propose a method for constructing F according to criterion
(a). Then in Section 4, we evaluate its practical usefulness according to (b) using
entity and relation classification as downstream tasks.
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Fig. 2: Fragment of a KG from Fig. 1

Fig. 3: Feature vector for the entity siemens for KG from Fig. 2

The overview of our method for constructing an interpretable model based on
a given KG embedding is presented in Fig. 1. We take as input a knowledge graph
and a pre-computed embedding model (e.g., TransE [6], CompGCN [40], or any
other model). We then construct interpretable feature vectors for entities as de-
scribed in Section 3.1. The obtained features are used for the embedding-guided
feature selection to identify only those features that are important for approxi-
mating the given embedding model (see Section 3.2). The resulting features are
then used to encode each KG entity and serve as embedding explanations, which
are further evaluated in Section 4.

3.1 Feature Construction

In the first step of our method, we construct interpretable feature vector repre-
sentations for KG entities relevant to a given embedding model. To achieve this,
several proposionalization techniques [19,21,30,8,35] can be invoked, including
methods that rely on rule learning [20,23]. In this work, we incorporate four
types of features. In addition to relations and relations with entities features
proposed in INK [35], we introduce two new features: graph structural statis-
tics (capturing patterns important for graph-based embedding models) and sur-
rounding entities (necessary for embedding models lacking relations and paths
with labeled edges, such as Snore [24]). To ensure that the features used in our
analysis originated from the triples, on which the embedding models were ini-
tially trained, we focus on the above simple feature types. While more complex
features extracted from rules or ontologies could be utilized, we choose features
(represented in DL) that are more likely to be learned by the embedding models,
as they are used explicitly as part of the input during training.
Relations. The first feature type indicates whether an entity takes part in a
given relation or not. For each relation r, there are features ∃r.⊤ and ∃r−.⊤ that



6 Y. Ismaeil et al.

Fig. 4: Feature vector for the entity siemens from Fig. 3 after feature selection
based on the important features in Fig. 1.

describe for each entity whether it has an outgoing or incoming relation with
the respective label r. For example, for the entity siemens in Fig. 2 we have the
following set of relation features: ∃produces.⊤, ∃competitorOf −.⊤.

Entities. The second group of features is formed by collecting for each entity
e, the entities e′ to which e is connected via relations with some label. In the
Description Logic syntax, this amounts to ∃R.{e′} and ∃R−.{e′}. E.g., siemens
in Fig. 2 has ∃R.{eBikeGen3} and ∃R−.{audi} among its entity features.

Relations with Entities. The third type of features indicates whether a given
entity is connected to another entity via a certain relation. For each entity e we
consider its outgoing or incoming relations along with the entities to which the
given entity is connected. In the Description Logic syntax, this results in the
features of the following form: ∃r.{e′} and ∃r−.{e′}. E.g., for siemens in Fig. 2
we have the following features ∃produces.{eBikeGen3}, ∃competitorOf −.{audi}.

Paths. Another type of features corresponds to paths with a predefined length
k ∃r1.∃r2. . . . .∃rk. E.g., when considering the entity siemens and k = 2, a single
path feature is generated: ∃produces.∃exportedTo.

Statistics. Finally, we consider the number of outgoing and incoming relations
r and r− for each entity e. In the DL syntax, this amounts to the following
constructors ≥ k.R⊓ ≤ k.R and ≥ k.R−⊓ ≤ k.R− respectively, for which (with
some abuse of notation) we use the shortcuts = k.R and = k.R− to save space.
For instance, for siemens in Fig. 2 we have = 1.R, and = 1.R−, as there is 1
outgoing and 1 incoming relation for this entity. Similar to Statistics, additional
information about the entities (e.g., textual or numerical attributes) can be
considered as an extra entry in the feature vector.

Building on the work in [35], we compute all features including paths for a
predefined depth k. We then collect all features of the described types into the
set F = {f1, . . . , fp}, where p is the total number of features extracted from
the KG G. Based on the knowledge graph and the respective set of features F ,
we form an interpretable Boolean vector fve = [fe

0 , f
e
1 , . . . , f

e
p ] for each entity e,

such that |fve| = |F | = p and fe
i = 1 iff the feature fi holds for the entity e in
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the KG G, and fe
i = 0 otherwise. E.g., the resulting representation for the entity

siemens for a small KG fragment from Fig. 2 is presented in Fig. 3.

3.2 Feature Selection

The pre-constructed set of features generated as described in Section 3.1 encodes
information about the entities based on their neighborhood. However, it is un-
clear which of these features are relevant to the embedding model. To identify
the most relevant features in the KG for embedding reconstruction, we adopt an
embedded feature selection technique inspired by [37]. This approach allows us
to use the embeddings to guide us in identifying and scoring the crucial features
in the KG needed to reconstruct the embeddings. For the step of embedded
feature selection, various models (e.g., decision trees, MLP) providing feature
scores can be in principle utilized. In our case, we use random regression for-
est due to its simplicity, interpretability and resistance to overfitting [33]. The
model, denoted as M , is trained to reconstruct the corresponding embeddings
from their feature-based entity representations.

The random regression forest constructs a separate regression tree for pre-
dicting each embedding dimension using a subset of the features in the input.
The respective trees are then combined to make predictions for all the embedding
dimensions at once by averaging the predictions made by each regression tree
for each dimension. During training, the random forest regression model scores
the input features based on their importance (a.k.a. feature importance score)
for the reconstruction task. The features with the highest importance score are
used to explain the info captured by the KG embedding.

Formally, let F = {f1, . . . , fp} be a set of features computed in the previous
step, e.g., ∃competitorOf ,∃produces, etc. As mentioned in Section 3.1, each en-
tity e ∈ E is represented as a Boolean vector of the form fve = [fe

0 , . . . , f
e
p ], where

fe
i reflects the presence or absence of the respective feature fi for the entity e. For

the training input to the random forest regression model for each entity e ∈ E,
we have its Boolean feature vector fve = [fe

0 , f
e
1 , . . . , f

e
p ] with the label being the

embedding of e, i.e., ve ∈ Rd computed by the target embedding model E which
we aim at explaining. The random forest regression model [33] is used to find the
mapping between the feature vectors and embeddings. Additionally, the model
outputs the importance score for each feature, which is computed relying on the
mean squared error on the respective predictive task of reconstructing entity em-
beddings from feature vector-based entity representations. Once the model M is
trained, the scores assigned to the features are extracted, and only the features
with scores that are greater than a certain threshold θ are deemed essential. In
our experiments, we set the threshold for the feature selection parameter to be
the mean of the feature importance scores, as commonly done in practice.

The features selected by our feature selection algorithm reflect the parts of
the KG that the embedding model focuses on most. Therefore, we refer to them
as model explanations. Next, we utilize the selected features to obtain instance-
level explanations for each entity embedding. This is achieved by keeping only
the selected features within each entity representation. For example, if we have
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KG elements FB15K-237 DBpedia50K
Entities 14,541 49,900

Relations 237 654
Train triples 272,115 32,388

Validation triples 17,535 399
Test triples 20,466 10,969

Table 2: Knowledge graph data statistics. The train and test splits are used for
training the respective embedding models

a set of selected features for a KG embedding model (Fig. 1), we obtain the
corresponding feature vector-based representation for entity siemens (Fig. 4).

4 Experiments

We evaluate the quality and usefulness of the interpretable feature-based entity
representations computed by our method. To evaluate the quality, we compare
the behavior of the original embedding-based entity representations and our in-
terpretable entity representations on the two tasks: 1) the entity classification
following [17], and 2) the relation classification, i.e., given a pair of entities, pre-
dict a relation that holds between the entities. Additionally, to demonstrate the
usefulness of our method, we consider the entity similarity task and show how our
feature-based entity representations can be exploited to compute explanations
for entities being close to each other in the embedding space.

4.1 Experimental Setup

Datasets. We experiment with two widely used knowledge graphs namely,
Freebase15k-237 (a.k.a. FB15k-237) [38] and DBpedia50K [34] (see Tab. 2).
Embedding Models. For embeddings, we consider (1) TransE [6] as one of the
first and most popular models; (2) CompGCN [40] as one of the latest GNN-
based models which achieves state-of-the-art results on the entity classification
tasks; (3) NodePiece [12] as a shallow path-based embedding model; and (4)
Snore [24] and INK [35] as embeddings that are interpretable by construction.
Evaluation Tasks. We consider entity classification and relation classification
as the tasks on which we evaluate whether our feature vectors encompass the
same information as the corresponding embedding-based entity representations.
• Feature Selection Evaluation. To evaluate our feature selection module, we
apply the proposed framework to approximate Boolean INK [35] embeddings,
for which interpretable features are known. More specifically, we compute the
F1 score reflecting the similarity between the most important features generated
by our method and the features used for constructing INK embeddings.
• Entity Classification. Entity classification is concerned with the prediction
of a label from a given set of labels for KG entities. The goal of this evaluation
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is to verify whether different classifiers when trained on feature vector-based
entity representations and embedding-based entity representations, align with
each other by making the same correct and incorrect predictions for the entity
classification task. For the FB15K-237 KG, we consider the labels for entities
from [17], and for the DBPedia50K KG, we extract the entity types as labels.
Similar to [28], we have selected the following classifiers: (1) Random forest [33];
(2) K-nearest neighbor classifier [10]; (3) Multi-layer perceptron (MLP) [15]. For
all the models used in this work, we used the default parameter setup defined
by the scikit-learn library [27] for the respective model.

We train the respective classifiers on the train set of labeled KG entity em-
beddings and the train set of our feature vector representations approximating
the target embedding. We then use the respective classifiers to predict the labels
for entities in the test set, pick the classifier that shows the best performance for
the embedding-based entity classification, and use its predictions to compute the
alignment score (weighted average F1 score) between the predictions made by
the embedding-based and feature-vector based classifiers. The alignment score
evaluates the consistency between predictions using embeddings and those using
feature-vectors. Accounting for false positives and negatives, the F1 score quan-
tifies the overall agreement. A perfect alignment score is 1, reflecting that the
behavior of both embeddings and feature vectors is identical on a specific task.

Since, to the best of our knowledge, no previous works have targeted the
problem of computing model explanations for KG embedding models, as a base-
line, we use the feature vectors constructed by our method but without the
feature selection step. If the feature selection step removes a large percentage
of features, but this does not impact the weighted average F1 score, one can
conclude that the removed features are indeed not important for the embedding
model on the respective task.
• Relation Classification. In the relation classification task, we randomly se-
lect a set R′ of 50 relations from the KG, resulting in 39,273 (resp. 24,832) entity
pairs E = {(e1, e2) | ⟨e1, r, e2⟩, r ∈ R} for FB15k-237 (resp. for DBpedia50k). We
split the set E into the train (70 % of entity pairs) and the test (30 %) sets.

We proceed with evaluating the alignment between the embedding-based
entity representations and the feature-vector-based entity representations in the
same way as for the entity classification task. The only difference is that the
task considered in this experiment is rather concerned with classifying pairs of
entities from the test set into a class r from the set of 50 classes in R′. Intuitively,
the meaning of a pair being classified to a specific class r is that the relation r
holds between the respective entities.

Applications. Our feature vector-based entity representations can be exploited
for analyzing and comparing different embedding models. To this end, we report
and examine the types of features in the model explanations computed by our
method for different embeddings and datasets as well as present examples of se-
lected features along with computed entity representations. Another application
of our method is explainable entity similarity. Given the embeddings learned
by an embedding model and their corresponding interpretable feature vectors
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Mean squared error (MSE)
Embedding model DBPedia50K FB15K-237

Random 55.70 54.76
INK 0.0001 0.0003

TransE 0.026 0.0257
CompGCN 0.007 0.005
NodePiece 0.016 0.035

Snore 0.138 0.076

Table 3: Mean squared error of the random forest regression model used to learn
important features for the regeneration of the embeddings.

fv computed by our method, one can generate explanations for the similarity
between any pair of entities ei and its neighbor ej in the embedding space as
the intersection between their respective feature vectors, i.e., fvei ∩ fvej .

4.2 Experimental Results

Evaluation of Feature Selection. We report the mean squared error (MSE)
of the random forest regression model, trained to regenerate the embeddings
from feature vectors in Tab. 3. As a baseline, we consider a simple model that
outputs a vector of random numbers of size 50 (average size of the embeddings
used) when given a feature vector as input. The respective baseline is referred to
as Random in Tab. 3. The low MSE values for all models apart from the base-
line witness that the random forest regression model is capable of identifying a
meaningful relationship between the input feature vectors and the correspond-
ing KG embeddings. The model failed to find a connection between the input
feature vectors and the randomly generated embeddings, leading to high MSE.

Additionally, we also computed the alignment F1 score between the features
selected by our feature selection algorithm and the original features present in
the INK embeddings. For FB15k-237, the F1 score is 0.77 and for DBpedia50K
it is 0.82, indicating that the majority of the selected features were indeed in the
input embeddings. These results further confirm the effectiveness of the feature
selection method in accurately retrieving the content of embeddings. More results
on custom embeddings are in Tab. 16 in Sec. 7.3 in the Appendix.
Entity and Relation Classification. In Tab. 4, we report the weighted aver-
age F1 score for the alignment between the classification results computed by the
respective embedding models and the feature vector-based entity representations
before (columns 4 and 6) and after (columns 5 and 7) the feature selection step.
We also report the percentage of all features left after the feature selection step
(column 3). One can observe that the alignment scores reach 0.84 for entity clas-
sification and 0.78 for relation classification tasks, respectively. The alignment
score for Snore on the relation classification task was low, which is attributed
to the fact that its embeddings do not consider relations as mentioned in [24].
As a consequence, the performance of Snore on the relation classification task is
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Entity-classification (F1) Relation classification (F1)
Interpreted model Dataset Selected feature % Before selection After selection Before selection After selection

FB15K-237 75.5 0.93 0.80 0.90 0.90
INK[35] DBpedia50k 50.5 0.73 0.78 0.97 0.96

FB15k-237 19.7 0.84 0.84 0.73 0.78
TransE [6] DBpedia50k 13.9 0.61 0.64 0.53 0.54

FB15k-237 24.4 0.64 0.64 0.57 0.61
CompGCN [40] DBpedia50k 31.8 0.52 0.69 0.63 0.65

FB15k-237 20.0 0.68 0.68 0.47 0.51
NodePiece [12] DBpedia50k 22.7 0.73 0.73 0.75 0.75

FB15k-237 11.9 0.66 0.69 0.23 0.23
Snore [24] DBpedia50k 2.5 0.59 0.59 0.50 0.51

Table 4: The alignment F1 score between embedding-based classifiers and our
feature-vector-based classifiers (before and after the feature selection step) on
the entity and relation classification tasks. The third column represents the per-
centage of the selected features out of the total number of features.

rather poor, with the F1 score of 0.16. Our feature selection-based method also
manages to reproduce this, which is witnessed by the results in Fig. 6, where
the top 10 features selected as the most important ones for Snore on DBPe-
dia50K correspond to entities. Moreover, we found that this result is invariant
to the value of θ, as the performance was poor even before feature selection.
Furthermore, we observed that the alignment with INK is the highest, which
can be attributed to the interpretable nature of the INK embeddings and the
intersection of features used in our method with those used in INK. Based on
the percentage of selected features, the results show that NodePiece uses less
features than CompGCN but more than TransE. This is due to the facts that
NodePiece retains small amount of information about explicit nodes without
sacrificing its performance on down stream tasks.

Tab. 4 shows that the feature selection discards up to 97.5% of the features
without negative impact on the alignment F1 score. This indicates that the
embeddings do not utilize all of the information in the neighborhood of entities.

KG Embedding Analysis. In Fig. 5, we present detailed information regarding
the contribution of each feature type to the total number of features before and
after the feature selection step for the models TransE, CompGCN, NodePiece,
and Snore on FB15k-237 and DBpedia50k. Fig. 5 shows that even though inward
relations with entities constitute more than 50% of all features, they are mostly
ignored by our selection mechanism (at most 16% were selected for TransE and
17% for CompGCN across all considered datasets). This might indicate that the
embedding models learn to represent each entity in terms of outward (paths of)
relations and entities rather than inward ones. This behavior was consistent over
all four knowledge graph embedding models used.

We can observe that the portion of features filtered out by our selection
method within each feature type is significant, reaching more than 60% for some
feature types. Our feature selection technique filtered out more features for Snore
and NodePiece models than for other models. The selected feature types are con-
sistent with the methods for constructing the respective embeddings [24,12]. For
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Fig. 5: The percentage of each feature type out of the total number of features
for FB15k-237 (left) and DBPedia50k (right). Labels reflect the percentage of
features per feature type selected by our method for the considered models.

TransE
∃profession
∃film−

∃award−

∃genre
∃artists−
∃institution−

∃role−
= 0.R−

∃team−

= 1.R−

FB15K-237

CompGCN
= 0.R−

= 1.R−

= 2.R−

= 3.R−

= 2.R
= 1.R
= 4.R
= 0.R
∃placeOfBirth
= 3.R

Snore
∃genre
∃R.{germany}
∃R.{london}
= 0.R
∃R.{drumKit}
∃recordLabel
∃R.{iran}
∃R.{insect}
∃R.{southKorea}
∃kingdom.{plant}

DBpedia50K

NodePiece
= 1.R
∃team
∃musicalArtist−

∃birthplace
= 1.R−

∃staring
∃genre
∃team−

∃producer
∃writer

Fig. 6: The top 10 most important features identified by our method for FB15K-
237 and DBpedia50k, sorted in descending order of their importance scores.

the CompGCN model the majority of the features were retained. In Fig. 6, we
also present the top 10 features selected by our framework for FB15k-237 on
TransE and CompGCN. One can notice that CompGCN focuses more on the
information about the number of inward and outward relations and entities with
large numbers of incoming and outgoing relations which aligns with the limita-
tions of GNNs in [42]. A similar behavior has been observed for DBpedia50k.

The model explanations can also be used to analyze the behavior of the
embedding models throughout training phases (see Sec. 7.4 in the Appendix).

Example Feature Vectors. In Tab. 5 and 6, we present example feature-based
representations computed by our method for entities "América de Cali Club" and
"Fox Channel (Asia)" from DBPedia50K KG. For these entities the CompGCN
embedding model tends to capture more inward relations with entities than other
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Model Feature vector representation

Original
(no feature selection)

∃team−,∃team−.{AndrsAndrade}, ∃team−.{ChristianMontao},
∃team−.{DanielT lger},∃team−.{DavidFerreira}, ∃team−.{DiegoGmez},

∃team−.{EduardoFerreira}, ∃team−.{ErnestoFaras},∃team−.{GiovanniHernndez},
∃team−.{HugoSosa},∃team−.{JairReinoso}, ∃team−.{JavierArizala},

∃team−.{JohnCrdoba},∃team−.{JohnHaroldLozano},∃team−.{JuanCamiloAngulo},
∃team−.{LeandroCastellanos}, ∃team−.{LuisBarbat}, ∃team−.{LuisEduardoZapata},

∃team−.{LuisMarcoleta}, ∃team−.{RobertoCabaas},∃team−.{WilsonMorelo},
= 20.R−,= 0.R, ∃R−.{AndrsAndrade}, ∃R−.{ChristianMontao},
∃R−.{DanielT lger},∃R−.{DavidFerreira}, ∃R−.{DiegoGmez},

∃R−.{EduardoFerreira}, ∃R−.{ErnestoFaras},∃R−.{GiovanniHernndez},
∃R−.{HugoSosa}, ∃R−.{JairReinoso}, ∃R−.{JavierArizala},

∃R−.{JohnCrdoba},∃R−.{JohnHaroldLozano}, ∃R−.{JuanCamiloAngulo},
∃R−.{LeandroCastellanos}, ∃R−.{LuisBarbat}, ∃R−.{LuisEduardoZapata},

∃R−.{LuisMarcoleta}, ∃R−.{RobertoCabaas}, ∃R−.{WilsonMorelo}
TransE ∃team−,= 0.R, ∃team−.{DanielT lger},∃R.{JohnCrdoba}

CompGCN
∃team−.{JavierArizala}, ∃team−.{LuisEduardoZapata},= 20.R,= 0.R−,

∃R−.{JavierArizala}, ∃R−.{LuisEduardoZapata}, ∃R−.{LuisMarcoleta}
NodePiece ∃team−.{EduardoFerreira}, ∃team−,= 20.R−,= 0.R, ∃R−.{EduardoFerreira},

Snore ∃team−,= 20.R−,= 0.R

Table 5: Feature vector of entity "América de Cali Club" from DBpedia50k KG
computed by our method for different models.

models. For TransE the majority of the selected features are relations with enti-
ties, which aligns well with its limitation to capture one-to-many relations [41].

Although CompGCN better grasps inward relations with entities compared
to other models, it fails to capture all the entities with dense neighborhood, i.e.,
entities having numerous inward relations with the same label. We observed this
behavior for the entity "América de Cali Club", which has 20 inward relations
with entities labeled with the same relation type (see Tab. 5). The same holds
for the outward relations with entities for "Fox Channel (Asia)" in Tab. 6. More
examples are in the appendix. After conducting the feature selection process,
we observed an average of around 29K-19K selected features for FB15K-236 and
DBPedia50k, respectively. Despite the high average, individual entities typically
possess a limited number of features in their representations, 6-54 features per
entity on average for FB15K-236 and DBPedia50k, respectively. Hence, feature
representations are easily comprehensible by humans, making them suitable for
manual examination (see Tab. 9 and 10 in the appendix).

Explainable Entity Similarity. Our explanations for embedding models can
be utilized to explain similarity between entities. To exemplify this application,
in Tab. 7 we report the closest and the 100th closest entity to "Christina Aguil-
era" based on the cosine similarity of the respective vectors for TransE model on
the FB15K-237 dataset along with the features computed by our method that
the respective entities share. The results reveal that "Christina Aguilera" shares
more features with its closest neighbor "Katy Perry" than with "Ice Cube",
which explains why the respective entities are closer in the embedding space. We
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Model Feature vector representation

Original
(no feature selection)

∃broadcastArea, ∃broadcastArea.{SouthKorea)}, ∃language,
∃language.{EnglishLanguage},∃sisterStation, ∃sisterStation.{FoxFilipino},

∃sisterStation.{NatGeoPeople}, ∃sisterStation.{NatGeoWild},
∃sisterStation.{StarSports},∃sisterStation.{StarWorld},= 7.R,= 0.R−,

∃R.{SouthKorea)},∃R.{EnglishLanguage},∃R.{FoxFilipino},
∃R.{NatGeoPeople}, ∃R.{NatGeoWild},∃R.{StarSports}, ∃R.{StarWorld}

TransE

∃broadcastArea, ∃broadcastArea.{SouthKorea)},∃language,
∃language.{EnglishLanguage},∃sisterStation,= 0.R−,∃R.{SouthKorea)},

∃R.{EnglishLanguage}, ∃R.{NatGeoPeople}

CompGCN

∃broadcastArea,∃language, ∃language.{EnglishLanguage},
∃sisterStation,∃sisterStation.{FoxFilipino}, ∃sisterStation.{NatGeoPeople},

∃sisterStation.{NatGeoWild},= 7.R,= 0.R−, ∃R.{SouthKorea)},
∃R.{EnglishLanguage}, ∃R.{FoxFilipino}, ∃R.{NatGeoPeople}, ∃R.{NatGeoWild}

Table 6: Feature vector of the entity "Fox Channel (Asia)" from DBpedia50k
KG computed by our method.

provide further results for the entity similarity application in appendix. These
results show insights into the embedding space learned by the embedding mod-
els, allowing for a better understanding of possible reasons for the respective
positions of entities in the embedding space.

5 Related Work

Explanations of KG Embedding Models. In recent years, a variety of KG
embeddings have been proposed, e.g., [26,6,12,31,40] (see [41] for an overview).
While some of the methods achieve state-of-the-art performance on certain
tasks [47,12,40], the models often remain to be black boxes. This has raised
interest in explaining KG embeddings and led to works targeting outcome ex-
planations for embeddings on the link prediction task [32,7,3,25,13,11]. In [32]
a Kelpie framework has been introduced, which explains predictions made by a
given embedding by identifying the combinations of training facts that have en-
abled the respective predictions. The works [3,13] exploit rule learning techniques
for identifying triples which are logical explanations for a particular prediction.
Generation of post-hoc explanation for triples inferred by a (factorization-based)
embedding model has been considered in [25]. This method first augments the
underlying KG by introducing weighted edges between entities relying on their
embedding-based similarity and then computes human-understandable explana-
tions in the form of paths. All of the above methods focus on explaining the
outcome of an embedding model rather than generating interpretable feature-
based representations of entities that would mimic the behavior of embeddings
on downstream tasks as we do. The recent work [12] is aligned with our idea
of representing entities using a fixed-size entity vocabulary, but the respective
model targets a different task of making embedding models space efficient, and
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nth Neighbor Neighbor Similarity Explanation

1st Katy Perry

∃artists−.{dancepop}, ∃artists−.{popmusic},
∃award .{GrammyAwardforBestFemalePopVocalPerformance},

∃award .{MTVVideoMusicAwardoftheYear}
∃award .{MTVVideoMusicAwardforBestNewArtist},

∃award .{(MTVVideoMusicAwardForBestFemaleVideo},
∃netWorthCurrency .{USdollar}, ∃gender .{femaleorganism},

∃profession.{actor}, ∃vacationer−,∃participant−,
∃awardWinner−,∃person−,∃artist−, ∃award,

∃specialPerformanceType,∃awardNominee, ∃profession,
∃origin, ∃film, ∃participant,∃netWorthCurrency,

∃religion,∃nationality, ∃R−.{poprock},
∃R−.{popmusic},∃R−.{dancepop},= 43.R−,

∃R.{MTV V ideoMusicAwardforV ideooftheY ear},
∃R.{MTV V ideoMusicAwardforBestFemaleV ideo},

∃R.{MTV V ideoMusicAwardforBestNewArtist},
∃R.{MTV V ideoMusicAwardforBestPopV ideo},

∃R.{MTV V ideoMusicAwardforBestArtDirection},
∃R.{GrammyAwardforBestFemalePopV ocalPerformance},

∃R.{femaleorganism},∃R.{actor}, ∃R.{USdollar}, ∃R.{friend},

100th Ice Cube

∃profession.{recordproducer},∃languages.{English},
∃netWorthCurrency .{USdollar}, ∃artists−,

∃awardNominee−, ∃awardWinner−, ∃profession,
∃film, ∃gender, ∃languages, ∃award, ∃netWorthCurrency,

∃nationality, ∃religion,∃location,∃awardNominee,

∃awardWinner,∃R.{USdollar}, ∃R.{recordproducer}, ∃R.{English}

Table 7: The list of explanations for the similarity of "Christina Aguilera" to its
nearest neighbours. The entity is from FB15K-237 and its 1st and 100th nearest
neighbors are based on TransE embeddings.

in contrast to our entity representations, the representations generated by Node-
Piece are not interpretable.

In contrast, the works [24,35] generate KG embeddings that are interpretable
by construction. Their feature-driven entity encodings are similar to ours, but
these methods do not approximate existing black box models as we do.

Interpretable Propositionalization-based Embeddings. Propositionaliza-
tion, the task of constructing table-based representations, has been proposed
for relational data [19]. It has also been studied in the context of knowledge
graphs [35,31,29,30,21]. While these existing propositionalization methods are
interpretable by nature, they were developed and used as an alternative to black
box KG embedding models, rather than for explaining existing KGE embed-
ding models. Thus, these methods complement our work, and any interpretable
propositionalization method can be incorporated during the feature construction
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step of our approach. To the best of our knowledge, none of the existing propo-
sitionalization methods targeted the problem of approximating the behavior of
a given embedding model, which is our main focus.

6 Conclusion

Knowledge Graph embedding models are widely used for various tasks, but their
numeric vector representations are not interpretable. Even with KG embedding
models that create embeddings from interpretable features like NodePiece [12]
and Snore [24], an extra embedding layer that is not reversible is used to turn
the feature vectors into numerical vectors that are not interpretable. To address
this issue, we have presented a feature selection-based approach to explain the
behavior of knowledge graph embedding models. The results demonstrate that
the proposed approach is effective in identifying the most important features for
a given embedding model by finding the alignment between feature-based entity
representations and the embedding-based entity representations. The findings
reveal that KG embeddings do not capture all the information in the neighbor-
hood of entities and that the feature selection process can discard up to 86% of
the features without sacrificing the F1 alignment score. Furthermore, our method
can be used to explain similarities of entities in the embedding space. We believe
that our work offers interesting perspectives for debugging embedding models
and makes a further step towards revealing relations between embeddings and
propositionalization methods following [21].

While the presented framework provides insights into the behavior of em-
beddings, it still could be further extended by accounting for embeddings of
relations along with entity embeddings, more complex features like longer paths
or trees as well as textual and numerical attributes. Despite the advantages
of propositionalization for interpretable feature vector construction, it also has
limitations. The size of the feature vector naturally scales with the knowledge
graph size. Additionally, for larger KGs, the search space for the feature selec-
tion algorithm increases, which may lead to scalability issues. Thus, for ongoing
and future work, we plan to integrate embeddings of relations into our method
and exploit the information coming from the embeddings already at the feature
generation stage. This can be achieved by relying on frequent pattern mining
methods or rule learning approaches [20,23], especially those that already ac-
count for embeddings during rule construction [16,45]. We also plan to identify
ways for concise representation of feature vectors to adapt for large KGs.

Last but not least, as another ongoing and future work direction we are
analyzing the performance of our method on other interpretable embeddings.

Supplemental Material Statement: Source code, datasets and a version of the
paper with appendix are available for reproducing the results. 1
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