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Abstract. Visual support designed to facilitate human interaction with semantic 
data has largely focused on visualizing entities such as classes and relationships 
within an ontology. Comparatively speaking, less attention has focused on visu-
alizing mappings established between independent ontologies and determining 
the effectiveness of mapping visualizations. This paper presents a user study of 
the matrix and the linked indented list visualization in their visual support for 
users during creation and evaluation of class mappings between pairwise ontolo-
gies. A total of 81 participants took part in a task-based controlled experiment, 
with the aim of assessing the extent to which a given visualization supports recog-
nition of visual cues, validation of existing mappings, and creation of new results. 
Based on empirical evidence collected from the participants in their speed to 
complete the tasks, their success in answering various questions, as well as their 
physiological sensory data such as eye gaze, we aim to quantify user performance 
and visual attention demanded in the use of the two aforementioned mapping 
visualizations. The experimental results indicate that the linked indented lists and 
the matrix visualization are comparable in terms of effectiveness and efficiency 
when assisting users in the given task scenarios with marginal differences. How-
ever, linked indented lists are likely to demand less effort from the users’ visual 
perceptual systems with statistically significant differences found in several gaze 
measures, including the physical distances needed to locate relevant visual infor-
mation, number of fixations and time required to process visual cues, and the 
overall efforts in scanning the visual scene.    

Keywords: Ontology Mapping Visualization, Matrix, Linked Indented List, 
Eye Tracking. 

1 Introduction 

A growing body of research aimed to overcome challenges in providing user-centered 
tools and systems to support and enhance human interaction with semantic data and 
semantically empowered systems has pushed advances in the Semantic Web to beyond 
simply improving the efficiencies and accuracies of various algorithms. While 
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leveraging semantic technologies and computational intelligence in problem-solving 
remains a critical component in the Semantic Web, cohorts of research in interfaces for 
the Semantic Web as well as semantically empowered systems have contributed to re-
cent innovations in interactive Semantic Web. Within this context, the Interactive Se-
mantic Web (ISW) refers to the design, development, and refinement in all aspects of 
human interaction with the Semantic Web, whereby the integration of interfaces and 
interactions bridged between human users and semantic content and technologies con-
tribute to enhanced and improved use of the Semantic Web and all its constituents.  
 Well-known Semantic Web tools and systems designed to support humans (experts 
and non-experts alike) in the loop often incorporate interactive visualizations and visual 
analytics in order to best assist users, such as Protégé1/WebProtégé2 for ontology edit-
ing, the Wikidata Query Service3 for querying semantic content, and Punya4 for build-
ing semantically enriched mobile applications, to name just a few. Other efforts to assist 
novice users in the navigation and querying of knowledge graphs is also demonstrated 
in [1], where traditional SPARQL queries are simplified by means of visual queries. A 
more recent example of a knowledge graph empowered search and visualization system 
is presented in [2], which aims to facilitate researchers in their explorations of relevant 
scientific publications by leveraging thematic rule-based associations, networks of co-
publications, and co-occurring topics. To accelerate biomedical research and discovery 
in the fight against COVID-19, a tool to automatically extract and visualize argumen-
tative graphs of clinical articles is demonstrated in [3], whereby information extraction 
is enhanced by a continuously enriched knowledge graph to assist with human decision-
making in healthcare.  
 Evidentially, appropriate integrations of interaction and visualization techniques lie 
at the center of ISW systems, where visual cues have continued to provide the necessary 
means for users to better understand, explore, correct, and modify semantic data and 
semantically empowered systems. As such, assessing the effectiveness of interactive 
visual support in their capacity to support users in the ISW has been investigated in 
prior work such as [4-6], where commonly used tools and techniques to visualize on-
tologies have been evaluated extensively. In comparison, less research focus has been 
placed on relationships established between independent ontologies, such as ontology 
mapping visualization. To this end, this paper focuses on a relatively unexplored area 
in mapping visualizations between pairwise ontologies. Through an empirical user 
study involving 81 participants in the context of creating and evaluating class mappings 
between pairwise ontologies, we report on the effectiveness and efficiency of two pop-
ular techniques in mapping visualization, namely the linked indented list and matrix 
visualization. In addition, we analyzed user gaze to investigate how users divided their 
visual attention when interacting with the aforementioned mapping visualizations, and 
report on a number of observations in gaze tendencies in each visualization technique 
through eye tracking. A main contribution of this paper lies in the generation of new 

 
1 protege.stanford.edu, last accessed 07/31/2023. 
2 webprotege.stanford.edu, last accessed 07/31/2023. 
3 query.wikidata.org, last accessed 07/31/2023. 
4 punya.mit.edu, last accessed 07/31/2023. 
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knowledge on the user experience with two interactive mapping visualization tech-
niques frequently found in current tools and systems. With knowledge graph and on-
tology development environments amongst some of the most impactful and widely 
adopted technologies derived from the Semantic Web community, the empirical find-
ings collected from a reasonably large user group shown in this paper will likely inform 
future design and development of these environments to be more user-centered with 
viable visual and interactive support for the average user.  

2 Related Work 

User involvement and how best to support human users remain a critical research area 
in ontology mapping given that automatically generated mappings typically require fur-
ther refinement and user intervention. An example system aimed to support users in 
ontology and entity matching is presented in [7], which provides an environment for 
users to generate mappings based on element descriptions and system-generated match-
ing suggestions. Visual assistance is provided in the form of interactive indented lists 
of the source and target ontologies, while visualizations of the mappings themselves 
are not supported. A review of mapping systems5 designed to support various stages of 
ontology mapping is presented in [8]. Amongst the eight systems surveyed, five [9-18] 
use connecting links to visualize mappings between ontological nodes belonging to dif-
ferent ontologies, whereby the ontologies themselves are often arranged as indented 
lists in the visualization. Such techniques to visualize mappings (as links) between on-
tologies (as indented lists) are referred to as linked indented lists (LIL) in this paper. 
LIL remains a popular technique to visualize relationships between structured datasets 
as also seen in the RBA tool [23], which is designed to facilitate mappings between 
relational databases and ontologies. Subsequent research has also focused on reducing 
visual clutter in LIL when a large number of mappings is present, through layout tech-
niques such as edge bundling [24].  

Later systems have utilized matrices or grids when visualizing pairwise mappings, 
whereby mappings are illustrated as occurrences of vectors in a 2D plane, and the as-
sociated ontological entities are displayed along horizontal and vertical axes. In this 
paper, such visualization techniques are referred to as matrix visualization. An example 
of a matrix visualization is shown in [25] with mappings visualized at the ontology 
level as well as at the node level. To facilitate visual search, a user can sort the source 
and target ontologies/nodes displayed along the axes in alphabetical order. Another ex-
ample can be found in ProvenanceMatrix [16], where the user can sort the matrix axes 
in breadth-first, depth-first, and similarity orderings. In addition to 2D matrices, later 
research has investigated adding a third dimension to utilize 3D cubes when visualizing 
mappings such as [27] with the goal of providing various levels of granularity when 
exploring and evaluating ontology mappings. Other visualization systems have utilized 
multiple views when presenting mappings to the user, in an effort to better support 

 
5 The review includes the following systems: AgreementMaker [9-11, VOILA 2015], AlViz [12], 

AML [13, 14], CogZ/Prompt [15-17], COMA [18], LogMap [19], SAMBO [20, 21], and Re-
pOSE [22]. 
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various viewpoints during visual search such as VOAR 3.0 [28] that visualizes map-
pings in both LIL and node-link diagrams, AlignmentVis [29] that uses LIL, matrices, 
scatterplots, and parallel coordinates to visualize mappings and related statistics in a 
mapping scenario, as well as BioMixer [30] that visualizes mappings as timelines and 
node-link diagrams with multiple coordinated layouts.  

Recent research has also investigated the application of block metaphors that are 
frequently used in visual programming languages in the context of semantic mapping 
such as [31] and the use of pie charts in large scale ontology mappings [32]. Moreover, 
efforts to broaden ontology visualization to beyond visualizing hierarchies but to also 
include non-hierarchical relationships in large ontologies is proposed in [33], where 
icicle plots coupled with visual compression have been shown to improve space-effi-
ciency and reduce visual structural complexity. Given that node-link diagrams are often 
used to visualize ontological entities as nodes in a network with connecting edges illus-
trating ontological relationships such as is-a relations, a natural expansion is to also 
include mappings amongst ontological entities, by inserting visual associations (i.e., 
more edges that can be visually distinguished, often by line color or style, from those 
of is-a relations) into the visualization to illustrate additional relationships such as map-
pings among otherwise isolated nodes. This node-link technique can be observed in a 
number of systems such as [33-37] and studied extensively in [4-6, 39-44]. Recent ef-
forts to advance node-link diagrams in the Information Visualization (InfoVis) com-
munity include determining the effects of progressively increasing encoded information 
in node/node-link/node-link-group diagrams [39], comparing different methods to vis-
ualize long, dense, complex, and piecewise linear spatial trajectories [40], displaying 
clusters overlaid using node coloring, GMap, BubbleSets, and LineSets [41], encoding 
multivariate and continuous data on edges in 3D node-link diagrams [42], developing 
novel exemplar-based layout to adjust substructures [43], and improving readability via 
layered layout that considers crossing reduction, edge bendiness, nested and multi-layer 
groups simultaneously [44]. Other efforts to improve matrix visualization in the InfoVis 
community have investigated ways to enhance visual analysis with hierarchy matrix 
[45] and ordering effects within matrices [46]. A recent evaluation study [47] from the 
InfoVis community compares bipartite, node-link, and matrix-based network presenta-
tion in a range of tasks such as network class identification, cluster detection, network 
density estimation, to demonstrate overall network structures are best illustrated with 
bipartite layouts.  

There is however limited research focusing on the evaluation of interactive visuali-
zations designed for ISW. In the context of ontological data modelling, prior evalua-
tions have largely focused on assessing user experience with visualizations of class hi-
erarchies. For instance, the usability of indented lists and node-link diagrams when vis-
ualizing class relationships are assessed in [4] with eye tracking results [5] providing 
further insights on the strengths and weaknesses of each visualization technique. In the 
context of supporting users in large-scale ontology alignment, a study [48] using heu-
ristic evaluations and feedback from 8 participants across three mapping systems (that 
all utilize LIL including CogZ [15], COMA [18], and SAMBO [20, 21]) aims to elicit 
system design requirements. Given the frequent use of LIL and matrices across a num-
ber of existing tools and systems as outlined above, and with a lack of evaluations of 
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the two, there is a pressing need to assess these visualizations designed specifically for 
mappings. To this end, this paper presents a controlled, between-subject user study uti-
lizing eye tracking in the assessment of the LIL and matrix visualizations in the context 
of human mapping creation and evaluation. 

3 Experimental Setup 

3.1 Tasks and Visualizations 

The goal of the experiment is to compare if one visualization technique may be better 
suited for a particular type of mapping creation and/or evaluation tasks than the other. 
To simulate an environment where the user tasks would require human interaction and 
comprehension of the given visual cues, we asked participants to answer a series of 15 
questions while supported by mapping visualizations between an ontology pair. Table 
1 presents an overview of the questions in two domains. These questions can be cate-
gorized as i) identification tasks (Q.1-6), where successful completion requires a par-
ticipant to recognize what is and is not already visually displayed in the mapping visu-
alization; ii) validation tasks (Q.7-12), where successful completion requires partici-
pants to verify the accuracy of a mapping displayed or the lack thereof; and iii) creation 
tasks (Q.13-15), where successful completion requires a participant to generate new 
knowledge (i.e., new mappings) that is not already displayed in the visualization. These 
questions are not intended to be exhaustive, but as examples of typical scenarios during 
mapping creation and evaluation where a human user needs to comprehend visual cues 
in the process of establishing correct and complete mappings between pairwise ontolo-
gies. The goal of these questions is to simulate a necessary environment for the purpose 
of enabling comparative studies between the matrix and LIL visualization in the context 
of class mappings with a range of example conditions where different visual needs may 
be demanded during human decision-making.  

Where appropriate, some questions are presented as multiple-choice questions with 
a dropdown menu containing 2 or 4 options with one correct answer (e.g., in Q.1, 4 
numbers are shown in a dropdown menu where one of them is the correct answer; in 
Q.4, yes or no options are given in a dropdown menu), and others are presented as open-
ended questions with textboxes to fill in (e.g., Q.15). Identification tasks direct users to 
decode a given visual cue (e.g., Q.3 requires a user to describe what a link or solid/dot-
ted cell between two entities entails, and Q.4 requires a user to interpret what a non-
existent link or empty cell entails), validation tasks require a user to assess existing 
mapping quality (is a link/solid cell correct or wrong), and creation tasks ask a user to 
generate new knowledge by creating additional mappings not already shown in the vis-
ualization (e.g., in Q.15, users can create new mappings if they believe there are absent 
mappings such as those prompted in Q.4 and Q.6). The same set of mappings (contain-
ing the same correct, incorrect, and incomplete results) were visualized in each domain, 
so that the only difference between user groups remain as the mapping visualization 
themselves as opposed to differing mapping results shown to the user, to ensure the 
comparison between LIL and matrix visualization is made fair.    
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Table 1. Mapping Creation and Evaluation Questions Used in the Study. 

 Conference Domain Anatomy Domain 

Identification 

1. How many mappings are shown in the 
visualization in total? 

2. How many classes is Author (in the 
source ontology) mapped to? 

3. What is SlideSet (in the source ontology) 
mapped to? 

4. Can Person (in the source ontology) be 
mapped to another class (in the target on-
tology)? 

5. What is ConferenceDinner (in the source 
ontology) mapped to (in the target ontol-
ogy)? 

6. Can Workshop (in the source ontology) 
be mapped to another class (in the target 
ontology)? 

1. How many mappings are shown in the 
visualization in total? 

2. How many classes is Skin (in the source 
ontology) mapped to? 

3. What is Viscera (in the source ontology) 
mapped to? 

4. Can Joint (in the source ontology) be 
mapped to another class (in the target on-
tology)? 

5. What is Skull (in the source ontology) 
mapped to (in the target ontology)? 

6. Can Arm (in the source ontology) be 
mapped to another class (in the target on-
tology)? 

V
alidation 

7. Is there a mapping between Academi-
cEvent (in the source ontology) and Sci-
entific_Event (in the target ontology)? 

8. Is AcademiaOrganization (in the source 
ontology) correctly mapped? 

9. SecurityTopic (in the source ontology) is 
mapped to Research_Topic (in the target 
ontology). Is this correct? 

10. Place (in the source ontology) is mapped 
to Location (in the target ontology). Is 
this correct? 

11. RejectedPaper (in the source ontology) 
is mapped to Assigned_Paper (in the tar-
get ontology). Is this correct? 

12. IndustryOrganization (in the source on-
tology) is mapped to Organisation (in the 
right ontology). Is this correct? 

7. Is there a mapping between Blood (in the 
source ontology) and blood (in the target 
ontology)? 

8. Is Cartilage (in the source ontology) cor-
rectly mapped? 

9. Urinary_System_Part (in the source on-
tology) is mapped to muscle (in the target 
ontology). Is this correct? 

10. Cheek (in the source ontology) is 
mapped to cuticle (in the target ontology). 
Is this correct? 

11. Skin (in the source ontology) is mapped 
to skin (in the target ontology). Is this 
correct? 

12. Mucus (in the source ontology) is 
mapped to nasal mucus (in the target on-
tology). Is this correct? 

Creation 

13. Which class could Attendee (in the 
source ontology) be mapped to (in the tar-
get ontology)? 

14. Which class could ConferenceDinner (in 
the left ontology) mapped to (in the right 
ontology)? 

15. Is there any other mapping(s) that should 
be created between the ontologies but is 
currently absent from the visualization? 

13. Which class could Heart (in the source 
ontology) be mapped to (in the target on-
tology)? 

14. Which class could Lip (in the source on-
tology) be mapped to (in the target ontol-
ogy)? 

15. Is there any other mapping(s) that should 
be created between the ontologies but is 
currently absent from the visualization? 

Two pairs of ontologies are used in this study. These ontologies and their respective 
mappings are based on the conference and biomedical tracks at the Ontology Alignment 
Evaluation Initiative (OAEI) 6 . Mappings in the OAEI gold standards have been 

 
6 oaei.ontologymatching.org, last accessed 07/31/2023. 
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modified in the study for the purpose of presenting a mixture of correct, incorrect, and 
incomplete mappings in the visualization, so that participants can complete a range of 
creation and evaluation scenarios as discussed above. An overview of the characteris-
tics of the ontologies used in the study is presented in Table 2. The conference ontolo-
gies, taken as is from the OAEI, have 97 and 73 classes in the source and target ontology 
respectively. In order to ensure comparable sizes, for the biomedical ontologies, we 
used the portions that focus on the human anatomy, whereby there are 115 and 97 clas-
ses in the source and target ontology respectively. For each domain, the accompanying 
mapping visualizations show a total of 10 mappings between the ontology pair, 
amongst which, 5 are correct and 5 are incorrect. There are also 5 additional mappings 
that are missing from the visualization. The experiment variables such as the ontology 
size, task scenario, and the number of mappings were controlled in the study to ensure 
their potential impact on user performance is minimized so that a given mapping visu-
alization (i.e., either the LIL or matrix visualization) can be assessed as the independent 
variable in the experiment. In other words, if a difference were to be found in user 
success or completion time, the underlying cause is likely attributed to the visualization 
used as opposed to a simple result of a smaller ontology pair or fewer mappings to 
inspect. The domains, ontologies, and mappings used in our study are not intended to 
be exhaustive, but as example scenarios aimed to provide the necessary experimental 
conditions to compare the LIL and matrix visualization. For those interested in specific 
domains or ontologies with certain characteristics, it would be necessary to target other 
mapping scenarios/domains not presented in this paper.  

Table 2. Ontologies and Mappings Used in the Study. The longest path to root defines the 
depth of a class hierarchy, the largest sibling pool refers to the most number of subclasses for a 
given class, multiple inheritances refer to instances of classes with more than one superclass. 

 Conference Ontologies Anatomy Ontologies 
 Source  Target  Source  Target  

Number of Classes 97 93 115 97 
Longest path to root 4 6 6 5 
Largest sibling pool 21 9 12 26 
Multiple inheritance - 1 2 - 
Correct mappings 5 5 
Incorrect mappings 5 5 
Incomplete mappings 5 5 

 
The matrix and LIL visualization used in this study are implemented using the D3 

JavaScript Library7. Fig. 1 presents a screenshot of the study interface showing how 
questions and mapping visualizations are presented to a participant in a Web browser. 
In the matrix visualization (Fig. 1a), the source and target ontologies are visualized as 
indented lists along the axes. Toggling a node on the axis will expand or collapse child 
nodes (if any), where solid blue triangles indicate subclasses that can be further re-
vealed, hollow blue triangles indicate fully expanded child nodes, and blue dots indicate 
childless nodes. Mappings are illustrated as cells associating pairwise entities shown 

 
7 d3js.org, last accessed 07/31/2023. 
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along the vertical and horizontal axes. Solid blue cells indicate mappings of entities that 
are already fully visible in the visualization, e.g., ConferenceEvent is mapped to Event. 
Dotted blue cells indicate mappings exist amongst child nodes of the corresponding 
entities and are yet to be revealed in the visualization, e.g., there is at least one mapping 
amongst the child nodes of ConferenceEvent and Scientific_Event, and a user will need 
to toggle these entities to further reveal the exact mapping(s) at the child level. As nodes 
are expanded, the matrix grows in both length and width and a user can scroll vertically 
and horizontally during interaction, while the entity labels along the axes remain fixed 
in position to facilitate readability.      

In the LIL visualization (Fig. 1b),  the source and target ontologies are visualized as 
two separate indented lists, and mappings are visualized as links connecting pairwise 
entities belonging to different ontologies. Users can toggle nodes to expand or collapse 
an entity, with solid triangles indicating expandable nodes, hollow triangles indicating 
nonexpendable nodes, and dotted nodes indicating childless entities. Solid blue links 
denote mappings of two entities that are already fully visible in the visualization, e.g., 
Mucus is mapped to nasal mucus. Dotted links denote at least one mapping exists 
amongst the children of the associated entities and the user must toggle the associated 
entities to reveal the mappings beneath, e.g., Lower_Extermity_Part in the source on-
tology should be toggled to reveal the child node that is mapped to leg in the target 
ontology. Finally, users can scroll vertically and horizontally during  the interaction as 
nodes are expanded and the indented lists grow in the visualization. 

 
(a) Mapping Visualized in A Matrix in the Conference Domain 
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(b) Mapping Visualized in A Linked Indented List in the Anatomy Domain 

Fig. 1. Study Interface Displaying Questions and Visualizations. 

3.2 Participants, Protocol, and Data Collection 

A total of 81 participants (with approximately 20% of them having taken a semester 
long graduate level introductory course on the Semantic Web) took part in this study, 
including a mixture of undergraduate and graduate students majoring in Computer Sci-
ence, Computer Engineering, Mechanical Engineering, Applied Math, and Political 
Science. We recruited these participants to present a reasonably sized sample of novice 
users. We focused on novice users in this study as this user population would likely 
need most help and support. Though there is the opportunity to include expert users, it 
is a frequently debatable topic what qualifies one as a true expert, especially when ex-
pertise is often self-reported. In addition, variables such as user expertise will likely 
have an impact on user performance (e.g., if a person is more successful or faster at a 
given task, is such an outcome due to this person’s expertise, or the result of a more 
effective and efficient visualization), and thus controlled in our experiment in order to 
keep the visualization type as the independent variable. For those interested in eliciting 
differences between distinct user groups (such as novice vs. expert users), it would be 
necessary to also include domain/ontology/visualization expertise in their experimental 
design. Since the goal of our study is to compare two mapping visualizations, one user 
sample with novices would be sufficient for this purpose. Furthermore, it is unlikely 
the case that real-world users of ISW technologies are mainly expert users, nor should 
ISW technologies require users to hold advanced degrees, intricate technical back-
ground, or expert knowledge in order to use.  

Each participant completed a short tutorial on ontology mapping and the interactive 
features in a given visualization. They were then randomly assigned to a visualization 
and completed the associated questions one domain at a time. Participants were 
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informed that all questions have correct answers and were instructed to do their best 
while being as fast as they can. To minimize training and ordering effects, a participant 
used one visualization exclusively in a study session, while completing tasks with var-
ied orderings of the domain. Overall, two separate groups of participants completed the 
same questions, but supported by two distinct visualization types. In other words, this 
between-subject design ensures minimal learning effects (compared to a within-subject 
design) on the given visualization.  

We collected a range of data from each participant, shown in table 3. Time on task 
can be further categorized by the type of questions (Ti, Tv, Tc) such as the three catego-
ries outlined in section 3.1, in addition to the overall time it takes to complete all 15 
questions (To). Likewise, success can be determined by the question type (Si, Sv, Sc). 
For the open-ended question (i.e., Q.15 in each domain) where participants were asked 
to generate new mappings, we computed additional metrics to quantify the precision, 
recall, and f-measure of the answers produced by a participant in that question (Sp, Sr, 
Sf-m), in the same way automated mapping algorithms are evaluated, whereby the cor-
rectness, completeness, and overall quality of the new mappings were measured against 
known missing mappings between the ontology pair.  

Table 3. Data Collected from Each Participant. 

Data Type Description 
Time on Task 
(min) 

Ti: Time it takes a participant to complete all identification tasks.   
Tv:  Time it takes a participant to complete all validation tasks.   
Tc:  Time it takes a participant to complete all creation tasks.   
To:  Overall time it takes a participant to complete all questions.   

Task Success  
(0,1) 

Si:  Correct answers contained in all identification tasks as a ratio.   
Sv:  Correct answers contained in all validation tasks as a ratio.   
Sc: Correct answers contained in all creation tasks as a ratio. 
Cp:  The precision of the new mappings generated in Q.15.  
Cr: The recall of the new mappings generated in Q.15. 
Cf-m: The f-measure of the new mappings generated in Q.15. 
So:  Overall success in all 15 questions.  

  
To quantify how participants divided their visual attention during their interaction 

with a given mapping visualization, we used physiological sensors to collect eye gaze 
from each participant. More specifically, we used a Gazepoint GP3 HD eye tracker8 
with a 150Hz sample rate and a 24" Full HD Dell monitor9 with 1920×1080p at 165Hz 
and 1ms response time to collect gaze data. Each participant completed a 9-point cali-
bration before each eye tracking session to ensure maximized gaze data accuracy. Par-
ticipants were seated on non-wheeled and non-swiveled office chairs and maintained 
relatively unchanged distances to the eye tracker, which tolerates a range of 35cm (hor-
izontal) × 22cm (vertical) × ±15cm (depth) movement. Based on the raw gaze data 
generated from the eye tracker, a set of descriptive gaze measures (DGM) are computed 

 
8 gazept.com/product/gp3hd, last accessed 07/31/2023. 
9 www.dell.com/en-us/shop/dell-24-gaming-monitor-g2422hs/apd/210-bdpw/moni-

tors-monitor-accessories, last accessed 07/31/2023. 
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for each participant after the person has completed all 15 questions using a given visu-
alization. The goal of the DGM is to capture one’s ability in selecting and maintaining 
awareness of specific locations and attributes of a visual scene presented. To compute 
the DGM, the raw gaze data produced from the eye tracker underwent a cleaning pro-
cess, whereby invalid (per validity codes reported by the eye tracker, negative numbers, 
and when entries are off-screen), incomplete (e.g., when only one eye was captured, 
missing x and y coordinates), and corrupted entries (e.g., pupil dilation exceeding pos-
sible ranges, whereby anisocoria or asymmetric pupils is rarely greater than 1mm [49], 
and normal pupil size in adults typically varies from 2-4mm in diameter in bright light 
and 4-8mm in the dark [50]) were discarded.  

In this paper, we report on the most notable DGM that reflect distinct behaviors for 
participants using one visualization versus the other such as those related to fixations 
and scanpaths. Fixations refer to those moments where the eyes are relatively stationary 
and holding a vision of focus in place, which are typically understood as information 
processing behaviors as a person stops scanning the visual scene at large but concen-
trating on extracting information from the targeted visual cues. Descriptive statistics of 
fixations are typically measured as sums and durations, which are indicative of the 
number of fixations required and the time needed to process information [51]. As a 
person scans for various fixations to focus on in a visual scene, the rapid eye movements 
between fixations are captured as saccades, which are typically understood as infor-
mation searching behaviors. Saccades are typically quantified through counts and du-
rations. In addition, a useful measure to capture the distances between successive fixa-
tions is saccadic length (in pixel). As a person searches and processes visual infor-
mation, a sequence of fixations and saccades can be captured, whereby the sum of all 
saccadic lengths (known as scanpath length) is typically used to reflect the complete 
visual journey commenced [51]. In this paper, average saccadic lengths and their stand-
ard deviations (StDev) are used to describe gaze behaviors sampled from the partici-
pants. Furthermore, fixation count, scanpath length, and the StDev of fixation durations 
are correlated to participant success.     

4 Results 

To prevent data distortion, out of all data collected from 81 participants, we discarded 
those from 8 participants who experienced various issues during the experiment, such 
as reflective wear (e.g., earrings) being sampled in gaze, leaning too close (e.g., placing 
elbows on desk) or too far (e.g., beyond the tolerated range as discussed in section 3.2) 
from the eye tracker. The findings shown in this paper are aggregated results of the 
remaining 73 individuals, whereby 35 participants completed the given tasks using LIL 
and 38 participants completed the same tasks using the matrix visualization. 

Fig. 2 presents the findings of participant success by task type. Across domains and 
irrespective of the type of task, participants were marginally more successful using the 
LIL (Fig. 2a-d). When creating new mappings, as shown in Fig. 3, those who used LIL 
produced higher quality mappings, which is evident in the higher precision (Fig. 3a), 
recall (Fig. 3b), and f-measure (Fig. 3c) compared to the group of participants who used 
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the matrix visualization. Fig. 4 presents the time it takes a participant to complete the 
series of given tasks. Those who used LIL were found to be marginally faster compared 
to the others who used the matrix visualization in the identification and validation task 
scenarios (Fig. 4a and Fig. 4b). Notably, when creating new mappings, those who used 
the matrix visualization were found to be faster at task completion (Fig. 4c). Overall, 
time on task is comparable irrespective of the visualization used, though a greater dif-
ference is evident in the Conference domain, whereby those who used the matrix visu-
alization were faster at task completion (Fig. 4d). In the identification tasks, participants 
who used LIL were faster at completing the given tasks and yielded higher success in 
the Conference domain. This is also echoed in the validation tasks across both domains, 
whereby the participants supported by LIL achieved higher success while needing less 
time. In the creation tasks however, participants who used the matrix visualization were 
faster at completing the given questions while being more successful in the Conference 
domain. When evaluating the quality of the new mappings participants generated in the 
open-ended question Q.15, those who were supported by LIL had generally produced 
more correct and complete results, yielding to better overall f-measure scores conse-
quently. The difference found across all aspects of success, time, and the quality of new 
mappings produced are marginal and relatively comparable. This result suggest that the 
LIL and the matrix visualization are relatively comparable to one another, since irre-
spective of the visualization used, the participants performed almost equally well in all 
questions across both domains. All differences shown in Fig. 2-4 reported greater than 
0.05 p-value, suggesting the differences found are not statistically significant. One no-
table finding is that in the Anatomy domain, participants were equally successful in the 
identification tasks irrespective of the visualization used (shown in Fig. 2a, where 
p>0.05), though those who used the LIL were faster (shown in Fig. 4a, where p>0.05). 

  
(a) Si (b) Sv 

  
(c) Sc (d) So 

Fig. 2. Task Success by Task Type (p>0.05). 
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(a) Cp (b) Cr (c) Cf-m 

Fig. 3. Precision, Recall, and F-Measure of the New Mappings Created (p>0.05). 
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Fig. 4. Task Time by Task Type (p>0.05).   
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Fig. 5. Saccadic Length Mean and Dispersion (p<0.01).  
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When comparing how participants divided their visual attention while interacting 
with the two visualizations, one notable observation is the statistically significant dif-
ferences found in the participants’ saccadic lengths and their StDev, as shown in Fig. 
5. Across both domains, the participants exhibited consistently smaller saccadic lengths 
(Fig. 5a) as well as smaller StDev in the dispersion of these saccadic lengths (Fig. 5b) 
when using the LIL. This result indicates that when using the LIL, participants gener-
ally fixated on visual cues that are closer by and that the disparity of various points of 
interest was smaller. In other words, this finding suggests that the matrix visualization 
in comparison requires visual searches of fixations that are located further apart and 
that there is a greater dispersion among various visual cues relevant to the participants. 
As such, the matrix visualization likely demands greater efforts from one’s visual per-
ceptual system in completing the given tasks shown in this paper. 

   
(a) LIL: r = 0.31, matrix: r = 

0.01 
(b) LIL: r = 0.36, matrix: r = 

0.18 
(c) LIL: r = 0.13, matrix: r = 

0.04 

Fig. 6. Correlations in the Anatomy Domain (p<0.05).  

   
(a) LIL: r = 0.24, matrix: r = 

0.26 (p<0.05) 
(b) LIL: r = 0.31, matrix: r = 

0.28 (p<0.05) 
(c) LIL: r = 0.05, matrix: r = -

0.08 (p>0.05) 

Fig. 7. Correlations in the Conference Domain.  

In order to examine relationships between one’s performance and this person’s vis-
ual attention spent during the interaction, we performed correlation coefficient tests as 
shown in Fig. 6 and Fig. 7. In the Anatomy domain, a participant’s creation success is 
found to be correlated with this person’s total fixation count (Fig. 6a), scanpath length 
(Fig. 6b), and the StDev of fixation durations (Fig. 6c). The r values indicate weak but 
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statistically significant positive relationships between a person’s success in creation 
tasks (Q.13-15) and the number of fixations this person sampled during the interaction, 
coupled with how extensive the entire scanpath was and how dispersed the person di-
vided their attention processing information at various fixations. Notably, to achieve 
the same level of success, a participant using the LIL typically generated fewer fixa-
tions, shorter scanpath, and more variation in the time spent on processing information. 
This finding suggests that in the context of mapping creation, the LIL may require less 
effort from the user while assisting them in accomplishing the same level of success 
compared to the matrix visualization, which likely demands greater numbers of fixa-
tions to be sampled and longer scanpaths from the user.  

 In the Conference domain, similar weak correlations are found though with reduced 
differences between the two visualizations as well as the correlative relationships them-
selves. Creation success and scanpath length continue to demonstrate a positive rela-
tionship (Fig. 7b), although the two visualization techniques exhibit almost exactly the 
same degree of correlations with a negligible difference. In contrast to the findings 
shown in Fig. 6a, participants with the same level of success in the creation tasks sam-
pled fewer fixations (Fig. 7a) when using the matrix visualization. In addition, partici-
pants who achieved higher success in the creation tasks exhibited greater consistency 
in the time spent on processing visual information at various fixations (Fig. 7c) when 
using the matrix visualization, though this result is not statically significant and the 
relationship is almost linear. This finding suggests that in the Conference domain when 
creating new mappings, there is marginal differences demanded from the two visuali-
zations, though the matrix visualization is likely to demand slightly less effort in com-
parison to the LIL.   

5 Conclusions and Future Work 

The findings shown in this paper add to the existing body of knowledge in interactive 
visualization for semantic data and particularly mappings between pairwise ontologies. 
Through controlled user studies and based on empirical results, we demonstrate that the 
LIL and matrix visualization are highly comparable in the task scenarios investigated 
in this paper, since they independently led to very similar user performance (i.e., suc-
cess in various types of mapping task, and time needed to complete them) in a between-
subject experimental setting across domains. In other words, the participants were as 
successful and efficient as one another irrespective of which visualization was used. 
However, there are notable differences in visual attention demanded in each visualiza-
tion group and how the participants arrived at those performance outcomes. Firstly, 
across domains, the LIL visualization is shown to have consistently demanded shorter 
physical travels of the eyes compared to the matrix visualization. This is likely due to 
their closer displays of the ontological entities that are visualized side-by-side. Sec-
ondly, in a less familiar scenario such as the organization of academic conferences 
(containing ontological concepts that are generally new to the participants in this ex-
periment), it makes little difference to the user irrespective of the visualization used 
when creating new mappings, considering that all participants exhibited similar gaze 
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behaviors to achieve the same level of success and task speed. Notably, in a more fa-
miliar scenario such as the human anatomy domain (with ontological concepts that are 
generally recognizable and understandable to the participants in this experiment), the 
LIL indicates less visual effort demanded from the users when creating new mappings. 
This finding suggests that in more challenging scenarios (be it domain related or other-
wise), it is likely that the LIL may be more appropriate to support novice users than the 
matrix visualization.   

While this study focuses on the mapping visualizations of ontology classes, future 
research may broaden the scope to include visualizations of instance and property as-
sociations made between two or more ontologies, as well as investigating effective vis-
ualizations for other types of mapping relationships beyond equivalences (e.g., part-of, 
disjoints, etc.) and one-to-one mappings (e.g., one-to-many). In addition, while there 
are infinite numbers of scenarios and domains that can also be investigated, further 
efforts focusing on specific types of mapping scenarios such as mismatches at the lan-
guage level (e.g., due to syntax, expressiveness, etc.) vs. structure level (e.g., due to 
differing ontology modeling convention, paradigms, granularity, coverage, etc.) may 
be useful in identifying effective visual primitives that are helpful in overcoming tar-
geted issues for the average user.  

The ontologies and mapping sets used in this study are relatively small in size, as 
such, we have not investigated how the LIL and matrix visualization would perform in 
large-scale ontology mappings. There is an opportunity to measure user experience in 
the context of creating and evaluating large sets of ontology mappings in future studies. 
Furthermore, though we did not find any statistically significant differences in Com-
puter Science vs. non-Computer Science participants or results across the two domains 
in this particular study, it may be speculated that distinct user backgrounds, domain 
knowledge, and personal preferences are potential attributing factors dictating various 
visual needs, future research focusing on eliciting gaze trends in novice vs. expert user 
groups in experiments designed specifically to extract differing behaviors from various 
user groups are needed in the refinement of mapping visualizations.  

Finally, empowered with the knowledge of user gaze during an interaction such as 
how one is searching and processing visual cues in real time, intelligent visualizations 
with adaptative features can be developed in the advancement of visualizations for the 
ISW, whereby we can envision adaptive ISW visualization systems (such as predicting 
user success and failure in real time based on gaze data during user interaction with 
ontology visualizations to recognize those potential moments to provide visual inter-
vention [52, 53]) suggesting differing visualization techniques and modifying visual 
primitives in an existing visualization in order to tailor to users’ changing needs in a 
visual scene with the overall goal of improving user success and reducing cognitive 
efforts.    
 
Supplemental Material Statement: Source code of the ontology pairs, their mapping 
visualizations, and the user tasks are available at https://github.com/TheD2Lab/ 
OntoMapVis. Source code used to analyze the participants’ eye gaze data is available 
at https://github.com/TheD2Lab/Eye.Tracking.Data.Analysis.For.Tobii.2150. 
The raw user data generated from the study is available upon request.    
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