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Abstract. Ontology embedding methods have been popular in recent
years, especially when it comes to representation learning algorithms
for solving ontology-related tasks. Despite the impact of large language
models on knowledge graphs’ related tasks, there has been less focus
on adapting these models to construct ontology embeddings that are
both semantically relevant and faithful to the ontological structure. In
this paper, we present a novel ontology embedding method that encodes
ontology classes into a pre-trained SBERT through random walks and
then fine-tunes the embeddings using a distance-based regression loss. We
benchmark our algorithm on four different datasets across two tasks and
show the impact of transfer learning and our distance-based loss on the
quality of the embeddings. Our results show that SORBET outperform
state-of-the-art ontology embedding techniques for the performed tasks.

Keywords: Ontology · Ontology Embedding · Transfer Learning · Rep-
resentation Learning · BERT · Sentence BERT

1 Introduction

In recent years, the field of Semantic Web has been changed by the rapidly
growing techniques in representation learning [19, 28]. Ontology-related tasks,
such as ontology alignment or subsumption prediction, have seen an emergence
of representation learning methods that have laid the foundation of future re-
search in those fields [28]. However, there has been less focus on one of the
main components of these methods: ontology embeddings. More precisely, the
mapping of classes and properties of an ontology into vector representations. As
representation learning gains popularity across ontology-related task, the neces-
sity of more accurate and significant ontology embeddings is also growing. And
with the rapid development of large language model that constantly outperforms
state-of-the-art, such as SentenceBERT[24], there is no doubt that leveraging the
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extensive knowledge learnt by these models could be beneficial for the embedding
of ontologies.

Traditional ontology embedding techniques have mainly been adapted from
knowledge graph embeddings, after the known successes of the latter [12] for
instance representation. TransE and TransR are good examples of well-known
KG embeddings that were adapted for ontology embeddings with algorithms
like DeepWalk [23] or Deep Graph Kernels [32]. However, applying the same
methods and principles for ontologies and KG may not be the most adequate
methodology. In comparison with KGs, ontologies contain taxonomical relations
( rdfs:subclassOf ), determining a hierarchy of parent and child concepts. KG
only contains instances of those concepts, which are linked together with specific
object properties. That is why rdfs:subclass relationships should be at the core
of ontology embeddings methods to construct meaningful embeddings.

In this paper, we present a Siamese network for Ontology embeddings Us-
ing a Distance-based Regression Loss and BERT (SORBET), a novel ontology
embedding approach. Our model is inspired by the task of ontology alignment,
which learns representations of classes by bringing equivalent classes closer to
each other and by pushing away the rest of the classes. We use the task of on-
tology alignment to obtain embeddings that are useful to represent classes and
usable in other downstream tasks. More precisely, our model is inspired from the
SEBMatcher system presented at OAEI 2022 [10], where BERT embeddings cre-
ated from random walks based on the ontological structure was first introduced.
However, SORBET changes the paradigm of the learning objective. Instead of
learning to classify pairs of positive (aligned classes) and negative samples (un-
aligned classes), the model is asked: what should be the distance between these
two classes if they were in the same ontology? This impacts the learning in a
major way. First, it is flexible in that it can be used in an unsupervised or semi-
supervised way. Secondly, the construction of the embeddings is driven by the
structure of the ontology, leading to a major impact on their quality. Finally, as
we show in the results, the training and embedding is not bound to be done on
one ontology at a time, meaning SORBET can be trained on many ontologies
simultaneously and transfer knowledge between them.

The contributions of this paper are summarized as follows:

– A novel ontology embedding method able to represent one or multiple on-
tologies in a same latent space using a pre-trained language model upon
random walks. Extending our SEBMatcher model [10], SORBET is able to
produce ontology embeddings in a more efficient process with a light-weight
model, while yielding more accurate representations.

– A novel training objective function that injects the structure of an ontology
into the latent space by reducing the distance of neighbouring classes with
a regression loss.

– An improved data sampling mechanism that increases non-trivial alignment
samples with an added semi-negative sampling based on graph neighbour-
hood.
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2 Related Work

2.1 Ontology and Knowledge Graph Embeddings.

In ontology embedding, the embedding of instances, known as KG embedding,
has been a popular line of research in recent years [19]. KG embedding has
usually been an inspiration in the development of ontology embedding later on
[18, 26]. Some popular approaches in KG embedding focus on minimizing the loss
in a classification task, using correct and incorrect triples as samples from the
KG. This category includes the translation-based models TransR and TransE
[4, 20]. Other methods use a word embedding approach, which revolves around
finding some way to express KGs in natural language sentences, then uses a NLP
embedding algorithm such as a Word2vec skip-gram or CBOW [22]. One of the
first methods in this category was Node2vec [11], where the main idea was to
create Random Walks through the KG that would be interpreted as sentences to
train the word2vec model. DeepWalk [23] and Deep Graph Kernel [32] had very
similar ideas but were geared towards the analysis of social network datasets like
BlogCatalog, Flickr, and YouTube. Deep Graph Kernel then extended the idea of
Deep Walk by modeling graph substructures instead of Random Walks. Similarly,
RDF2Vec [25] was introduced as a way to embed RDF graphs into vectors, by
also using random walks, and it has proved to be effective on large datasets such
as DBpedia. Finally, many recent models like KEPLER [30], K-BERT [21] and
CoLAKE [29] have shown how Large Language Models (LLM) can be effective
for KG embedding by producing text-enhanced entity representations.

In the field of ontology embedding, many works have been done related to
the word embedding approach. Onto2Vec [26] uses a reasoner combined with
the axioms of ontologies to create training data for the modeling of a word2vec
skip-gram. OPA2Vec [27] extends Onto2Vec by adding the meta-data informa-
tion provided by an ontology such as rdfs:comment. El Embeddings [18], on the
other hand, expands TransE for ontologies by transforming axioms into custom
losses depending on the axiom type, but does not include other ontology spe-
cific information such as meta-data. OWL2Vec* [5] takes full leverage of OWL
ontologies by using ontological structure and metadata as well as a reasoner
to infer axioms. It blends random walks and lexical information to fine-tune a
pre-trained word2vec model.

These approaches however share some limitations. Firstly, they construct
embeddings that are not meant to be generalized and likewise, knowledge is not
meant to be shared across embeddings of different ontologies. Secondly, they
do not leverage state-of-the-art language models, which can provide significant
comprehension and depth through transfer learning.

2.2 Tasks related to ontology embeddings.

One of the main tasks related to ontologies is ontolgy alignment (OA). The
ontology alignment task can be defined mathematically as the problem of finding
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a mapping of semantically equivalent classes, properties or instances between two
or more ontologies.

Many representation learning systems have emerged in OA in recent years.
Some approaches opted for the usage of large language models as the cornerstone
of their embeddings. Tom[17] and Fine-Tom [15] are both systems using the pre-
trained Sentence BERT. Fine-Tom extends Tom by fine-tuning the model on the
OAEI datasets. DAEOM uses BERT as part of a complex system complementing
its Graph Attention Transformers (GAT). Other approaches use BERT to pro-
duce a similarity score for a pair of candidate alignment. BERTMAP [13] uses
random walks to add context to the concepts and outputs a similarity score for
a subset of candidate mappings. SEBMatcher [10] uses both of the methods, by
leveraging Random Walks to calculate candidate alignments with BERT embed-
dings then doing a more accurate scoring of the pairs with a fine-tuned BERT.
Other approaches using standard word embeddings have also been explored. The
usage of Universal Sentence Embedding (USE) have produced good results for
VeeAlign [14] and GraphMatcher [9], which are models that use path and node
attention to create contextualized embeddings. LogMap-ML [6] uses OWL2Vec*
embeddings fine-tuned with a supervised classification task, then use LogMap’s
output as anchor mappings. Finally, SCBOW+DAE [16] is a top state-of-the-art
method that fine-tunes word2vec embeddings with extended knowledge coming
from ConceptNet, BabelNet and WikiSynonyms. For misalignment detection,
SCBOW+DAE uses a Denoising Auto Encoder (DAE) that encodes the embed-
dings in a smaller vector space.

Even with the success of representation learning in ontology alignment, it of-
ten face challenges when it comes to training data. Firstly, reference alignments
cannot be utilized during training, or in some cases, only a small portion of
such data is available. Consequently, the efficacy of systems relies heavily on the
quantity of pseudo-alignments that can be generated. This challenge is ampli-
fied in cases where ontologies are small and contain minimal metadata, such as
the conference track in the OAEI [2]. To overcome this hurdle, a strategy often
adopted is to rely more on pre-trained word vectors, as little training can be
performed. Secondly, the quality of generated training data can be poor depend-
ing of the dataset, since the high-precision positive alignments are often trivial
to align. When most of the training data comprises trivial alignments, the al-
gorithm’s performance may be biased towards classifying non-trivial alignments
as negative.

SORBET embeddings are partly inspired by these limitations. Indeed, it has
been found that transfer learning yields state-of-the-art results [13, 31], however,
the quality of the embeddings can still be poor due to the mentioned problems
that arise for OA. This motivates the idea of an ontology embedding technique
based on transfer learning that is not bound to the training objective of tradi-
tional OA models.
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3 Methodology

The foremost idea behind SORBET is to create BERT embeddings that are
representative of the ontological structure. To achieve this, close pairs of classes
in the ontology must be pushed together while distinct classes must be pushed
appart. Hence, a siamese network architecture is employed.

3.1 Architecture.

SORBET Embeddings follow a siamese architecture pattern using Sentence
BERT[24], a pre-trained Siamese BERT model. Figure 1 shows the general ar-
chitecture of our model. In the SentenceBERT paper, the authors fine-tuned the
model on a binary classification task where pairs of sentences are either classified
as synonyms or antonyms. SORBET follows the same principle, but instead of a
pair of sentences, a pair of tree walks representing classes is fed to the model. The
output is then filtered by the pooling layer and a regression distance-based loss
is applied. The tree walks are obtained through our data sampling mechanism,
which generates positive, semi-negative and negative samples in a stochastic
process.

Fig. 1: General Architecture
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Preprocessing For every class and property, the associated descriptive label is
tokenized and case-folded. If the tokens are not part of the pre-trained BERT
vocabulary, a basic spelling corrector algorithm is applied1 to deal with some
errors in input labels. For ontologies that associate more than one label or syn-
onyms to classes, SORBET creates a list of descriptive terms for these classes
and randomly chooses labels from this list during training.

Tree Walk A tree walk is the process of finding multiple distinct random walks,
where a random walk is a sequence of classes, starting from a given concept and
iterating randomly through the ontological structure. Each iteration adds a sub-
sequent class randomly chosen from the set of 1-hop neighbors of its preceding
class in the random walk, by considering subclassOf and object properties re-
lations. These random walks are used as the textual representation of the root
concept and its context when they are fed into the BERT model. The algorithm
of the Tree Walk, algorithm 1, is a derivation of the original algorithm described
in SEBMatcher [10]. The first change is that both the number of tree walks and
the walk length are now interval hyper-parameters instead of having a fixed min-
imum of 0, so to increase regularization. Furthermore, the concatenation token
was changed to "[SEP]" instead of ";". Experiments showed that using the pre-
trained special token "[SEP]" produced slightly better results than the previous
approach.

Algorithm 1 Tree walk
Input: Source ontology O, concept c0 from the ontology O
Output: T
1: Initialize set of visited nodes: Cv ← {c0}
2: Initialize tree walk: T ← [ ]
3: n_branch← randint(1..number of neighbours)
4: for i := 1 to n_branch do
5: Initialize walk: W ← [ ]
6: walk_len← randint(1..max_len)
7: Append c0 to W
8: for j := 1 to walk_len do
9: current_concept←Wj

10: neighbours← get_neighbours(current_concept) /Cv

11: next_concept, relation ← choose_random_neighbour(neighbours)
12: Append relation to W
13: Append next_concept to W
14: Cv ← Cv ∪ next_concept

15: Append END_TOKEN to W
16: T ← T +W

1 https://github.com/filyp/autocorrect
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Random Masks A masking strategy is used during training with the idea of
regularizing the model. In fact, an undesirable effect during training would be
that the model overfits on the label of the root concepts alone without using the
context provided by the Tree Walk. In order to prevent this, the root concept is
entirely masked 15% of the time, while the remaining 85% of samples will have
a random mask applied to 15% of the subtokens.

MEAN Pooling The pooling layer intends to compute the final vector repre-
sentation of a concept derived from the output of the BERT model. To do so,
the pooling layer computes the mean vector of the BERT outputs related to the
root concept (highlighted in figure 1). Subsequently, all other embeddings in the
tree walk are discarded.

3.2 Data Sampling.

Training data consists of pairs of classes that should be pushed toward or apart
from each other depending on their similarity score (1 meaning they should be
pushed together). It is composed of positive, semi-negative and negative samples.
Positive samples are pairs of classes that have a similarity score of 1, meaning
they are equivalent concepts. Semi-negative samples are pairs of distinct neigh-
bouring classes in the ontological structure, meaning their similarity score is
between 0 and 1 exclusively. Negative samples are distinct classes with disjoint
neighbourhood, they have a similarity score of 0. The training data is obtained
through our data sampling mechanism, which generates pairs of concepts in a
stochastic process using two different sampling strategies: intra-ontology sam-
pling and inter-ontology sampling. Intra-ontology sampling refers to pairs of
concepts from the same ontology while inter-ontology sampling refers to pairs
of concepts from two different ontologies. Inter-ontology sampling can only be
applied if the two following conditions are met: there are 2 or more ontologies,
and positive alignments can be inferred from these ontologies. The utilisation
of both strategies enhances data augmentation and makes SORBET flexible for
the embedding of one or several ontologies.

Positive sampling Firstly, we create a set of positive intra-ontology samples
where each concept is paired with itself M+

intra : {(ci, ci) : ∀ci ∈ O,O′}. Then
a set of inter-ontology samples is obtained through a String matcher, which is
the simple process of matching each concept from a source and target ontology
that has the exact same rdfs:label. To further augment the quality of training
data, we sample a subset of positive alignments that are chosen randomly from
the reference alignments of the ontology alignment task. The resulting set of
alignments denoted as M+

inter is the union of the String matched samples and
the reference alignments samples.

Semi-negative sampling Semi-negative samples use both intra and inter-
ontology sampling strategies. A semi-negative sample is obtained by choosing
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a random concept ci from the ontology O and pairing it with any another con-
cept cj from either the same ontology O or a different ontology O′ such that
d(ci, cj) < A. The definition of the distance function d and the hyper-parameter
A are described in section 3.3.

Negative sampling Negative samples are generated much like semi-negative
samples, but with the opposite condition d(ci, cj) ≥ A. Additionally, cross-
ontology negative pairs obtained with the inter-ontology strategy cannot have an
undefined distance between them. Such case would happen if the cross-ontology
distance between the pair cannot be approximated, for example if there are no
positive sample (ci, cj) ∈ M+

inter such as ci ∈ O, cj ∈ O′.
The final training set M is built by carefully balancing the generation of

samples. For every learning batch, the ratio of positive samples is set to λpositive,
the ratio of semi-negative to negative samples is λsemi and finally the ratio of the
usage of inter to intra sampling strategy is λinter. During the training, one epoch
corresponds to one iteration of the model on all positive samples and for each
batch, new semi-negative and negative samples are generated. It is necessary
for the process to be stochastic, since there are too many possibilities of semi-
negative and negative pairs to realistically iterate through them all.

3.3 Regression Distance-based Loss.

The Regression Distance-based Loss is a geometric approach that is inspired by
the traditional classification losses used in ontology alignment. The objective
of this function is to calculate a similarity score from a pair of classes that is
proportionate to the distance between them. We compare this similarity score
with the cosine similarity generated by the Siamese network using Mean Squared
Error (MSE), and use this metrics for the gradient descent. The equation of the
loss can be defined as the following:

L =
1

|M |
∑

(ci,cj)∈M

[(simθ(ci, cj)−
A−min(d(ci, cj), A)

A
)2] (1)

Where the function simθ is the cosine similarity of the vector representation
of the concepts produced by the Siamese network. A is an upper bound on the
distance between concepts, its optimal value can vary across datasets and can be
tuned as a hyper-parameter. The function d is defined in the following section.

Definition 1. Let d be a function returning the shortest distance between a
source concept ci and a target concept cj. Where a distance can be calculated by
iterating through the ontological structure only considering rdfs:subclassof rela-
tionships.

SORBET uses a cross-ontology distance, which is a distance where the
source ci and target concept ck originate from different ontologies. Since there
are no direct connections between 2 different ontologies, a distance cannot be
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Fig. 2: Example in which the distance between Author and Person in the source
Ontology is 1, while the distance between Author and Book is 3.

fetched directly. However we can utilize a positive mapping (ci, cj) ∈ M+
inter to

approximate the distance d(ci, cj) to d(cj , ck) instead.

d(ci, ck) ≈ d(cj , ck|(ci, cj) ∈ M+
inter) (2)

where ci ∈ O and cj , ck ∈ O′

The distance function can be visualized in both figure 2 and figure 3. In figure
2, the path between Author and Thing is obtained with two iterations through
the hierarchical structure, it can also be observed that the distance between
Author and Book is three even if they are linked by an object property. In figure
3, the knowledge of the alignment of Person and Human allows the model to
approximate the distance between Book and Human.

4 Experiments

We experiment with SORBET embeddings on two downstream tasks: ontology
alignment and ontology subsumption.

Formally, given two ontologies O and O′, the ontology alignment task can
be defined as finding a mapping M between the set of concepts C in O and the
concepts C ′ in O′, such that M is a subset of CxC ′, and each pair of concepts
in M is a pair of equivalent concepts.

The subsumption prediction task is a task that involves predicting whether
one concept in an ontology O is a subclass of another concept in the same
or another ontology. It is a classification problem, where the input is a pair
of concepts (A, B), and the output is a binary label indicating whether A is
subsumed by B or not.
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Fig. 3: Example of the approximation of a distance between cross-ontology con-
cepts

4.1 Datasets.

Table 1 shows some descriptive statistics on our datasets.
For the evaluation on the ontology alignment task, the OAEI 2022 2 tracks

Anatomy and Conference were used as the evaluation datasets. The Conference
track is a combination of 16 small ontologies totaling 867 classes describing the
conference organization domain. The evaluation is performed with the refer-
ence alignments of a subset of 7 of those ontologies, using the ra1-m1 subset.
The Anatomy track is the alignment of the mouse anatomy (MA) and the hu-
man anatomy (NCI), with respectively 2744 and 3304 classes. These tracks were
trained and evaluated simultaneously with the same SORBET model.

For the subsumption task, our model is benchmarked on two different datasets:
FoodOn[8] and Gene Ontology (GO)[3, 7] . FoodOn3 is an ontology capturing
a vast amount of information about food, it has 28,182 classes and 29,778 sub-
sumption relations. GO4 is a well-known bioinformatic ontology, that captures
information about the functions of genes, with 44,244 classes and 72,601 sub-
sumption relations.

4.2 Model.

The SORBET model used in the experiments is fine-tuned from the pre-trained
Sentence BERT weights trained on the natural language inference (NLI) dataset,
it is available in Huggingface using sentence-transformers/bert-base-nli-mean-
tokens. This version of SentenceBERT was used since it has the advantage of
being already pre-trained on the similar task of scoring similar inputs.
2 https://oaei.ontologymatching.org/2022/
3 https://foodon.org/
4 http://geneontology.org/ontology/ accessed on the 2020-09-08
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Table 1: Statistics of the benchmarked datasets and their ontologies
Datasets Number of ontologies Avg. number of classes Avg. number of subsumptions

Conference 16 54 78
Anatomy 2 3,024 4,958
FoodOn 1 28,182 29,778

GO 1 44,244 72, 601

Hyperparameters. For the loss function, we set the upper maximum bound
A = 4. In the alignment sampling, we set λpositive = 0.5, λsemi = 0.6, λinter =
0.8, and 20% of the available reference alignments in the tracks are used in
training. Moreover, the set of considered neighbours in the construction of the
Random Walks for contextual data is composed of parents, children and object
properties. The impacts of those hyper-parameter are kept for future works. Each
epoch iterates over all positive alignments and the batch size is set to 32. The
training lasts for 3 epochs. During both training and prediction, the number of
paths in the tree walk is randomly chosen in the interval [0, 5], and the length
of each path in the interval [2, 6].

4.3 Experiments on the Ontology Alignment Task

In this section, SORBET embeddings, as well as other baseline embeddings, are
evaluated on the ontology alignment task. To achieve this, we use the embeddings
obtained through various methods to compute the similarity of pairs of concepts,
and sort them in decreasing order. Then for each reference alignment, we evaluate
how far off the pair was in the ordered list of predicted pairs. Since our model
is trained on part of the reference alignments, the testing dataset excludes all of
the training alignments. Our evaluation metric is Hits@K:

Hits@K =
|{m ∈ Mref/M

+
ref |Rank(m) ≤ K}|

|Mref/M
+
ref |

(3)

Where Mref is the set of reference alignments, M+
ref is the subset (20%) of

the reference alignments used in training. The function Rank() is a function
that determines how far off the algorithm was to giving the right alignment.
To achieve this, it outputs the rank of the reference alignment (ci, cj) the list
of predicted pairs of alignments [(ci, c0), (ci, c1), ...(ci, cj)...(ci, cn)] where pairs
are listed in descending order according to the cosine similarity between the two
embeddings produced by the model in table 2.

Table 2 presents the performance of SORBET embeddings for the ontology
alignment tasks on the anatomy and conference tracks of the OAEI 2022. For
this task, we compare our model with the baseline OWL2Vec*, a state-of-the-art
model in ontology embeddings. We also compare our model with SentenceBERT,
a state-of-the-art sentence embedding model, for which the embeddings of classes
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are fetched by passing their preprocessed label in the model. OWL2Vec* embed-
dings were obtained using the code provided by its authors5, while the Sen-
tenceBERT model can be obtained through its main version on huggingface. 6.
Another aspect of this study is the comparison of regression distance-based loss
(SORBET) to the traditional classification loss used in OA models. Therefore,
we ran another version of SORBET for which the regression distanced-based loss
is replaced with a classification loss (SORBET(Classification)). This is done by
omitting the creation of semi-negative samples (λsemi = 0.0).

Table 2: Comparison of different embeddings for the ontology alignment task

Models Conference Anatomy
Hits@1 Hits@5 Hits@10 Hits@1 Hits@5 Hits@10

SORBET(Classification) 0.8108 0.9034 0.9305 0.8502 0.9307 0.9426
SentenceBert 0.7568 0.8687 0.8996 0.7784 0.8740 0.8984
Owl2Vec* 0.7876 0.9073 0.9343 0.7427 0.8232 0.8470
SORBET Embeddings 0.9095 0.9809 0.9904 0.9024 0.9636 0.9760

As the result shows, SORBET outperforms the baselines for all metrics. It can
also be noticed that the performance is not affected by the training of SORBET
on different domains and ontology sizes simultaneously.

4.4 Experiments on the Subsumption Task.

Table 3 shows the performance of SORBET embeddings on the subsumption task
using the FoodOn and GO case studies. For this task, the employed baselines are:
RDF2Vec [25], a well-known KG embedding algorithm, Onto2Vec[26], which is
a more traditional ontology embeddings model, OWL2Vec*, SentenceBert and
SORBET(classification). The performance of baselines models are taken from
the benchmark of the Owl2Vec* paper [5]. The following Hits@K is computed,
where Msub is a test set of subclass axioms that were removed from the ontology
used in training.

Hits@K =
|{m ∈ Msub|Rank(m) ≤ K}|

|Msub|
(4)

The Rank() function is similar to the one in the OA task, however, the simi-
larity score is changed to follow the same methodology of the OWL2Vec* paper
[5]. In this evaluation framework, the embeddings of every concept is obtained
using one of the models in Table 3. Then, using those embeddings, a Random
Forest classifier is trained to classify a dataset of true and false subclass rela-
tionship pairs. Finally, for every pair of concepts, instead of the cosine similarity,
5 https://github.com/KRR-Oxford/OWL2Vec-Star
6 https://huggingface.co/sentence-transformers/bert-base-nli-mean-tokens
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their embeddings are fed to the Random Forest classifier and the output is used
as the similarity score.

Table 3: Comparison of different embeddings for the subsumption prediction
task

Models FoodOn GO
Hits@1 Hits@5 Hits@10 Hits@1 Hits@5 Hits@10

RDF2Vec 0.053 0.097 0.119 0.017 0.057 0.087
Onto2Vec 0.014 0.047 0.064 0.008 0.031 0.053
OWL2Vec* 0.143 0.287 0.357 0.076 0.258 0.376
SentenceBERT 0.074 0.186 0.256 0.059 0.171 0.225
SORBET (classification) 0.040 0.060 0.080 0.039 0.120 0.158
SORBET embeddings 0.169 0.417 0.521 0.090 0.310 0.423

Overall, SORBET embeddings outperform the state-of-the-art for both the
ontology alignment and subsumption tasks. Without surprise, the task of OA has
the most noticeable difference. Not only because the training objective is partly
a OA task objective, but also because the conference dataset does not gather
much training data, meaning transfer learning has the uttermost importance. It
is also noticeable that while the results are high, no hyper-parameter tuning is
done for the different datasets and tasks, therefore showing the regularization of
the model. Finally, as the same embeddings were all learnt and utilized simulta-
neously for the benchmark of the datasets, the model is able to generalize while
preventing overfitting on a single ontology.

4.5 Ablation Study.

In this ablation study, we measure how specific components of the model have
an impact on the final result.

The pre-training p of the BERT refers to the usage of the pre-trained Sentence
BERT. w indicates whether the model used Tree Walks in training, if not, only
the label of concepts are used as input. Finally, r indicates if a portion (20%) of
the reference alignments were used as positive alignments.

The results of the ablation study, table 4, demonstrate the importance of
the different aspects of SORBET embeddings. First of all, the regression loss
makes most of the boost in performance in both tested datasets compared to
the traditional classification loss. The augmented input with context had a large
impact for the conference dataset, however the same cannot be said for the
anatomy track. This could be because of the difference in the nature of both
datasets. In fact, the labels of concepts in the conference dataset tend to be
less detailed, which may be why the use of the context makes such difference.
Finally, as expected, the use of reference alignments in training increases the
performance by a significant margin. Even though the Hits@5 and Hits@10 do
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not seem impacted by this change, the small performance gap could be due to
the already very high scores.

Table 4: Results of the ablation study

Models Conference Anatomy
Hits@1 Hits@5 Hits@10 Hits@1 Hits@5 Hits@10

SORBET 0.7374 0.8996 0.9112 0.7790 0.8760 0.9010
SORBETp 0.8069 0.9537 0.9730 0.8845 0.9512 0.9611
SORBETp+w 0.8764 0.9652 0.9846 0.8812 0.9538 0.9690
SORBETp+w+r(Classification) 0.8108 0.9034 0.9305 0.8502 0.9307 0.9426
SORBETp+w+r 0.9095 0.9809 0.9904 0.9024 0.9636 0.9760

5 Discussion

5.1 Ontological representation.

The main goal of SORBET embeddings is to obtain a more accurate represen-
tation of the ontological structure in the latent space. This goal is achieved by
tweaking a OA classification loss so that every neighbour concepts have a grad-
ually higher loss the further they are apart from each other. This constraint
inherently builds the latent space in the desired way because the embeddings
that would produce the minimum possible loss are the ones where the onto-
logical structure could be perfectly deduced from the latent space. One could
view this as a web of concepts being held together by subclassOf relationships.
Conversely, with a classification loss, a model does not have any way of keep-
ing neighbouring concepts together in a structured way. Equivalent concepts
are indeed pushed together, however, negative samples push every other pair of
concepts away from each other. This results into a very chaotic latent space.

The experiment in figure 4 demonstrates this phenomenon. We initially plot
the latent space of the embeddings created by SORBET into a 2D space using
PCA for a single ontology. Secondly, we plot the same ontology but with embed-
dings resulting from SORBET trained with a classification loss. We then plot
every rdfs:subclass relationship in order to visualise the structure of the ontol-
ogy in the latent space. The results show undoubtedly that the regression loss
creates a more organised space. The tree-like structure depicted in the projec-
tion imitates the hierarchical structure of the ontology: the leaf nodes aggregate
into a larger group of nodes which then aggregate to the root (top-level class).
Furthermore, the model creates separate clusters for different aspects of the on-
tology. The cluster on the left represent every element that is a derivative of
"Event", while the ontology on the right regroups all derivatives of "Person".
Isolated concepts are separated from any of these clusters.
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(a) Classification Loss embeddings (b) Regression Loss embeddings

Fig. 4: Comparison of embeddings obtained with different loss functions, using
the ontology "confof" in the Conference track

5.2 Superposed ontologies.

An important feature of SORBET embeddings is that the concepts of any on-
tologies can be trained and superposed in the same latent space. As the previous
analysis showed, the nature of the training objective leads to clusters of tree-like
structures for each distinct ontologies to be distributed across the vector space.
But the training objective of the regression loss is also directed at making over-
laps of similar clusters. For example, a cluster of the ontology O associated with
the concept "Person", and another cluster from the ontology O′ associated with
concept "User" should have an overlap. This can be achieved in our loss function
with inter-ontology positive and negative sampling if there is at least one map-
ping that anchors the clusters. In this example, if "User" and "Person" both have
the child concept "Member", the two clusters will be pushed towards each other,
resulting in an overlap. Consequently, the embeddings are much more coherent,
and this enables the possibility of training on multiple domains simultaneously.

5.3 Limitations of our approach

While SORBET has many perks, there are still drawbacks to our approach. The
most evident one is that, in order to construct training data, there must be a
high amount of rdfs:subclassOf relationships. In fact, the more an ontology has
an average depth closer to 0, the more the learning objective becomes a classi-
fication task. Consequently, the usage of the regression loss become much more
advantageous when trained on deep and complex ontologies. Another flaw of the
approach is the immutable value of a distance between 2 concepts related by a
single rdfs : subclassOf relationship. The underlying fact for this hypothesis is
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that concepts closer to the root of an ontology have different taxonomic relations
than concepts further down the hierarchy. For example, the distance between the
pair "Thing" and "Person" should be higher than the distance between "Paper"
and "Short Paper", even though both pairs are neighbouring concepts.

6 Conclusion

In this paper, we presented how SORBET embeddings are a better alternative
to traditional classification-refined embeddings. The Hits@K have shown a sig-
nificant improvement, indicating a higher quality of the embeddings. The visual
analysis also demonstrates the continuity of the ontology’s structure into the
latent space, and how this affects the performance of the model. In addition
SORBET embeddings tend to be much less chaotic than those obtained using
classification, yielding more robust results. In future work, we plan to experi-
ment with different combinations of rules that could improve the estimation of
distances between concepts, as well as finding new ways to train our model on
shallow ontologies.

Supplemental Material Statement Source code and datasets can be found on its
Github repository7

Acknowledgment This research has been funded by the NSERC Discovery Grant
Program. The authors acknowledge support from Compute Canada for providing
computational resources.

References

1. Ontology Matching 2021 : Proceedings of the 16th International Workshop on On-
tology Matching co-located with the 20th International Semantic Web Conference
(ISWC 2021), CEUR Workshop Proceedings, vol. 3063. CEUR-WS.org (2021)

2. Ontology Matching 2022 : Proceedings of the 17th International Workshop on
Ontology Matching (OM 2022) co-located with the 21th International Semantic
Web Conference (ISWC 2022), Hangzhou, China, virtual conference, October 23,
2022, CEUR Workshops Proceedings, vol. 3324. CEUR-WS.org (2022)

3. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M.,
Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-
Tarver, L., Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald,
M., Rubin, G.M., Sherlock, G.: Gene ontology: tool for the unification of biol-
ogy. Nature Genetics 25(1), 25–29 (May 2000). https://doi.org/10.1038/75556,
https://doi.org/10.1038/75556

4. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. Advances in neural information
processing systems 26 (2013)

7 https://github.com/Lama-West/SORBET_ISWC23



SORBET Ontology Embeddings 17

5. Chen, J., Hu, P., Jimenez-Ruiz, E., Holter, O.M., Antonyrajah, D., Horrocks, I.:
OWL2Vec*: embedding of OWL ontologies. Machine Learning 110(7), 1813–1845
(2021). https://doi.org/10.1007/s10994-021-05997-6

6. Chen, J., Jiménez-Ruiz, E., Horrocks, I., Antonyrajah, D., Hadian, A., Lee, J.:
Augmenting ontology alignment by semantic embedding and distant supervision.
In: The Semantic Web: 18th International Conference, ESWC 2021, Virtual Event,
June 6–10, 2021, Proceedings 18. pp. 392–408. Springer (2021)

7. Consortium, T.G.O.: The Gene Ontology resource: enriching a
GOld mine. Nucleic Acids Research 49(D1), D325–D334 (12 2020).
https://doi.org/10.1093/nar/gkaa1113, https://doi.org/10.1093/nar/gkaa1113

8. Dooley, D.M., Griffiths, E.J., Gosal, G.S., Buttigieg, P.L., Hoehndorf, R., Lange,
M.C., Schriml, L.M., Brinkman, F.S.L., Hsiao, W.W.L.: Foodon: a harmonized food
ontology to increase global food traceability, quality control and data integration.
npj Science of Food 2(1), 23 (Dec 2018). https://doi.org/10.1038/s41538-018-
0032-6, https://doi.org/10.1038/s41538-018-0032-6

9. Efeoglu, S.: Graphmatcher: A graph representation learning approach for ontol-
ogy matching. In: Ontology Matching 2022 : Proceedings of the 17th International
Workshop on Ontology Matching (OM 2022) co-located with the 21th International
Semantic Web Conference (ISWC 2022), Hangzhou, China, virtual conference, Oc-
tober 23, 2022 [2], pp. 174–180

10. Gosselin, F., Zouaq, A.: Sebmatcher results for oaei 2022. In: Ontology Matching
2022 : Proceedings of the 17th International Workshop on Ontology Matching (OM
2022) co-located with the 21th International Semantic Web Conference (ISWC
2022), Hangzhou, China, virtual conference, October 23, 2022 [2], pp. 202–209

11. Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: Pro-
ceedings of the 22nd ACM SIGKDD international conference on Knowledge dis-
covery and data mining. pp. 855–864 (2016)

12. Gutiérrez-Basulto, V., Schockaert, S.: From knowledge graph embedding to ontol-
ogy embedding? an analysis of the compatibility between vector space represen-
tations and rules. In: International Conference on Principles of Knowledge Repre-
sentation and Reasoning (2018)

13. He, Y., Chen, J., Antonyrajah, D., Horrocks, I.: Bertmap: a bert-based ontology
alignment system. In: Proceedings of the AAAI Conference on Artificial Intelli-
gence. vol. 36, pp. 5684–5691 (2022)

14. Iyer, V., Agarwal, A., Kumar, H.: VeeAlign: Multifaceted context representa-
tion using dual attention for ontology alignment. In: Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing. pp. 10780–
10792. Association for Computational Linguistics, Online and Punta Cana, Do-
minican Republic (Nov 2021). https://doi.org/10.18653/v1/2021.emnlp-main.842,
https://aclanthology.org/2021.emnlp-main.842

15. Knorr, L., Portisch, J.: Fine-tom matcher results for oaei 2021. In: Ontology Match-
ing 2021 : Proceedings of the 16th International Workshop on Ontology Matching
co-located with the 20th International Semantic Web Conference (ISWC 2021) [1],
pp. 144–151

16. Kolyvakis, P., Kalousis, A., Smith, B., Kiritsis, D.: Biomedical ontology alignment:
an approach based on representation learning. Journal of biomedical semantics
9(1), 1–20 (2018)

17. Kossack, D., Borg, N., Knorr, L., Portisch, J.: Tom matcher results for oaei 2021.
In: Ontology Matching 2021 : Proceedings of the 16th International Workshop on
Ontology Matching co-located with the 20th International Semantic Web Confer-
ence (ISWC 2021) [1], pp. 193–198



18 F. Gosselin et al.

18. Kulmanov, M., Liu-Wei, W., Yan, Y., Hoehndorf, R.: El embeddings: Geometric
construction of models for the description logic el ++. In: International Joint
Conference on Artificial Intelligence (2019)

19. Li, C., Li, A., Wang, Y., Tu, H., Song, Y.: A survey on approaches and applications
of knowledge representation learning. In: 2020 IEEE Fifth International Conference
on Data Science in Cyberspace (DSC). pp. 312–319. IEEE (2020)

20. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embed-
dings for knowledge graph completion. In: Proceedings of the AAAI conference on
artificial intelligence. vol. 29 (2015)

21. Liu, W., Zhou, P., Zhao, Z., Wang, Z., Ju, Q., Deng, H., Wang, P.: K-bert: Enabling
language representation with knowledge graph. In: AAAI Conference on Artificial
Intelligence (2019), https://api.semanticscholar.org/CorpusID:202583325

22. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. In: 1st International Conference on Learning Represen-
tations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013, Workshop Track
Proceedings (2013)

23. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning of social represen-
tations. In: Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining. pp. 701–710 (2014)

24. Reimers, N., Gurevych, I.: Sentence-bert: Sentence embeddings using siamese bert-
networks. In: Conference on Empirical Methods in Natural Language Processing
(2019)

25. Ristoski, P., Rosati, J., Di Noia, T., De Leone, R., Paulheim, H.: Rdf2vec: Rdf
graph embeddings and their applications. Semantic Web 10(4), 721–752 (2019)

26. Smaili, F.Z., Gao, X., Hoehndorf, R.: Onto2vec: joint vector-based representation
of biological entities and their ontology-based annotations. Bioinformatics 34(13),
i52–i60 (2018)

27. Smaili, F.Z., Gao, X., Hoehndorf, R.: Opa2vec: combining formal and informal
content of biomedical ontologies to improve similarity-based prediction. Bioinfor-
matics 35(12), 2133–2140 (2019)

28. Sousa, G., Lima, R., Trojahn, C.: An eye on representation learning in ontol-
ogy matching. In: Ontology Matching 2022 : Proceedings of the 17th International
Workshop on Ontology Matching (OM 2022) co-located with the 21th International
Semantic Web Conference (ISWC 2022), Hangzhou, China, virtual conference, Oc-
tober 23, 2022 [2], pp. 49–60

29. Sun, T., Shao, Y., Qiu, X., Guo, Q., Hu, Y., Huang, X., Zhang, Z.: Colake: Con-
textualized language and knowledge embedding. ArXiv abs/2010.00309 (2020),
https://api.semanticscholar.org/CorpusID:222090412

30. Wang, X., Gao, T., Zhu, Z., Liu, Z., Li, J.Z., Tang, J.: Kepler: A unified
model for knowledge embedding and pre-trained language representation. Trans-
actions of the Association for Computational Linguistics 9, 176–194 (2019),
https://api.semanticscholar.org/CorpusID:208006241

31. Wu, J., Lv, J., Guo, H., Ma, S.: Daeom: A deep attentional embedding approach
for biomedical ontology matching. Applied Sciences 10, 7909 (2020)

32. Yanardag, P., Vishwanathan, S.: Deep graph kernels. In: Proceedings of the 21th
ACM SIGKDD international conference on knowledge discovery and data mining.
pp. 1365–1374 (2015)


