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Abstract. Question answering over temporal knowledge graphs (TKGQ
A) has recently found increasing interest. Previous related works aim to
develop QA systems that answer temporal questions based on the facts
from a fixed time period, where a temporal knowledge graph (TKG)
spanning this period can be fully used for inference. In real-world sce-
narios, however, it is common that given knowledge until the current
instance, we wish the TKGQA systems to answer the questions asking
about future. As humans constantly plan the future, building forecasting
TKGQA systems is important. In this paper, we propose a novel task:
forecasting TKGQA, and propose a coupled large-scale TKGQA bench-
mark dataset, i.e., ForecastTKGQuestions. It includes three types
of forecasting questions, i.e., entity prediction, yes-unknown, and fact
reasoning questions. For every question, a timestamp is annotated and
QA models only have access to TKG information prior to it for answer
inference. We find that previous TKGQA methods perform poorly on
forecasting questions, and they are unable to answer yes-unknown and
fact reasoning questions. To this end, we propose ForecastTKGQA, a
TKGQA model that employs a TKG forecasting module for future in-
ference. Experiments show that it performs well in forecasting TKGQA.

1 Introduction

Knowledge graphs (KGs) model factual information by representing every fact
with a triple, i.e., (s, r, o), where s, o, r, are the subject entity, the object entity,
and the relation between s and o, respectively. To adapt to the ever-evolving
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knowledge, temporal knowledge graphs (TKGs) are introduced, where they ad-
ditionally specify the time validity of every fact with a time constraint t (e.g.,
a timestamp), and represent each fact with a quadruple (s, r, o, t). Recently,
TKG reasoning has drawn increasing attention. While a lot of methods focus
on temporal knowledge graph completion (TKGC) where they predict missing
facts at the observed timestamps, various recent methods pay more attention to
forecasting the facts at unobserved future timestamps in TKGs.

Knowledge graph question answering (KGQA) is a task aiming to answer nat-
ural language questions using a KG as the knowledge base (KB). KGQA requires
QA models to extract answers from KGs, rather than retrieving or summarizing
answers from text contexts. [21] first introduces question answering over tempo-
ral knowledge graphs (TKGQA). It proposes a non-forecasting TKGQA dataset
CronQuestions that takes a TKG as its underlying KB. Temporal reasoning
techniques are required to answer these questions. Though [21] manages to com-
bine TKG reasoning with KGQA, it has limitations. Previous KGQA datasets,
including CronQuestions, do not include yes-no and multiple-choice questions,
while these two question types have been extensively studied in reading com-
prehension QA, e.g., [13]. Besides, the questions in CronQuestions are in a
non-forecasting style, where all questions are based on the TKG facts that hap-
pen in a fixed time period, and an extensive TKG that is fully observable in
this period can be used to infer the answers, making the answer inference less
challenging. For example, the TKG facts from 2003, including (Stephen Robert
Jordan, member of sports team, Manchester City, 2003 ), are all observable to
answer the question Which team was Stephen Robert Jordan part of in 2003?.
CronQuestions manages to bridge the gap between TKGC and KGQA, how-
ever, no previous work manages to combine TKG forecasting with KGQA, where
only past TKG information can be used for answer inference.

In this work, we propose a novel task: forecasting question answering over
temporal knowledge graphs (forecasting TKGQA), together with a coupled large-
scale dataset, i.e., ForecastTKGQuestions. We generate forecasting questions
based on the Integrated Crisis Early Warning System (ICEWS) Dataverse [2],
and label every question with a timestamp. To answer a forecasting question,
QA models can only access the TKG information prior to the question times-
tamp. The contribution of our work is three-folded: (1) We propose forecasting
TKGQA, a novel task aiming to test the forecasting ability of TKGQA mod-
els. To the best of our knowledge, this is the first work binding TKG forecasting
with temporal KGQA; (2) We propose a large-scale benchmark TKGQA dataset:
ForecastTKGQuestions. It contains three types of questions, i.e., entity pre-
diction questions (EPQs), yes-unknown questions (YUQs), and fact reasoning
questions (FRQs), where the last two types of questions have never been consid-
ered in previous KGQA datasets5; (3) We propose ForecastTKGQA, a model
aiming to solve forecasting TKGQA. It employs a TKG forecasting module and
a pre-trained language model (LM) for answer inference. Experimental results
show that it achieves great performance on forecasting questions.

5 YUQs are based on yes-no questions and FRQs are multiple-choice questions.
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2 Preliminaries and Related Work

TKG Reasoning Let E , R and T denote a finite set of entities, relations, and
timestamps, respectively. A TKG G is defined as a finite set of TKG facts repre-
sented by quadruples, i.e., G = {(s, r, o, t)|s, o ∈ E , r ∈ R, t ∈ T }. We define the
TKG forecasting task (also known as TKG extrapolation) as follows. Assume
we have a query (sq, rq, ?, tq) (or (?, rq, oq, tq)) derived from a target quadruple
(sq, rq, oq, tq), and we denote all the ground-truth quadruples as F . TKG fore-
casting aims to predict the missing entity in the query, given the observed past
TKG facts O = {(si, ri, oi, ti) ∈ F|ti < tq}. Such temporal restriction is not im-
posed in TKG completion (TKGC, also known as TKG interpolation), where the
observed TKG facts from any timestamp, including tq and the timestamps after
tq, can be used for prediction. In recent years, there have been extensive works
done for both TKGC [16, 15, 6] and TKG forecasting [14, 9, 30, 8, 18]. We give a
more detailed discussion about the forecasting methods. RE-NET [14] employs
an autoregressive architecture and models fact occurrence as a probability distri-
bution conditioned on the temporal sequences of past related TKG information.
TANGO [9] employs neural ordinary differential equations to model temporal
dependencies among graph information of different timestamps. CyGNet [30]
uses the copy-generation mechanism to extract hints from historical facts for
forecasting. xERTE [8] constructs a historical fact-based subgraph and selects
prediction answers from it. TLogic [18] is the first rule-based TKG forecasting
method that learns temporal logical rules in TKGs and achieves superior results.

Question Answering over KGs Several datasets have been proposed for
QA over non-temporal KGs, such as SimpleQuestions [1], WebQuestionsSP [28],
ComplexWebQuestions [24], MetaQA [29], TempQuestions [11], and TimeQues-
tions [12]. Among these datasets, only TempQuestions and TimeQuestions in-
volve temporal questions that require temporal reasoning for answer inference,
however, their associated KGs are non-temporal. CronQuestions [21] contains
questions based on a time-evolving TKG, i.e., Wikidata [27]. It is proposed for
non-forecasting TKGQA. Two types of questions, i.e., entity prediction and time
prediction questions, are included. To answer CronQuestions, Saxena et al.
propose CronKGQA that uses TKGC methods, along with pre-trained LMs,
which shows great effectiveness. A line of methods has been proposed on top
of CronKGQA (TempoQR [19], TSQA [23], SubGTR [4]), where they better
distinguish question time scopes and reason over subgraphs. CronQuestions
is proposed based on the idea of TKGC, and it does not support TKG forecast-
ing and contains no forecasting questions. One recent work, i.e., ForecastQA
[13], proposes a QA dataset fully consisting of forecasting questions. However,
ForecastQA is not related to KGQA. In ForecastQA, answers to its ques-
tions are inferred from text contexts, while KGQA/TKGQA requires models to
find the answers from the coupled KGs/TKGs without providing any additional
text contexts. As a result, the methods designed for ForecastQA have no abil-
ity to address TKGQA. To this end, we propose ForecastTKGQuestions,
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Table 1: (a) KGQA dataset comparison. Statistics are taken from [21] and [12].
T% denotes the portion of temporal questions. (b) ForecastTKGQuestions
statistics: number of questions of different types.

(a)

Datasets TKG Forecast T% # Questions

MetaQA ✗ ✗ 0% 400k
TempQuestions ✗ ✗ 100% 1271
TimeQuestions ✗ ✗ 100% 16k
CronQuestions ✓ ✗ 100% 410k

ForecastTKGQuestions ✓ ✓ 100% 727k

(b)

Train Valid Test

1-Hop Entity Prediction 211,564 36,172 33,447
2-Hop Entity Prediction 85,088 12,266 10,765

Yes-Unknown 251,537 42,884 39,695
Fact Reasoning 3,164 514 517

Total 551,353 91,836 84,424

aiming to bridge the gap between TKG forecasting and KGQA. We compare
ForecastTKGQuestions with recent KGQA datasets in Table 1a.

Task Formulation: Forecasting TKGQA Forecasting TKGQA aims to test
the forecasting ability of TKGQA models. It requires QA models to predict fu-
ture facts based on past TKG information. We formulate it as follows. Given a
TKG G and a natural language question q generated based on a TKG fact whose
valid timestamp is tq, forecasting TKGQA aims to predict the answer to q. We
label every question q with tq, and constrain QA models to only use the TKG
facts {(si, ri, oi, ti)|ti < tq} before tq for answer inference. We propose three
types of forecasting TKGQA questions, i.e., EPQs, YUQs, and FRQs. The an-
swer to a EPQ is an entity e ∈ E . The answer to a YUQ is either yes or unknown.
We formulate FRQs as multiple choices and thus the answer to an FRQ corre-
sponds to a choice c. As a novel task, forecasting TKGQA requires models to
have the ability of both natural language understanding (NLU) and future fore-
casting. Compared with it, the traditional TKG forecasting task does not require
NLU and non-forecasting TKGQA does not consider future forecasting. Thus,
previous methods for TKG forecasting6, e.g., RE-Net [14], and non-forecasting
TKGQA, e.g., TempoQR [19], are not suitable for solving forecasting TKGQA.

3 ForecastTKGQuestions

3.1 Temporal Knowledge Base

A subset from ICEWS [2] is taken as the associated temporal KB for our pro-
posed dataset. We construct a TKG ICEWS21 based on the events taken from
the official website of the ICEWS weekly event data7 [2]. ICEWS contains socio-
political events in English. We take the events from Jan. 1, 2021, to Aug. 31,

6 Relation set is provided in TKG forecasting and these methods explicitly learn re-
lation representations. However, TKG relations are not annotated in forecasting
TKGQA questions. Only question texts are provided and these methods have no
way to process. Therefore, we do not consider them in experiments on our new task.

7 https://dataverse.harvard.edu/dataverse/icews
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Table 2: ICEWS21 TKG statistics. Ntrain, Nvalid, Ntest denote the number of
TKG facts in Gtrain, Gvalid, Gtest, respectively. |E|, |R|, |T | denote ICEWS21’s
number of entities, relations, timestamps, respectively.

Dataset Ntrain Nvalid Ntest |E| |R| |T |
ICEWS21 252,434 43,033 39,836 20,575 253 243

2021, and extract TKG facts in the following way. For every ICEWS event, we
generate a TKG fact (s, r, o, t). We take the content of Event Date as the times-
tamp t of the TKG fact. We take the contents of Source Name and Target Name
as the subject entity s and the object entity o of the TKG fact, respectively.
We take the content of Event Text as the relation type r of the fact. We present
the dataset statistics of ICEWS21 in Table 2. We split ICEWS21 into three
parts Gtrain = {(s, r, o, t) ∈ G|t ∈ [ t0, t1) }, Gvalid = {(s, r, o, t) ∈ G|t ∈ [ t1, t2) },
Gtest = {(s, r, o, t) ∈ G|t ∈ [ t2, t3] }, where t0, t1, t2, t3 correspond to 2021-
01-01, 2021-07-01, 2021-08-01 and 2021-08-31, respectively. We generate train-
ing/validation/test questions based on Gtrain/Gvalid/Gtest. We ensure that there
exists no temporal overlap between every two of them, i.e., Gtrain ∩ Gvalid = ∅,
Gtrain ∩Gtest = ∅ and Gvalid ∩Gtest = ∅. In this way, we prevent QA models from
observing any information from the evaluation sets during training.

3.2 Question Categorization and Generation

We generate natural language questions based on the TKG facts in ICEWS21
and propose our QA dataset ForecastTKGQuestions. Every relation type
in ICEWS21 is coupled with a CAMEO code (specified in the CAMEO Code
column of the ICEWS weekly event data). In the official CAMEO codebook
(can be found in ICEWS database), each CAMEO code is explained with exam-
ples and detailed descriptions. We use the official CAMEO codebook provided
in the ICEWS dataverse for aiding the generation of natural language relation
templates. We create relation templates for 250 out of 253 relation types for ques-
tion generation8. For example, we create a relation template engage in material
cooperation with for the relation type engage in material cooperation, not spec-
ified below. Questions in ForecastTKGQuestions are categorized into three
categories, i.e., EPQs (including 1-hop and 2 hop EPQs), YUQs, and FRQs. We
summarize the number of different types of questions in Table 1b. We use the
relation templates to create natural language question templates for all types of
questions (examples in Table 3) which are used for question generation. All ques-
tion templates are presented in our supplementary source code and explained in
Appendix C.2. Similar to previous KGQA datasets, e.g., CronQuestions, en-
tity linking is considered as a separate problem and is not covered in our work.
We assume complete entity and timestamp linking, and annotate the entities
and timestamps in our questions. This applies to all three types of questions in
our dataset. Distribution of question timestamps is specified in Appendix C.5.

8 The rest three relation types are not ideal for question generation (Appendix C.1).
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Table 3: Example question templates of all types. sq and oq are the annotated
question entities. tq is the annotated question timestamp. For FRQ, sc, oc, tc
are annotated choice entities and timestamp. We only write one choice in FRQ
template for brevity. Better understand with details in Section 3.2.
Question Type Example Template

1-Hop EPQ Who will {sq} engage in material cooperation with on {tq}?
2-Hop EPQ Who will threaten a country, while {sq} criticizes or denounces this country on {tq}?

YUQ Will {sq} make a pessimistic comment about {oq} on {tq}?

FRQ
Why will {sq} appeal to {oq} to meet or negociate on {tq}?

A: {sc} threatens {oc} on {tc}; B:...

Entity Prediction Questions We generate two groups of EPQs, i.e., 1-hop
and 2-hop EPQs. Each 1-hop EPQ is generated from a single TKG fact, e.g., the
natural language question Who will Sudan host on 2021-08-01? is based on (Su-
dan, host, Ramtane Lamamra, 2021-08-01 ). Question templates are used during
question generation. The underlined parts in the question denote the annotated
entities and timestamps for KGQA. We consider all the facts concerning the
250 selected relations and transform them into 1-hop EPQs. Each 2-hop EPQ
is generated from two associated TKG facts in ICEWS21 where they contain
common entities. An example is presented in Table 4. The answer to a 2-hop
EPQ (Israel) corresponds to a 2-hop neighbor of its annotated entity (Iran) at
the question timestamp (2021-08-02 ). We generate 2-hop questions by utilizing
AnyBURL [20], a rule-based KG reasoning model. We first split ICEWS21 into
snapshots, where each snapshot Gti = {(s, r, o, t) ∈ G|t = ti} contains all the
TKG facts happening at the same timestamp. Then we train AnyBURL on each
snapshot for rule extraction. We collect the 2-hop rules with a confidence higher
than 0.5 returned by AnyBURL, and manually check if two associated TKG
facts in each rule potentially have a logical causation or can be used to inter-
pret positive/negative entity relationships. After excluding the rules not meeting
this requirement, we create question templates based on the remaining ones. We
search for the groundings in ICEWS21 at every timestamp, where each ground-
ing corresponds to a 2-hop EPQ. See our source code for the complete list of
extracted 2-hop rules and see Appendix C.3 for more EPQ generation details.

Yes-Unknown Questions Based on the idea of triple classification in KG
reasoning9, we introduce yes-no questions into KGQA. We then turn yes-no
questions into yes-unknown questions because, according to the Open World
Assumption (OWA), the facts not observed in a given TKG are not necessarily
wrong [7]. We generalize triple classification to quadruple classification10, and
then translate TKG facts into natural language questions. We take answering
YUQs as solving quadruple classification. For every TKG fact concerning the

9 For a KG fact (s, r, o), triple classification aims to predict whether this fact is valid
or not.

10 Quadruple classification has never been studied in previous works. We define it as
predicting whether a TKG fact (s, r, o, t) is valid or unknown, under OWA.
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Table 4: 2-hop EPQ example. To avoid overlong text, we use symbols to represent
relations and timestamps in TKG facts and 2-hop rules. r1 =accuse; r2 =engage
in diplomatic cooperation; t1 =2021-08-02. m,n are two entities that are 2-hop
neighbors of each other at t1. X is their common 1-hop neighbor at t1. The
extracted rule describes the negative relationship between Iran and Israel.

Associated TKG Facts 2-Hop Rule Generated 2-Hop Question Answer

(United States, r1, Iran, t1) (X, r1,m) Who will a country engage in diplomatic cooperation with, Israel
(United States, r2, Israel, t1) => (X, r2, n) while this country accuses Iran on 2021-08-02?

selected 250 relations, we generate either a true or an unknown question based
on it. For example, for the fact (Sudan, host, Ramtane Lamamra, 2021-08-01 ), a
true question is generated asWill Sudan host Ramtane Lamamra on 2021-08-01?
and we label yes as its answer. An unknown question is generated by randomly
perturbing one entity or the relation type in this fact, e.g., Will Germany host
Ramtane Lamamra on 2021-08-01?, and we label unknown as its answer. We
ensure that the perturbed fact does not exist in the original TKG. We use 25%
of total facts in ICEWS21 to generate true questions and the rest are used to
generate unknown questions.

Fact Reasoning Questions The motivation for proposing FRQs is to study
the difference between humans and machines in finding supporting evidence for
reasoning. We formulate FRQs in the form of multiple choices. Each question is
coupled with four choices. Given a TKG fact from an FRQ, we ask the QAmodels
to choose which fact in the choices is the most contributive to (the most relevant
cause of) the fact mentioned in the question. We provide several examples in
Fig. 1. We generate FRQs as follows. We first train a TKG forecasting model
xERTE [8] on ICEWS21. Note that to predict a query (s, r, ?, t), xERTE samples
its related prior TKG facts and assigns contribution scores to them. It provides
explainability by assigning higher scores to the more related prior facts. We
perform TKG forecasting and collect the queries where the ground-truth missing
entities are ranked as top 1 by xERTE. For each collected query, we find its
corresponding TKG fact and pick out four related prior facts found by xERTE.
We take the prior facts with the highest, the lowest, and median contribution
scores as Answer, Negative, and Median, respectively. Inspired by InferWiki
[3], we include aHard Negative fact with the second highest contribution score,
making it non-trivial for QA models to make the right decision. We generate each
FRQ by turning the corresponding facts into a question and four choices (using
templates), and manage to use xERTE to generate a large number of questions.
However, since the answers to these questions are solely determined by xERTE,
there exist numerous erroneous examples. For example, the Hard Negative of
lots of them are more suitable than their Answer to be the answers. We ask
five graduate students (major in computer science) to manually check all these
questions and annotate them as reasonable or unreasonable according to their
own knowledge or through search engines. If the majority annotate a question
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as unreasonable, we filter it out. See Appendix C.4 for more details of FRQ
generation and annotation, including the annotation instruction and interface.

Fig. 1: Required reasoning types and proportions (%) in sampled FRQs, as well
as FRQ examples. We sample 100 FRQs in each train/valid/test set. For choices,
green for Answer, blue for Hard Negative, orange for Median and yellow for
Negative. Multiple reasoning skills are required to answer each question, so the
total proportion sum is not 100%.

To better study the reasoning skills required to answer FRQs, we randomly
sample 300 FRQs and manually annotate them with reasoning types. The re-
quired reasoning skills and their proportions are shown in Fig. 1.

4 ForecastTKGQA

ForecastTKGQA employs a TKG forecasting model TANGO [9] and a pre-
trained LM BERT [5] for solving forecasting questions. We illustrate its model
structure in Fig. 2 with three stages. In Stage 1, a TKG forecasting model
TANGO [9] is used to generate the time-aware representation for each entity at
each timestamp. In Stage 2, a pre-trained LM (e.g., BERT) is used to encode
questions (and choices) into question (choice) representations. Finally, in Stage 3,
answers are predicted according to the scores computed using the representations
from Stage 1 and 2.

4.1 TKG Forecasting Model

We train TANGO on ICEWS21 with the TKG forecasting task. We use Com-
plEx [26] as its scoring function. We learn the entity and relation representations
in the complex space Cd, where d is the dimension of complex vectors. The train-
ing set corresponds to all the TKG facts in Gtrain, and we evaluate the trained
model on Gvalid and Gtest. After training, we perform a one time inference on
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Fig. 2: Model structure of ForecastTKGQA.

Gvalid and Gtest. Following the default setting of TANGO, to compute entity and
relation representations at every timestamp t, we recurrently input all the TKG
facts from t − 4 to t − 1, i.e., snapshots from Gt−4 to Gt−1, into TANGO and
take the output representations. Note that it infers representations based on the
prior facts, thus not violating our forecasting setting. We compute the entity
and relation representations at every timestamp in ICEWS21 and keep them for
aiding the QA systems in Stage 1 (Fig. 2). See Appendix B.1 for more details of
TANGO training and inference. To leverage the complex representations com-
puted by TANGO with ComplEx, we map the output of BERT to Cd. For each
natural language input, we take the output representation of the [CLS] token
computed by BERT and project it to a 2d real space to form a 2d real-valued
vector. We take the first and second half of it as the real and imaginary part of
a d-dimensional complex vector, respectively. All the representations output by
BERT have already been mapped to Cd without further notice.

4.2 QA Model

Entity Prediction For every EPQ q, we compute an entity score for every
entity e ∈ E . The entity with the highest score is predicted as the answer eans.
To compute the score for e, we first input q into BERT and map its output to
Cd to get the question representation hq. Inspired by ComplEx, we then define
e’s entity score as

ϕep(e) = Re
(
< h′

(sq,tq)
,hq, h̄

′
(e,tq)

>
)
. (1)

h′
(sq,tq)

= fep
(
h(sq,tq)

)
, h′

(e,tq)
= fep

(
h(e,tq)

)
, where fep denotes a neural net-

work aligning TKG representations to EPQs. h(sq,tq) and h(e,tq) denote the
TANGO representations of the annotated entity sq and the entity e at the ques-
tion timestamp tq, respectively. Re means taking the real part of a complex
vector and h̄′

(e,tq)
means the complex conjugate of h′

(e,tq)
.



10 Ding et al.

Yes-Unknown Judgment For a YUQ, we compute a score for each candidate
answer x ∈ {yes, unknown}. We first encode each x into a d-dimensional complex
representation hx with BERT. Inspired by TComplEx [16], we then compute
scores as

ϕyu(x) = Re
(
< h′

(sq,tq)
,hq, h̄

′
(oq,tq)

,hx >
)
. (2)

h′
(sq,tq)

= fyu
(
h(sq,tq)

)
,h′

(oq,tq)
= fyu

(
h(oq,tq)

)
, where fyu denotes a neural net-

work aligning TKG representations to YUQs. h(sq,tq) and h(oq,tq) denote the
TANGO representations of the annotated subject entity sq and object entity oq
at tq, respectively. hq is the BERT encoded question representation. We take
the candidate answer with the higher score as the predicted answer xans.

Fact Reasoning We compute a choice score for every choice c in an FRQ by
using the following scoring function:

ϕfr(c) = Re
(
< h′

(sc,tc)
,hc

q, h̄
′
(oc,tc)

,h′
q >

)
, (3)

hc
q is the output of BERT mapped to Cd given the concatenation of q and c.

h′
(sc,tc)

= ffr
(
h(sc,tc)

)
and h′

(oc,tc)
= ffr

(
h(oc,tc)

)
. ffr is a projection network and

h(sc,tc), h(oc,tc) denote the TANGO representations of the entities annotated in

c. h′
q = f

(
ffr

(
h(sq,tq)

)
∥hc

q∥ffr
(
h(oq,tq)

))
, where f serves as a projection and ∥

denotes concatenation. h(sq,tq) and h(oq,tq) denote the TANGO representations
of the entities annotated in the question q. We take the choice with the highest
choice score as our predicted answer cans. We give a more detailed description
of Equation 1, 2 and 3 in Appendix A.

Parameter Learning We use cross-entropy loss to train ForecastTKGQA on
each type of questions separately. The loss functions of EPQs, FRQs and YUQs

are given by Lep = −
∑

q∈Qep log
(

ϕep(eans)∑
e∈E ϕep(e)

)
, Lfr = −

∑
q∈Qfr log

(
ϕfr(cans)∑

c ϕfr(c)

)
and Lyu = −

∑
q∈Qyu log

(
ϕyu(xans)∑

x∈{yes,unknown} ϕyu(x)

)
, respectively. Qep/Qyu/Qfr de-

notes all EPQs/YUQs/FRQs and eans/xans/cans is the answer to question q.

5 Experiments

We answer several research questions (RQs) with experiments11. RQ1 (Section
5.2, 5.4): Can a TKG forecasting model better support forecasting TKGQA than
a TKGC model? RQ2 (Section 5.2, 5.4): Does ForecastTKGQA perform well
in forecasting TKGQA? RQ3 (Section 5.3, 5.5): Are the questions in our dataset
answerable? RQ4 (Section 5.7): Is the proposed dataset efficient? RQ5 (Section
5.6): What are the challenges of forecasting TKGQA?

11 Implementation details and further analysis of ForecastTKGQA in Appendix B.3
and G.
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5.1 Experimental Setting

Evaluation Metrics We use mean reciprocal rank (MRR) and Hits@k as the
evaluation metrics of the EPQs. For each EPQ, we compute the rank of the
ground-truth answer entity among all the TKG entities. Test MRR is then com-
puted as 1

|Qep
test|

∑
q∈Qep

test

1
rankq

, where Qep
test denotes all EPQs in the test set and

rankq is the rank of the ground-truth answer entity of question q. Hits@k is the
proportion of the answered questions where the ground-truth answer entity is
ranked as top k. For YUQs and FRQs, we employ accuracy for evaluation. Ac-
curacy is the proportion of the correctly answered questions out of all questions.

Baseline Methods We consider two pre-trained LMs, BERT [5] and RoBERTa
[17] as baselines. For EPQs and YUQs, we add a prediction head on top of the
question representations computed by LMs, and use softmax function to compute
answer probabilities. For every FRQ, we input into each LM the concatenation of
the question with each choice, and follow the same prediction structure. Besides,
we derive two model variants for each LM by introducing TKG representations.
We train TComplEx on ICEWS21. For every EPQ and YUQ, we concatenate
the question representation with the TComplEx representations of the entities
and timestamps annotated in the question, and then perform prediction with a
prediction head and softmax. For FRQs, we further include TComplEx represen-
tations into choices in the same way. We call this type of variant BERT int and
RoBERTa int since TComplEx is a TKGC (TKG interpolation) method. Simi-
larly, we also introduce TANGO representations into LMs and derive BERT ext
and RoBERTa ext, where TANGO serves as a TKG extrapolation backend. De-
tailed model derivations are presented in Appendix B.2. We also consider one
KGQA method EmbedKGQA [22], and two TKGQA methods, i.e., CronKGQA
[21] and TempoQR [19] as baselines. We run EmbedKGQA on top of the KG
representations trained with ComplEx on ICEWS21, and run TKGQA baselines
on top of the TKG representations trained with TComplEx.

5.2 Main Results

We report the experimental results in Table 5. In Table 5a, we show that our
entity prediction model outperforms all baseline methods. We observe that Em-
bedKGQA achieves a better performance than BERT and RoBERTa, showing
that employing KG representations helps TKGQA. Besides, LM variants out-
perform their original LMs, indicating that TKG representations help LMs per-
form better in TKGQA. Further, BERT ext shows stronger performance than
BERT int (this also applies to RoBERTa int and RoBERTa ext), which proves
that TKG forecasting models provide greater help than TKGC models in fore-
casting TKGQA. CronKGQA and TempoQR employ TComplEx representa-
tions as supporting information and perform poorly, implying that employing
TKG representations provided by TKGC methods may include noisy informa-
tion in forecasting TKGQA. ForecastTKGQA injects TANGO representations
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Table 5: Experimental results over ForecastTKGQuestions. The best results
are marked in bold.

(a) EPQs. Overall results in Appendix D.

MRR Hits@1 Hits@10

Model 1-Hop 2-Hop 1-Hop 2-Hop 1-Hop 2-Hop

RoBERTa 0.166 0.149 0.104 0.085 0.288 0.268
BERT 0.279 0.182 0.192 0.106 0.451 0.342

EmbedKGQA 0.317 0.185 0.228 0.112 0.489 0.333

RoBERTa int 0.283 0.157 0.190 0.094 0.467 0.290
BERT int 0.314 0.183 0.223 0.107 0.490 0.344
CronKGQA 0.131 0.090 0.081 0.042 0.231 0.187
TempoQR 0.145 0.107 0.094 0.061 0.243 0.199

RoBERTa ext 0.306 0.180 0.216 0.108 0.497 0.323
BERT ext 0.331 0.208 0.239 0.128 0.508 0.369

ForecastTKGQA 0.339 0.216 0.248 0.129 0.517 0.386

(b) YUQs and FRQs.

Accuracy

Model YUQ FRQ

RoBERTa 0.721 0.645
BERT 0.813 0.634

RoBERTa int 0.768 0.693
BERT int 0.829 0.682

RoBERTa ext 0.798 0.707
BERT ext 0.837 0.746

ForecastTKGQA 0.870 0.769
Human Performance (a) - 0.936
Human Performance (b) - 0.954

into a scoring module, showing its great effectiveness on EPQs. For YUQs and
FRQs, ForecastTKGQA also achieves the best performance. Table 5b shows
that it is helpful to include TKG representations for answering YUQs and FRQs
and our scoring functions are effective.

5.3 Human vs. Machine on FRQs

To study the difference between humans and models in fact reasoning, we fur-
ther benchmark human performance on FRQs with a survey (See Appendix E
for details). We ask five graduate students to answer 100 questions randomly
sampled from the test set. We consider two settings: (a) Humans answer FRQs
with their own knowledge and inference ability. Search engines are not al-
lowed; (b) Humans can turn to search engines and use the web information
published before the question timestamp for aiding QA. Table 5 shows that
humans achieve much stronger performance than all QA models (even in setting
(a)). This calls for a great effort to build better fact reasoning TKGQA models.

5.4 Performance over FRQs with Different Reasoning Types

Considering the reasoning types listed in Fig. 1, we compare RoBERTa int with
ForecastTKGQA on the 100 sampled test questions that are annotated with
reasoning types, to justify performance gain brought by TKG forecasting model
on FRQs. Experimental results in Table 6 imply that employing TKG forecasting
model helps QA models better deal with any reasoning type on FRQs. We use
two cases in Fig. 3 to provide insights into performance gain.

Case 1. Two reasoning skills, i.e., Causal Relation and Time Sensitivity (shown
in Fig. 1), are required to correctly answer the question in Case 1. Without con-
sidering the timestamps of choices, A, B, C all seem at least somehow reasonable.
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Table 6: Performance comparison across FRQs with different reasoning types.
Accuracy

Model Causal Relation Identity Understanding Time Sensitivity

RoBERTa int 0.670 0.529 0.444

ForecastTKGQA 0.787 0.735 0.611

(a) Case 1. (b) Case 2.

Fig. 3: Case Studies on FRQs. We mark green for Answer, blue for Hard Neg-
ative, orange for Median and yellow for Negative.

However, after considering choice timestamps, B should be the most contribu-
tive reason for the question fact. First, the timestamp of B (2021-08-30 ) is much
closer to the question timestamp (2021-08-31 ). Moreover, the fact in choice B
directly causes the question fact. RoBERTa int manages to capture the causa-
tion, but fails to correctly deal with time sensitivity, while ForecastTKGQA
achieves better reasoning on both reasoning types.

Case 2. Two reasoning skills, i.e., Causal Relation and Identity Understanding
(shown in Fig. 1), are required to correctly answer the question in Case 2. Head of
Government (Somalia) and Somalia are two different entities in TKG, however,
both entities are about Somalia. By understanding this, we are able to choose
the correct answer. ForecastTKGQA manages to understand the identity of
Head of Government (Somalia), match it with Somalia and find the cause of the
question fact. RoBERTa int makes a mistake because as a model equipped with
TComplEx, it has no well-trained timestamp representations of the question and
choice timestamps, which would introduce noise in decision making.

5.5 Answerability of ForecastTKGQuestions

To validate the answerability of the questions in ForecastTKGQuestions. We
train TComplEx and TANGO over the whole ICEWS21, i.e., Gtrain∪Gvalid∪Gtest,
and use them to support QA. Note that this violates the forecasting setting of
forecasting TKGQA, and thus we call the TKG models trained in this way as
cheating TComplEx (CTComplEx) and cheating TANGO (CTANGO). Answer-
ing EPQs with cheating TKG models is same as non-forecasting TKGQA. We
couple TempoQR with CTComplEx and see a huge performance increase (Ta-
ble 7a). Besides, inspired by [10], we develop a new TKGQA model Multi-Hop
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Table 7: Answerability study. Models with α means using CTComplEx and β
means using CTANGO. ↑ denotes relative improvement (%) from the results in
Table 5. Acc means Accuracy.

(a) EPQs.

MRR Hits@10

Model 1-Hop ↑ 2-Hop ↑ 1-Hop ↑ 2-Hop ↑

TempoQRα 0.713 391.7 0.233 117.8 0.883 263.4 0.419 110.6
MHSα 0.868 - 0.647 - 0.992 - 0.904 -

MHSβ 0.771 - 0.556 - 0.961 - 0.828 -

(b) YUQs and FRQs.

YUQ FRQ

Model Acc ↑ Acc ↑

BERT intα 0.855 19.6 0.816 14.4

BERT extβ 0.873 4.3 0.836 12.1

ForecastTKGQAβ 0.925 6.3 0.821 6.8

Scorer12 (MHS) for EPQs. Starting from the annotated entity sq of an EPQ,
MHS updates the scores of outer entities for n-hops (n = 2 in our experiments)
until all sq’s n-hop neighbors on the snapshot Gtq are visited. Initially, MHS
assigns a score of 1 to sq and 0 to any other unvisited entity. For each unvis-
ited entity e, it then computes e’s score as: ϕep(e) = 1

|Ne(tq)|
∑

(e′,r)∈Ne(tq)
(γ ·

ϕep(e
′) + ψ(e′, r, e, tq)), where Ne(tq) = {(e′, r)|(e′, r, e, tq) ∈ Gtq} is e’s 1-hop

neighborhood on Gtq and γ is a discount factor. We couple MHS with CT-
ComplEx and CTANGO, and define ψ(e′, r, e, tq) separately. For MHS + CT-
ComplEx, ψ(e′, r, e, tq) = f2(f1(he′∥hr∥he∥htq∥hq)). f1 and f2 are two neural
networks. he,he′ ,hr,htq are the CTComplEx representations of entities e, e′, re-
lation r and timestamp tq, respectively. For MHS + CTANGO, we take the idea
of ForecastTKGQA: ψ(e′, r, e, tq) = Re

(
< h(e′,tq),hr, h̄(e,tq),hq >

)
. h(e,tq),

h(e′,tq), hr are the CTANGO representations of entities e, e′ at tq, and rela-
tion r, respectively. hq is BERT encoded question representation. We find that
MHS achieves superior performance (even on 2-hop EPQs). This is because MHS
not only uses cheating TKG models, but also considers ground-truth multi-hop
structural information of TKGs at tq (which is unavailable in the forecasting
setting). For YUQs and FRQs, Table 7b shows that cheating TKG models help
improve performance, especially on FRQs. These results imply that given the
ground-truth TKG information at question timestamps, our forecasting TKGQA
questions are answerable.

5.6 Challenges of Forecasting TKGQA over ForecastTKGQuestions

From the experiments discussed in Section 5.3 and 5.5, we summarize the chal-
lenges of forecasting TKGQA: (1) Inferring the ground-truth TKG information
Gtq at the question timestamp tq accurately; (2) Effectively performing multi-
hop reasoning for forecasting TKGQA; (3) Developing TKGQAmodels for better
fact reasoning. In Section 5.5, we have trained cheating TKG models and used
them to support QA. We show in Table 7 that QA models substantially improve

12 See Appendix F for detailed model explanation and model structure illustration.
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their performance on forecasting TKGQA with cheating TKG models. This im-
plies that accurately inferring the ground-truth TKG information at tq is crucial
in our task and how to optimally achieve it remains a challenge. We also observe
that MHS with cheating TKG models achieves much better results on EPQs
(especially on 2-hop). MHS utilizes multi-hop information of the ground-truth
TKG at tq (Gtq ) for better QA. In forecasting TKGQA, by only knowing the
TKG facts before tq and not observing Gtq , it is impossible for MHS to directly
utilize the ground-truth multi-hop information at tq. This implies that how to
effectively infer and exploit multi-hop information for QA in the forecasting sce-
nario remains a challenge. Moreover, as discussed in Section 5.3, current TKGQA
models still trail humans with great margin on FRQs. It is challenging to design
novel forecasting TKGQA models for better fact reasoning.

5.7 Study of Data Efficiency

We want to know how the models will be affected with less/more training data.
For each type of questions, we modify the size of its training set. We train
ForecastTKGQA on the modified training sets and evaluate our model on
the original test sets. We randomly sample 10%, 25%, 50%, and 75% of the
training examples to form new training sets. Fig. 4 shows that for every type of
question, the performance of ForecastTKGQA steadily improves as the size
of the training sets increase. This proves that our proposed dataset is efficient
and useful for training forecasting TKGQA models.

(a) Data efficiency on EPQs. (b) Data efficiency on YUQs, FRQs.

Fig. 4: Data efficiency analysis.

6 Justification of Task Validity from Two Perpectives

(1) Perspective from Underlying TKG. We take a commonly used tem-
poral KB, i.e., ICEWS, as the KB for constructing underlying TKG ICEWS21.
ICEWS-based TKGs contain socio-political facts. It is meaningful to perform
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forecasting over them because this can help to improve early warning in criti-
cal socio-political situations around the globe. [25] has shown with case studies
that ICEWS-based TKG datasets have underlying cause-and-effect temporal
patterns and TKG forecasting models are built to capture them. This indicates
that performing TKG forecasting over ICEWS-based TKGs is also valid. And
therefore, developing forecasting TKGQA on top of ICEWS21 is meaningful
and valid. (2) Perspective from the Motivation of Proposing Different
Types of Questions. The motivation of proposing EPQs is to introduce TKG
link forecasting (future link prediction) into KGQA, while proposing YUQs is
to introduce quadruple classification (stemming from triple classification) and
yes-no type questions. We view quadruple classification in the forecasting sce-
nario as deciding if the unseen TKG facts are valid based on previously known
TKG facts. To answer EPQs and YUQs, models can be considered as under-
standing natural language questions first and then performing TKG reasoning
tasks. Since TKG reasoning tasks are considered solvable and widely studied in
the TKG community, our task over EPQs and YUQs is valid. We propose FRQs
aiming to study the difference between humans and machines in fact reasoning.
We have summarized the reasoning skills that are required to answer every FRQ
in Fig. 1, which also implies the potential direction for QA models to achieve
improvement in fact reasoning in the future. We have shown in Section 5.3 that
our proposed FRQs are answerable to humans, which directly indicates the va-
lidity of our FRQs. Thus, answering FRQs in forecasting TKGQA is also valid
and meaningful.

7 Conclusion

In this work, we propose a novel task: forecasting TKGQA. To the best of our
knowledge, it is the first work combining TKG forecasting with KGQA. We
propose a coupled benchmark dataset ForecastTKGQuestions that contains
various types of questions including EPQs, YUQs and FRQs. To solve forecast-
ing TKGQA, we propose ForecastTKGQA, a QA model that leverages a TKG
forecasting model with a pre-trained LM. Though experimental results show that
our model achieves great performance, there still exists a large room for improve-
ment compared with humans. We hope our work can benefit future research and
draw attention to studying the forecasting power of TKGQA methods.
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27. Vrandecic, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Com-
mun. ACM 57(10), 78–85 (2014). https://doi.org/10.1145/2629489, https://doi.
org/10.1145/2629489

28. Yih, W., Chang, M., He, X., Gao, J.: Semantic parsing via staged query graph gen-
eration: Question answering with knowledge base. In: Proceedings of the 53rd An-
nual Meeting of the Association for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Processing of the Asian Federation of
Natural Language Processing, ACL 2015, July 26-31, 2015, Beijing, China, Volume
1: Long Papers. pp. 1321–1331. The Association for Computer Linguistics (2015).
https://doi.org/10.3115/v1/p15-1128, https://doi.org/10.3115/v1/p15-1128

29. Zhang, Y., Dai, H., Kozareva, Z., Smola, A.J., Song, L.: Variational reasoning for
question answering with knowledge graph. In: McIlraith, S.A., Weinberger, K.Q.
(eds.) Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence,
(AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18),
and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence
(EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018. pp. 6069–6076.
AAAI Press (2018), https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/
view/16983

30. Zhu, C., Chen, M., Fan, C., Cheng, G., Zhang, Y.: Learning from history: Mod-
eling temporal knowledge graphs with sequential copy-generation networks. In:
Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third
Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The
Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI
2021, Virtual Event, February 2-9, 2021. pp. 4732–4740. AAAI Press (2021),
https://ojs.aaai.org/index.php/AAAI/article/view/16604


