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Abstract. Neural multi-hop logical query answering (LQA) is a funda-
mental task to explore relational data such as knowledge graphs, which
aims at answering multi-hop queries with logical operations based on dis-
tributed representations of queries and answers. Although previous LQA
methods can give specific instance-level answers, they are not able
to provide descriptive concept-level answers, where each concept is a
description of a set of instances. Concept-level answers are more com-
prehensible to users and are of great usefulness in the field of applied
ontology. In this work, we formulate the problem of LQA with concept-
level answers (LQAC), solving which needs to address challenges in in-
corporating, representing, and operating on concepts. We propose
an original solution for LQAC. Firstly, we incorporate description logic-
based ontological axioms to provide the source of concepts. Then, we rep-
resent concepts and queries as fuzzy sets, i.e., sets whose elements have
degrees of membership, to bridge concepts and queries with instances.
Moreover, we design operators involving concepts on top of fuzzy set
representation of concepts and queries for optimization and inference.
Extensive experimental results on three real-world datasets demonstrate
the effectiveness of our method for LQAC. In particular, we show that
our method is promising in discovering complex logical biomedical facts.

Keywords: Knowledge Representation Learning · Multi-hop Logical
Query Answering · Fuzzy Logic · Neuro-symbolic Reasoning.

1 Introduction

Along with the rapid development of high-quality large-scale knowledge infras-
tructures [35, 2], researchers are increasingly interested in exploiting knowledge
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Fig. 1. An example of neural multi-hop logical query answering with concept-level an-
swers (LQAC). The query is “Who will be interested in techniques that G. Hinton is
investigating and Google is using?”. The answers are not only instance-level answers
as yellow circles: Meta, Amazon, MIT, and Y. LeCun, but also concept-level answers
as squares: AI Researchers, The Academia, and The Industry. Such concept-level de-
scriptive answers are more comprehensible to users.

bases for real-world applications, such as knowledge graph completion [8, 34]
and entity alignment [36]. Recent years have witnessed increasing interest in a
fundamental yet challenging task on such relational data, i.e. neural multi-hop
logical query answering (LQA), which attempts to answer complex structured
queries that include logical operations and multi-hop projections given the facts
in knowledge bases using learned distributed representations [15]. Efforts [15,
29, 30] have been made to develop LQA systems by designing strategies to learn
geometric or uncertainty-aware distributed query representations, and proposing
mechanisms to deal with various logical operations on these distributed repre-
sentations. However, existing LQA methods are limited to providing instances
of knowledge graphs as answers.

In many real-world scenarios, providing only instance-level answers is insuffi-
cient because users may also seek more descriptive concept-level answers, where
each of the concepts is a description of a set of instances. For example, in online
question-answering forums, as shown in Fig. 1, users may ask “Who will be in-
terested in techniques that G. Hinton is investigating and Google is using?” and
expect both instance-level answers like Meta, Amazon, MIT, and Y. LeCun, as
well as concept-level answers such as AI Researchers, The Academia, and The
Industry. In this example, the conceptual answer The Academia refers to a sum-
mary of a set of instances consisting of Y. LeCun and MIT. Such concept-level
answers augment the answer set to make it more comprehensible to users and
fulfill their need for both detailed and abstract answers. In biomedical applica-
tions, to find the causes of a set of symptoms, scientists expect both instance-level
answers (such as SARS-CoV-2 causing Fever) as well as concept-level answers
(such as Viral infections causing Fever). In this case, the answer constitutes a
descriptive concept-level answer (e.g., Viral infections) that is a summary of a
set of instance-level answers. Other downstream tasks such as online chatbots
[26] and conversational recommender systems [39] also need rich and compre-
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hensive answers to provide better services. Providing both instance-level and
concept-level answers can improve their capability of generating more informa-
tive responses for users and enrich the semantics in answers for downstream
tasks.

Despite the significance of providing concept-level answers to multi-hop log-
ical queries, previous LQA systems [15, 29, 30] do not support that for the fol-
lowing reasons. On the one hand, they reason over knowledge graphs where only
instances and relations exist. There are no sources of concepts involved in their
systems. On the other hand, mechanisms for exploiting concepts are lacking.
Specifically, previous solutions only measure query–instance similarity for LQA,
without considering concept representations and operators involving concepts,
such as a proper measurement of query–concept similarity.

Along this line, we propose an initial solution for neural multi-hop logical
queries with concept-level answers (LQAC). The key challenges for addressing
LQAC are to incorporate, represent, and to operate on concepts. First, we ob-
serve that terminological axioms in ontologies include taxonomic hierarchies of
concepts, concept definitions, and concept subsumption axioms [14]. To incor-
porate concepts into for LQAC, we thus introduce terminological axioms into
the system to provide sources of concepts. Second, we find that fuzzy sets [21],
i.e., sets whose elements have degrees of membership, can naturally bridge in-
stances with concepts while providing a notion of vagueness for sets of instances.
Therefore, we represent concepts as fuzzy sets for LQAC. Meanwhile, properly
representing queries is the prerequisite for effectively operating on concepts. We
find that fuzzy sets can also bridge instances with queries, i.e., vague sets of
instance-level answers. The theoretically supported and unparameterized fuzzy
set operations enable us to resolve logical operations within queries. Thus, fuzzy
sets are ideal for concept and query representation for LQAC. Then, operators
involving concepts can also be designed based on fuzzy sets, including query–
concept operators for concept retrieval, concept–concept operators for concept
subsumption, and instance–concept operators for concept instantiation.

The main contributions of this work are: (1) To the best of our knowledge,
we are the first to focus on the LQAC problem that aims at providing not
only instance-level but also concept-level answers. LQAC goes beyond LQA over
knowledge graphs and better satisfies the need of users, downstream tasks, and
ontological applications; (2) We propose an initial solution for LQAC that incor-
porates, represents, and operates on concepts. We incorporate terminological ax-
ioms to provide sources of concepts and employ fuzzy sets as the representations
of concepts and queries. Logical operations are supported by the well-established
fuzzy set theory and operators involving concepts are designed upon fuzzy sets.

2 Related Work

Neural Multi-hop Logical Query Answering Great efforts have been made
to develop LQA systems in recent years. GQE [15] formulated the LQA prob-
lem and proposed to use points in the embeddings space to represent logical
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queries. Q2B [29] use hyper-rectangles that can include multiple points in the
embedding space to represent queries. HypE [11], ConE [38], and BetaE [30]
extended Q2B by using more sophisticated geometric shapes or Beta distribu-
tions for query representation. More recent methods explore fuzzy logic [21] for
LQA. CQD [1] used t-norm and t-conorms from the fuzzy logic theory to achieve
promising performance on zero-shot settings. QTO [7] further improves CQD by
introducing query tree optimization. FuzzQE [10], GNN-QE [40], and LogicE
[27] directly represent entities and queries using embeddings with specially de-
signed restrictions and interpreted them as fuzzy sets for LQA. However, these
reasoners could only give instance-level answers, while we focus on the more
general LQAC problem that aims at additionally providing descriptive concepts
as answers. Furthermore, they either use bit-wise fuzzy logic without fuzzy sets
or use fuzzy sets with the number of elements that coincides with the embed-
ding dimension, while we adhere to the foundational definition of fuzzy sets [21],
allowing us to fully exploit theoretically supported fuzzy set operations.

Ontology Representation Learning Several methods have been developed
to exploit ontologies using distributed representation learning [24]. ELEm [23],
EmEL [28], and BoxEL [37] learn geometric embeddings for concepts in ontolo-
gies. Other approaches [32, 9] rely on graph embeddings or word embeddings and
apply them to ontological axioms. Another line of research [16, 17] focuses on
jointly embedding instances (entities) and relations in knowledge graphs together
with concepts and roles (relations) in ontological axioms. Our work is related in
that we incorporate description logic ontological axioms and we exploit concepts
with distributed representation learning. However, previous methods are limited
to link prediction tasks such as predicting protein–protein interactions or per-
forming knowledge graph completion, which can be regarded as answering 1p
queries in Fig. 2, whereas we focus on more complex multi-hop logical queries.

3 Methodology

Incorporating, representing, and operating on concepts are key to LQAC. In this
section, we first formulate the problem along with the process of incorporating
concepts into the reasoning system. Then we propose an original solution for
LQAC by designing concept representations and operators involving concepts.

3.1 Incorporating Concepts

Multi-hop Logical Query Answering (LQA) is defined on knowledge graphs.
A knowledge graph is formulated as KG = {⟨h, r, t⟩} ⊆ E × R × E , where h, r,
t denote the head entity (instance), relation, and tail entity (instance) in triple
⟨h, r, t⟩, respectively, E and R refer to the instance set and the relation set in KG.
As shown in Fig. 2.(a), each triple ⟨h, r, t⟩ is regarded as a positive sample of the

1p query ∃? : [h
r−→](?) with an answer t that satisfies [h

r−→](t), where h is the
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Fig. 2. Left: The considered types of queries are represented with their graphical struc-
tures. ∧ and ∨ represent the intersection and union logical operations, respectively.
Squares denote concepts and circles represent instances. Right: Illustration of the in-
terpretation of a concept cI .

anchor instance and
r−→ is the projection operation with relation r. Furthermore,

LQA may also address the intersection, union, and negation operations ∧, ∨, and
¬ within queries. Thus, infinite types of queries can be found with the combina-
tions of these logical operations. We consider the representative types of queries,
which are listed and demonstrated with their graphical structures in Fig. 2. For
example, queries of type pi in Fig. 2.(b) are to ask ∃? : [(h1

r1−→ r2−→)∧(h2
r3−→)](?).

LQA reasoners seek to provide a set of instances that satisfy the query as an-
swers. We predict the possibility of each candidate instance e ∈ E satisfying a
query ∃? : [q](?). We then rank the |E| possibilities and select the top-k instances
in E as the set of answers. Since all the candidate answers are instances, we can
only retrieve instance-level answers from LQA systems.

LQA with Concept-level Answers (LQAC) is based on a description logic-
based knowledge base KB, i.e., ontology, which is an ordered pair (T , A) for
TBox T and ABox A, where T is a finite set of terminological axioms and A
is a finite set of assertion axioms. Specifically, terminological axioms within a
TBox T are of the form c1 ⊑ c2 where the symbol ⊑ denotes subsumption
(subClassOf). In general, c1 and c2 can be concept descriptions that consist
of concept names, quantifiers, roles (relations), and logical operators; we limit
LQAC to axioms where c1 and c2 are concept names that will not involve roles
or logical operators [3]. In the following, we do not distinguish between a concept
name and a concept description unless there are special needs. In this case, a
TBox is:

T ⊆ {ci ⊑ cj |ci, cj ∈ C} (1)

where C denotes the set of concept names in KB. T accounts for the source
of concepts and the pairwise concept subsumption information in the LQAC
system. Assertion axioms in A consist of two parts, including role assertions:

Aee ⊆ {⟨e1, r, e2⟩|e1, e2 ∈ E , r ∈ R} (2)

where e1, e2 ∈ E denote instances (entities), E denotes the instance set in KB,
r ∈ R denotes the role assertion between e1 and e2, and R is the the role set of
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Aee. Aee accounts for the triple-wise relational information about instances and
roles. A also include the concept instantiations between an instance e ∈ E and
a concept c ∈ C:

Aec = {e ◁ c} ⊆ E × C, (3)

where e ◁ c represents e is an element in c. Aec serves as the bridge between T
and Aee by providing pairwise links between instances and concepts.

Since we incorporate concepts in the LQAC systems, we are able to ask
questions about concepts. In particular, for a query ∃? : [q](?), we not only
provide a set of instances of {ae} as the answers but also infer an explanation
for each query result by summarizing instance-level answers with descriptive
concepts, yielding another set of concept-level answers {ac}. More specifically,
as shown in Fig. 2, the answers are no longer restricted to be e ∈ E (denoted by
circles), they can also be c ∈ C (denoted by squares). To achieve this, we predict
the possibility of each candidate instance e ∈ E as well as the possibility of each
candidate concept c ∈ C satisfying a query ∃? : [q](?). We then rank |E| predicted
scores of candidate instances and |C| predicted scores of candidate concepts. We
select and combine the top-k results from each set of candidates as the final
answers of q with instance-and-concept-level answers {a} = {ae}

⋃
{ac}. Note

that LQA is a sub-problem of LQAC. First, an LQA reasoner can only provide
a subset of the answers provided by an LQAC system, i.e., {ae} ⊆ {a}. Also, the
entire KG in the context of LQA corresponds to Aee in LQAC, which is a subset
of the ontology, i.e., KG ⊆ KB, leaving T and Aec with conceptual information
in the ontologies not explored. Therefore, LQAC is more general in terms of
providing more answers and reasoning over more complex knowledge bases.

3.2 Representing Concepts

We are motivated to represent concepts as fuzzy sets by the relationship be-
tween concepts and instances. We gain insights into such a relationship from the
definition of the semantics in description logics [6]:

Definition 1. A terminological interpretation I =
(
∆I , ·I

)
over a signature

(C, E ,R) consists of:

– a non-empty set ∆I called the domain
– an interpretation function ·I that maps:

• every instance e ∈ E to an element eI ∈ ∆I

• every concept c ∈ C to a subset of ∆I

• every role (relation) r ∈ R to a subset of ∆I ×∆I

As we use a function-free language [3], we set ∆I = E , i.e., we focus on the
Herbrand universe [25] of our knowledge base. Therefore, according to Definition
1, the interpretation of concept cI is a subset of E , which is finite. On the other
hand, fuzzy sets [21] over the Herbrand Universe are finite sets whose elements
have degrees of membership:

FS = {µ(x1), µ(x2), · · · , µ(x|FS|)}, (4)
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where µ(·) is the membership function that measures the degree of membership
of each element. Therefore, we further interpret all concepts as fuzzy sets over
the finite domain ∆I = E = {e1, e2, · · · , e|E|} as the elements of fuzzy sets
{x1, x2, · · · , x|FS|}. Thus, we have:

cI = {µ(e1), µ(e2), · · · , µ(e|E|)}. (5)

As shown in Fig.2, since the Herbrand universe for our language is always
finite, the interpretation of concept cI is fully determined by the fuzzy mem-
bership function µ(·) that assigns a degree of membership to each instance
e = eI ∈ ∆I = E = EI for cI ∈ CI , where EI and CI are the interpretation of
the instance set and the concept set.

To obtain the degree of membership of instance ei in cI , i.e., µ(ei), we first
randomly initialize the embedding matrix of concepts and instances as Ec ∈
R|C|×d and Ee ∈ R|E|×d with Xavier uniform initialization [13], where d is the
embedding dimension. Then we obtain the embedding of each concept c ∈ Rd

by looking up the rows of Ec. The embedding then serves as the generator of the
fuzzy set representation of each concept FSc. Thus, we compute the similarities
between each concept c and every instance in our universe e ∈ E = ∆I as the
degrees of membership of each instance in the fuzzy set:

FSc = {σ(c⊗ET
e )} = cI , (6)

where symbol ⊗ denotes matrix multiplication and ·T represents the matrix
transposition. The measured similarities are then normalized to (0, 1) using the
bit-wise sigmoid function σ(·). Here, the set-wise operation to obtain FSc con-
sists of |E| pair-wise operations on the instance–concept pairs; we use the same
operator for concept instantiation, which we will explain in Section 3.4.

3.3 Representing Instances and Queries

Properly representing instances and queries is the prerequisite for operating on
concepts. Fuzzy sets are also particularly suitable to represent instances and
queries because both interpretations of instances and queries are essentially in-
terpretations of concepts. Instances are represented as a special type of fuzzy set
[31] that assigns the membership function µ(·) to 1 for exactly one instance and
assigns it to 0 to all other instances. Consequently, we can interpret instances
as (singleton) concepts. Queries can be regarded as concept (descriptions)
that are more general than concept names in C, where concept names can be
combined by logical operations and relations to form concept descriptions. Thus,
we can use the same formalism designed for representing concept names to rep-
resent queries (concept descriptions). In this way, we can again use description
logic semantics [5] to interpret a query: an interpretation function ·I maps ev-
ery query q to a subset of ∆I . As the Herbrand universe ∆I = E is finite, the
interpretation of query qI is fully determined by the fuzzy membership function

qI = {µ(e1), µ(e2), · · · , µ(e|E|)}. (7)
Note that adhering to the fuzzy logic theory [21] enables us to interpret logical
operations within queries as vague and unparameterized fuzzy set operations.
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The preservation of vagueness is important in that LQAC requires uncertainty,
rather than deductive reasoning that guarantees correctness. Unparameterized
operations are desirable because they require fewer data during training and are
often more interpretable. We then explain how to represent queries as fuzzy sets.

Representing Atomic Queries Each multi-hop logical query consists of one
or more Atomic Queries (AQ), where an AQ is defined as a query that only

contains projection(s)
r−→ from an anchor instance without logical operations

such as intersection ∧, union ∨, and negation ¬. Therefore, the first step is to
represent AQs. We obtain the embeddings of each instance e ∈ Rd and the
ith relation r ∈ Rd by looking up the rows of the randomly initialized instance
embedding matrices Ee ∈ R|E|×d and Er ∈ R|R|×d. Then, the generator for fuzzy
set representation FSaq of a valid AQ [e

r1−→ · · · ri−→](?) is (e + r1 + · · · + ri).
Thus, we obtain the fuzzy set corresponding to the query aq as:

FSaq = {σ((e + r1 + · · · + ri) ⊗ET
e )} = aqI . (8)

Similar to the process of obtaining fuzzy set representations of concepts, Eq.(8)
is to acquire the degrees of membership of every candidate e ∈ E being an answer
to a given AQ by computing their normalized similarities.

Fusing Atomic Queries AQs are fused by logical operations to form multi-
hop logical queries. Since AQs are already represented in fuzzy sets and we
are equipped with the theoretically supported fuzzy set operations, we inter-
pret logical operations as fuzzy set operations over concepts to fuse AQs into
the final query representations. For two fuzzy sets in the domain ∆I = E :
FS1 = {µ1(e1), · · · , µ1(e|E|)} and FS2 = {µ2(e1), · · · , µ2(e|E|)}, we have the
intersection ∧ and the union ∨ over the two fuzzy sets as:

FS∧ = FS1 ∧ FS2 = {∀e ∈ E : µ∧(e) = ⊤ (µ1(e), µ2(e))}, (9)

FS∨ = FS1 ∨ FS2 = {∀e ∈ E : µ∨(e) = ⊥ (µ1(e), µ2(e))}, (10)
and we have the negation ¬ over FS as:

FS¬ = {µ¬(e1), · · · , µ¬(e|E|)} = {∀e ∈ E : µ¬(e) = 1 − µ(e)}, (11)

where a t-norm ⊤ : [0, 1]× [0, 1] 7→ [0, 1] is a generalisation of logical conjunction
[20]. Examples of t-norms include the Gödel t-norm ⊤min(x, y) = min{x, y}, the
product t-norm ⊤prod (x, y) = x · y, and the  Lukasiewicz t-norm ⊤ Luk (x, y) =
max{0, x + y − 1} [22]. Analogously, a t-conorm ⊥: [0, 1] × [0, 1] 7→ [0, 1] is
complementary to t-norm and generalizes logical disjunction, which is defined by
⊥ (x, y) = 1−⊤(1−x, 1−y) [1]. The choice of the t-norm and the corresponding
t-conorm is a hyperparameter to be tuned. We found that product t-norm/t-
conorm performs well for our LQAC task.

Thus, each query can be decomposed into AQs and represented as a fuzzy
set with Eq.(8), and then fuzzy set representations of AQs are fused by the fuzzy
set operations in Eq.(9), (10), and (11) to obtain the final representation of the
query. Note that fuzzy set operations hold the property of closure, which means
the input and output of these operations remain in fuzzy sets. Thus, the final
representation of each query is also a fuzzy set FSq.
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3.4 Operating on Concepts

Here we design operators involving concepts for concept retrieval, instance re-
trieval, concept subsumption, and concept instantiation based on the fuzzy set
representations.

Concept Retrieval is to provide concept-level answers, i.e., {ac} as shown in
Section 3.1. We illustrate the overall process of concept retrieval in Fig. 3. After
we obtain the fuzzy set of the query FSq and the answer FSc, we measure the
possibility of each c ∈ C being a concept-level answer of a given query upon fuzzy
set representations. More specifically, we measure how well can FSc and FSq

align with each other based on the Jensen-Shannon divergence DJS [12], which
is a symmetrized and smoothed version of the Kullback-Leibler divergence DKL.
We choose to use DJS because it is suitable for measuring the difference between
probability distributions. We believe DJS is better than DKL because the former
is symmetric while the latter is not, and the difference between two fuzzy set
representations of concepts should be modeled symmetrically. The similarity
function SCon is defined by:

SCon = −DJS(P∥Q) = −1

2
DKL(P∥M) +

1

2
DKL(Q∥M) (12)

where M = 1
2 (P+Q), P and Q represent the normalized fuzzy set representations

of the considered query and concept descriptions, which are given by:

P =
FSc

max (∥FSc∥p, ϵ)
, Q =

FSq

max (∥FSq∥p, ϵ)
, (13)

where ϵ is a small value to avoid division by zero and p is the exponent value in
the norm formulation ∥ · ∥p. SCon is then used for model training and inference.

Instance Retrieval aims to provide instance-level answers; for this purpose,
only query–instance similarities SEnt need to be measured without the necessity
of designing new mechanisms. Therefore, we follow the pioneering work [15] on
LQA to represent each query as an embedding q = f(q;Ω) and measure query–
instance similarity SEnt as:

SEnt = γ − ∥q− e∥1 (14)
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where γ is the margin. Here, we elaborate on the method to obtain the query
embedding q for providing instance-level answers, i.e., f(·) with parameters Ω.

Specifically, the projection operation x
r−→ that projects an instance or query

embedding x with relation r is resolved by:

q = x + r, (15)

where x ∈ Rd is another query embedding that is obtained in advance or an
instance embedding obtained by looking up Ee ∈ R|E|×d by rows. The intersec-
tion of two query embeddings q1 and q2 is resolved by:

q = a(q1 ⊕ q2;Ω)1 ∗ q1 + a(q1 ⊕ q2;Ω)2 ∗ q2, (16)

where ⊕ denotes matrix concatenation over the last dimension, Ω denotes the
parameters of a(·), and a(·) is a two-layer feed-forward network with Relu ac-
tivation. a(·)1 and a(·)2 represent the first and second d attention weights, re-
spectively. The union of two query embeddings q1 and q2 is resolved by:

q = max(q1,q2)−1, (17)

where max(·)−1 denotes the max operation over the last dimension.

Concept Subsumption As defined by Eq.(1), T supplies for relational in-
formation among concepts with the form of concept subsumptions. Although
concepts are represented in fuzzy sets and we already designed mechanism to
measure the similarity between two fuzzy sets, we can not directly apply the
method in Section 3.4 for concept subsumptions. It is because we need to mea-
sure the degree of inclusion of one concept to another instead of the similarities
between them. The degree of inclusion is asymmetrical and more complex than
the similarity measurement. Therefore, we employ a neural network h(·) to model
the degree of inclusion:

SSub = h (c1 ⊕ c2; θ) (18)

where symbol ⊕ denotes matrix concatenation over the last dimension, and θ
denotes the parameters of h(·). In this work, h(·) is a two-layer feed-forward
network with Relu activation. Note that we directly use the embeddings of con-
cepts without interpreting concept in the Herbrand universe of entities ∆I = E
because neither concept–instance relationships need to be modeled nor logical
operations need to be resolved for modeling degree of subsumption.

Concept Instantiation As defined by Eq.(3), Aec bridges T and Acc by pro-
viding links between instances and concepts. Such links instantiate concept with
its describing instances and thus offer relational information with the form of
concept instantiation. Recall that in Section 3.2, we obtain the fuzzy set rep-
resentation of concepts by computing the similarities between the given c and
every candidate e ∈ E with Eq.(6). In the case of concept instantiation, the
set-wise computation Eq.(6) is degraded to pair-wise similarity measurement for
each concept-instance pair:

SIns = σ(c⊗ eT ) (19)

where c ∈ Rd and e ∈ Rd are concept and instance embeddings, respectively.
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3.5 Optimization and Inference

The parameters in our model include the instance embedding matrix Ee, the
concept embedding matrix Ec, the relation embedding matrix Er, θ in Section
3.4, and Ω in Section 3.4. In the training stage, we sample m negative sam-
ples for each positive sample of concept-level answering [q](c+) by corrupting c+

with randomly sampled c−i ∈ C (i = 1, · · · ,m). Similarly, negative samples for
instance-level answering [q](e−i ) are obtained by corrupting e+ in [q](e+) with
randomly sampled e−i ∈ E . For concept subsumption and concept instantiation,
both sides of the concept-concept pairs and concept-instance pairs are randomly
corrupted following the same procedure. We illustrate the modularized compu-
tation procedure for model training as Fig. 3. The loss is defined as

L = − 1

4m

∑
n∈N

m∑
i=1

log σ(S+
n − S−

ni
) (20)

where N = {Con,Ent, Sub, Ins} denotes the set of the four included tasks
discussed in Section 3.4, S+

n (or S−
ni

) denotes the predicted similarity or degree
of inclusion of the positive (or negative) sample according to task n. The overall
optimization process of L is outlined in Algorithm 1 in Supplementary Materials.

In the inference stage, we predict SCon (or SEnt) for every candidate concept
c ∈ C (or instance e ∈ E) regarding to query q and select the top-k results to
be the concept-level answers {ac} (or instance-level answers {ae}) for query q.
Thus, we are able to achieve LQAC by providing the comprehensive answers
{a} = {ae}

⋃
{ac}. Although concept subsumption and concept instantiation

are not included in the inference stage, they empowered our LQAC system to
better represent and operate concepts by providing training samples and extra
supervision signals of the relational data.

4 Experiments

We conduct extensive experiments to answer the following research questions:
How to properly compare our method with LQA systems (RQ1)? How does our
method perform in concept retrieval (RQ2) and instance retrieval (RQ3)? How
do concept subsumption and instantiation affect reasoning performance (RQ4)?

4.1 Experimental Settings

Baselines (RQ1) The considered baselines are representative methods for
LQA, namely GQE [15], Q2B [29], and BetaE [30], along with a recent method
FuzzQE [10] that directly represent instances and queries using embeddings with
specially designed restrictions and interpreted them as fuzzy sets for LQA. Since
LQA reasoners can only provide instance-level answers, we need to come up with
a strategy to enforce concept retrieval, so as to compare with our method for
LQAC. Therefore, we introduce the One-more-hop experiment. That is, we ex-
ploit all the information given by KB = (T ,A) and simply degrade concepts to
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instances in the training stage. Specifically, we first augment Aec by the trans-
ductive links provided by T . Then we combine the augmented Aec and Aee

to form the new knowledge graph KG′. Note that part of the instances in KG′

are the degraded concepts and KG′ contains an additional relation rec to de-
scribe the isInstanceOf relation between an instance and a concept. Thus, we
construct training examples with various types of queries using KG′. In the infer-
ence stage, two sets of candidate instances are prepared for each query. The first
is the instance-level candidate set, which can be handled following the original
papers [15, 29, 30]. Another set contains the degraded concepts. To predict the
possibility of a concept being an answer to a query [q](?), we add one more pro-

jection operation with the relation rec, i.e., [q′](?) = [q
rec−−→](?). In other words,

concept-level reasoning is implicitly achieved by an additional hop asking the
isInstanceOf upon instance retrieval queries, i.e., the One-more-hop.

Dataset Construction GQE [15], Q2B [29], and BetaE [30] are a series of
works that established the benchmark datasets for LQA, and they provide the
integrated implementation of these methods6. We follow their procedure to con-
struct instance retrieval datasets and we additionally construct concept retrieval
datasets by adding one more projection from the answer instance to the answer
concept. We also follow Q2B [29] to decide the query types used for training and
testing our LQAC system as shown in Fig.2. In our dataset, we make sure the
query-answer pairs can’t be directly found from the knowledge base by holding
out part of the knowledge. This means we always evaluate query-answer pairs
that were not part of the training set and the method has not seen them be-
fore. Thus, traditional graph traversal techniques would not be able to find the
answers (due to missing relations) [29].

Implementation Details We use three real-world large-scale knowledge bases:
the English Wikipedia version7 of YAGO4, 2016-10 release8 of Dbpedia, and the
same subset of Gene Ontology9 used in well-established ontology embedding
works [23, 37]. We first filter out low-degree instances in Aee and Aec with the
threshold of 5. Then we split Aee to leave 5% out for evaluation. We follow BetaE
[30] to construct examples of logical queries from Aee = KG. We summarize the
statistics of datasets in Table 1 and Table 3 in the Supplementary Materials.
In the training stage, the initial learning rate of the Adam [19] optimizer, the
embedding dimension d, and the batch size, are tuned by grid searching within
{1e−2, 1e−3, 1e−4, 1e−5}, {128, 256, 512}, and {256, 512, 1024}, respectively.
We keep the number of corrupted negative samples for each positive sample m,
the small value ϵ, the exponent value p, the margin γ, and the adopted type of
t-norm as 4, 1e−12, 1, 12, and ⊤prod , respectively. We use the filtered setting

6 https://github.com/snap-stanford/KGReasoning
7 https://yago-knowledge.org/downloads/yago-4
8 http://downloads.dbpedia.org/wiki-archive/downloads-2016-10.html
9 https://bio2vec.cbrc.kaust.edu.sa/data/elembeddings/el-embeddings-data.zip
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Table 1. Hit@3 of concept and instance retrieval. The best results are in boldface.

Concept-level Answers

1p 2p 3p 2i 3i pi ip 2u up avg

YAGO4

GQE 43.7 67.4 44.9 67.1 49.9 15.0 12.3 19.7 9.4 36.6
Q2B 47.1 75.4 78.2 70.0 58.2 2.8 1.9 1.9 1.4 37.4
BetaE 47.8 74.7 76.7 64.2 52.5 10.1 10.2 2.9 5.0 38.2
FuzzQE 41.6 69.8 59.4 67.5 52.8 16.9 13.3 23.4 10.4 39.5
LQAC 60.3 88.8 88.7 66.4 65.5 60.2 57.1 59.9 52.5 66.6

Dbpedia

GQE 28.7 42.9 40.0 32.5 36.0 13.0 14.4 7.2 10.7 25.0
Q2B 28.2 41.4 38.0 32.7 33.5 11.7 13.0 8.4 9.3 24.0
BetaE 34.1 45.4 50.8 37.2 41.2 14.6 10.9 4.0 8.0 27.4
FuzzQE 29.0 39.2 38.2 30.5 29.7 15.6 15.9 11.2 12.7 24.7
LQAC 62.4 83.7 83.6 50.9 43.7 45.0 29.9 67.2 67.3 59.3

Instance-level Answers

1p 2p 3p 2i 3i pi ip 2u up avg

YAGO4

GQE 29.7 17.3 4.6 29.0 31.4 23.5 18.6 13.6 17.4 20.6
Q2B 28.4 20.0 7.0 29.5 34.4 27.0 21.3 11.6 18.5 22.0
BetaE 31.4 22.3 12.0 33.5 37.5 31.3 24.1 12.5 23.8 25.4
FuzzQE 30.7 17.3 4.1 30.0 32.3 22.9 18.1 12.5 18.6 20.7
LQAC 39.6 27.3 18.4 56.6 70.2 34.2 39.1 14.9 23.7 36.0

Dbpedia

GQE 25.2 18.9 19.8 26.5 43.6 17.2 33.3 12.6 21.1 24.2
Q2B 21.3 16.5 17.7 27.5 31.9 19.7 25.7 9.1 15.4 20.7
BetaE 20.9 23.2 21.7 27.5 32.9 27.5 28.4 13.0 25.1 24.5
FuzzQE 18.5 16.3 18.5 26.5 33.0 32.6 25.4 8.0 16.0 21.6
LQAC 34.6 28.0 29.0 44.6 54.8 21.4 40.6 17.8 23.0 32.6

[29] for testing and report the averaged results of Mean Reciprocal Rank (MRR),
Hit@3, and Hit@10 over 3 independent runs.

4.2 Experimental Results

Concept-level Answers (RQ2) We conduct the One-more-hop experiment
to answer RQ2. As shown in Table.1, our method consistently outperforms base-
lines on various evaluation metrics with large margins. For the basic queries in
Fig. 2 that are simply projections and intersections, our method significantly
improves the performance of concept-level reasoning, especially for the multi-
hop queries 1p, 2p, and 3p. For extra queries in Fig. 2 that are more complex
in terms of including unions or combined logical operations, we even boosted
the performance exponentially. The average performance of our method is also
significantly better than the baselines.

The superior performance can be interpreted in two folds. First, due to the
lack of reasoning capabilities when concepts are involved, GQE, Q2B, FuzzQE,
and BetaE need to do reasoning over more complicated queries. For example,
baselines need to reason over an ipp query [((h1

r1−→) ∧ (h2
r2−→))

rec−−→](?) to

provide concept-level answers of an ip query [(h1
r1−→) ∧ (h2

r2−→)](?). Therefore,
1p queries become 2p queries for baseline methods, 2p becomes 3p, and so on.
Thus, the complexity of the transformed queries limits their performance. Sec-
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Table 2. Hit@3 of concept and instance retrieval on the biomedical GO dataset. The
best results are in boldface.

1p 2p 3p 2i 3i pi ip 2u up avg

Concept

GQE 0.004 0.088 0.067 0.101 0.099 0.010 0.014 0.003 0.006 0.044
Q2B 0.005 0.085 0.066 0.095 0.109 0.006 0.007 0.005 0.007 0.043
BetaE 0.004 0.085 0.068 0.102 0.099 0.012 0.013 0.003 0.009 0.044
FuzzQE 0.008 0.088 0.069 0.107 0.112 0.010 0.014 0.007 0.005 0.047
LQAC 0.031 0.683 0.860 0.147 0.149 0.160 0.165 0.438 0.805 0.382

Instance

GQE 0.130 0.462 0.641 0.079 0.068 0.078 0.348 0.064 0.487 0.262
Q2B 0.137 0.467 0.637 0.087 0.078 0.097 0.358 0.065 0.508 0.270
BetaE 0.129 0.463 0.632 0.075 0.065 0.085 0.342 0.059 0.498 0.261
FuzzQE 0.126 0.461 0.635 0.095 0.090 0.102 0.349 0.051 0.500 0.268
LQAC 0.236 0.463 0.628 0.200 0.219 0.237 0.405 0.114 0.347 0.317

ond, explicit supervision signals for concept-level reasoning are not provided.
Since the concepts are degraded as instances, LQA methods could not explic-
itly feed the empirical error on concept-level answers back to update the model
parameters. It is thus understandable that they cannot perform well in provid-
ing concept retrieval, especially on extra queries that are more complicated and
require supervision signals more eagerly.

Moreover, as shown in Table 2, our method outperforms all baselines in
providing concept-level answers. Note that the instances in the GO datasets
are proteins, and the concepts are molecular functions, cellular components, or
biological processes10. Therefore, such results demonstrate that the formulated
LQAC task and our solution enable effective complex logical reasoning for crucial
biological facts, which is promising to be applied to biomedical applications to
facilitate healthcare services.

Instance-level Answers (RQ3) Although our method is designed for LQAC,
it is interesting to know its performance on instance-level reasoning only (for
answering RQ3). The results in Table 1 and 2 show that our method also out-
performs LQA methods on most types of queries on various metrics. The perfor-
mance gain should be credited to its capability of representing and operating on
concepts. It thus encodes the additional information of the relationships among
queries, instances, and concepts, which are helpful for instance retrieval. Addi-
tional experimental results are provided in Table 2, Table 4, and Table 5 in the
Supplementary Materials.

Ablation Study (RQ4) We conduct an ablation study on the effect of incor-
porating T and Aec and our proposed mechanisms of exploiting them to answer
RQ4. As shown in Table 3, when the Subsumption task is not included, i.e.,
ontological axioms in T are not used and SSub is not computed, LQAC w/o Sub
underperforms LQAC on all types of queries for both tasks. Such results show
the importance of incorporating the relational information between concepts,
and the effectiveness of the designed operator in Section 3.4 for modeling such

10 http://geneontology.org/



Neural Multi-hop Logical Query Answering with Concept-level Answers 15

Table 3. Ablation study on Concept Subsumptions and Instantiation on Dbpedia
dataset. The best MRR results are in boldface.

Concept 1p 2p 3p 2i 3i pi ip 2u up avg

LQAC w/o Sub 53.3 72.4 71.5 19.0 15.8 24.1 19.3 59.9 61.7 44.1
LQAC w/o Ins 52.8 68.8 67.7 38.3 35.4 34.2 19.3 56.2 61.6 48.3

LQAC 55.0 80.8 80.7 42.9 36.7 42.0 28.5 63.4 64.9 55.0

Instance 1p 2p 3p 2i 3i pi ip 2u up avg

LQAC w/o Sub 17.7 20.1 21.0 18.0 18.8 14.9 22.7 9.1 16.0 17.6
LQAC w/o Ins 17.4 18.8 19.0 18.1 18.7 14.3 22.9 8.7 17.7 17.3

LQAC 28.8 24.5 24.4 38.4 46.3 20.1 33.6 14.0 20.6 27.9

Table 4. Case study on the Instance Realization task for complex logical query

[(Manon the Moon
actor−−−→ alumniOf−−−−−−→) ∧ (William Devane

alumniOf−−−−−−→)](?), which aims to
find the most specific concept among all true answers.

Concept Score Predicted Expected

Academy -0.310 5th 3rd

Drama school -0.234 3rd 1st

LocalBusiness -0.238 4th 5th

CollegeOrUniversity -0.159 1st 2nd

School -0.219 2nd 4th

information. On the other hand, LQAC consistently outperforms LQAC w/o
Ins on all types of queries. This verifies that the relational information about
isInstanceOf in Aec is vital, and the mechanism introduced in Section 3.4 is
effective to tackle with Instantiation.

5 Discussion

Instance Realization is closely related to LQAC, which is to retrieve the most
specific concept among all concepts that a given instance belongs to [18]. We
are more interested in specific and fine-grained concepts because they are more
informative. For example, from the last column of Table 4, the instance-level
answer ‘American Academy of Dramatic Arts’ is intuitively better to be an-
swered by concept ‘Drama School’ instead of ‘School’, where ‘Drama School’ is
substantially more informative than ‘School’. Since concept-level answers are de-
scriptions of sets of instances, the most specific one is equivalent to the concept
describing the minimal set of instances among all true concepts. However, as
the predicted ranks are shown in Table 4, our method is not always able to give
the most specific answer. Although our results are stable thanks to the filtered
setting, the internal rank among true concepts is not tested. We recognize this
as an important future research direction in neuro-symbolic reasoning. Never-
theless, instance realization takes instances instead of multi-hop logical queries
as input to retrieve concepts, which fundamentally differs from LQAC.

Note that although our system supports negations, we did not report such re-
sults because several of our adopted baseline methods do not support negations.
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In this case, if negation is incorporated, more query types with negations are
required in training. The training data would thus be different for the methods
supporting and not supporting negations. Therefore, we limit our experiments to
non-negation query types to ensure fair comparisons. It would be interesting to
investigate the effectiveness of LQAC with negated queries by directly compar-
ing it with negation-supported methods, we identify this as an important future
work within reach.

Moreover, recall that we define TBox in our system as T ⊆ {ci ⊑ cj |ci, cj ∈
C}, where C denotes the set of concept names in KB. However, c can be concept
descriptions in general. In one of the most widely used description logics ALC
[4], concept descriptions are recursively defined: Every concept name is a concept
description; if C and D are concept descriptions and r is a role (relation), then
C ⊓D, C ⊔D, ¬C, ∀R.C, and ∃r.C are concept descriptions. Neural reasoning
over ALC ontologies with concept descriptions, is particularly challenging mainly
because the axioms no longer form a graph structure due to their arbitrary
depths and the involvement of quantifiers. However, many ALC ontologies have
been developed to provide rich and accurate knowledge about various domains,
in particular in the biomedical field where hundreds of ontologies have been
created [33]. Therefore, we recognize neural logical reasoning over the full ALC
ontologies as a highly potential future research direction that would be influential
in the neuro-symbolic reasoning communities and beyond.

6 Conclusion

We formulated the LQAC problem that is of great importance for users, down-
stream tasks, and ontological applications. Accordingly, we propose an initial
method for LQAC that properly incorporates ontological axioms, represents con-
cepts and queries as fuzzy sets, and operates on concepts based on fuzzy sets.
Experimental results and in-depth analysis demonstrate the effectiveness of our
method and the significance of LQAC in biomedical knowledge discovery.
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