
Linking Tabular Columns to Unseen Ontologies

Sarthak Dash[0000−0001−8765−4055], Sugato Bagchi[0009−0005−1173−600X],
Nandana Mihindukulasooriya[0000−0003−1707−4842], and Alfio

Gliozzo[0000−0002−8044−2911]

IBM Research AI, Yorktown Heights, NY, USA
{sdash,bagchi,gliozzo}@us.ibm.com, nandana@ibm.com

Abstract. We introduce a novel approach for linking table columns to
types in an ontology unseen during training. As the target ontology is
unknown to the model during training, this may be considered a zero-
shot linking task at the ontological level. This task is often a requirement
for businesses that wish to semantically enrich their tabular data with
types from their custom or industry-specific ontologies without the ben-
efit of initial supervision. In this paper, we describe specific approaches
and provide datasets for this new task: training models on open domain
tables using a broad source ontology and evaluating them on increasingly
difficult tables with target ontologies having different levels of type gran-
ularity. We use pre-trained Transformer encoder models and a range of
encoding strategies to explore methods of encoding increasing amounts of
ontological knowledge, such as type glossaries and taxonomies, to obtain
better zero-shot performance. We demonstrate these results empirically
through extensive experiments on three new public benchmark datasets.

1 Introduction

Enterprise data assets are now increasingly stored in various types of infras-
tructure, ranging from in-house database management systems on owned infras-
tructure to rented services on cloud infrastructure. In order to manage their
distributed data assets, businesses invest in “data lakes” [5] that provide a uni-
fied view of the metadata associated with the assets regardless of their location.
Although this metadata may include names of databases, tables, columns, and
associated database schemas, it lacks mappings to an external ontology of inter-
est. Such mappings allow a data consumer to discover, augment, and visualize
information from this data lake. In addition, given multiple data consumer roles
in an enterprise, there is a need to map columns to multiple custom ontolo-
gies, taxonomies, or business term glossaries often with thousands of business
terms. Current approaches on linking columns to a target ontology are either
rule-based or require training on the same ontology [34]. However, building such
a system for each data consumer role is not feasible because each data consumer
role within an enterprise may need to link columns to a different business glos-
sary or an ontology. In such a setting, the rule-based approaches will suffer from
recall/accuracy issues and supervised approaches will need manual annotations



2 S. Dash et al.

with high human effort/cost. Therefore, it is essential to find strategies to link
tabular columns to any given target ontology in an unsupervised manner.

Fig. 1. System for column linking and inference. The task model is fine-tuned over
pretrained transformer encoders using WikiTables with columns linked to Wikidata
types. During inference, this trained model is applied as-is on tables and/or ontology
from a different domain.

Existing approaches such as TABBIE [19], DODUO [31], TURL [11], SATO
[33] propose table embedding models that are fine-tuned on either a subset of
WebTables corpus from Viznet [16], or on the WikiTables corpus for Column
Linking [11]. The ground truth in these datasets consists of only type labels,
such as Researcher, Institution, etc. and does not use other associated ontological
knowledge, such as glossary or taxonomy structure. Moreover, the size of the
ground truth labels in these datasets is small, i.e., TABBIE and SATO are
trained on 78 labels, whereas TURL is trained on 255 labels. Additionally, the
ground truth labels in these datasets remain constant between the training and
testing phases.

Alternatively, approaches such as [26, 30] or systems participating in the
SemTab challenge [22] often couple this task together with linking cell values
to entities in an ontology. These approaches rely on cell-linking performance
and do not generalize when the target ontology has types but no entities as
commonly observed in custom enterprise ontologies.

In this paper, we train Transformer-based deep learning models on tables
with known mappings to an existing ontology and assess their performance when
those models are applied to an unseen ontology. Figure 1 illustrates an example.



Linking Tabular Columns to Unseen Ontologies 3

Fig. 2. Overview of encoding query columns, table headers, and the target type for
the column linking task. The goal is to classify the column titled Category within
the left table to the type Film Award. A glossary and two-hop is-a ancestor labels, i.e.,
additional information from the target ontology, are also available for each target type
label.

Here, we adapt the WikiTables dataset [4] to map table columns to Wikidata
types. Moreover, we augment label of each type within our updated datasets
with a glossary (using the description of the type) and verbalisation of a partial
taxonomy structure (based on rdfs:subClassOf property) extracted from the
corresponding ontology.

We introduce novel strategies to encode this ontological information and
show that by doing so, we obtain models that can better link tabular columns
to unseen ontologies. Here we use a Transformer’s ability to encode a language
model to learn the associations from columns and headers to types within an
ontology.

Since most enterprise datasets and custom ontologies are highly proprietary
and not openly available, in this work, we simulate a custom enterprise setting
using publicly available ontologies. We use three datasets: WikiTables, BioDi-
vTab [1], and Tough Tables [9], and three ontologies: Wikidata, DBpedia, and
UMLS Semantic Network [24]. This allows for the evaluation on unseen ontolo-
gies in the same general knowledge domain (Wikidata and DBpedia) and on
different domains (Wikidata and UMLS Semantic Network).

In summary, we make the following contributions,

1. We propose a new setting for the column linking task where the test ontology
is unseen during the training.

2. We introduce three new datasets for the setting proposed above. These in-
clude WikiTables with columns mapped to Wikidata and DBpedia types
and BioDivTab with columns mapped to UMLS Semantic Network types
(Section 3). These datasets and ontologies allow for evaluation within and



4 S. Dash et al.

across domains. We augment each type label in these datasets with addi-
tional glossary information and a partial taxonomy structure.

3. We propose novel strategies for encoding these semantically enriched types
(Section 2) and empirically demonstrate their effectiveness on this task in
Section 4.

2 Approach

In this section, we provide an overview of our proposed approach for the Column
Linking task, also known as Column Type Annotation (CTA) in literature. We
model this task as a ranking problem. Given a table containing a target column
Qc, headers H, and a list of one or more ground truth types L, our training
procedure uses Transformer encoders to learn how to associate a high similarity
score between the query representation qv and type representations from L. The
following sections describe our approach in detail.

2.1 Encoding the query column and the headers

This section describes our strategies for encoding the query column Qc and the
table headers H for a given relational table. We hypothesize that the table head-
ers provide additional context to the query column and help determine its type
more accurately. Consider the relational table (on the left) in Figure 2. Suppose
that the query column Qc is the second column with the header Category. The
headers H consist of three entries: Award, Category, and Recipients.

We use six additional special tokens SPTOK1 through SPTOK4 and [START],
[\START] for encoding using pre-trained Transformer encoder models and follow
the strategy used by our previous work [10] to encode the query column Qc

and the headers H. For encoding Qc, we first concatenate the title, section,
and caption fields to generate the metadata text. We then append the column
header, i.e., Category, to the metadata text using SPTOK1 as the separator. Next,
we concatenate the cell mentions in column Qc using the separator SPTOK4, and
then append this sentence to the previous one using SPTOK2. This strategy yields
the overall pseudo sentence for the query column in yellow (Fig 2(A)).

For encoding table headers, we model all those headers not belonging to
the query column Qc as a collection of texts. Yet, we also respect that these
headers are present in the relational table in a specific sequence (for better
understandability). Therefore, we attach additional tags of the form “header N”
where N is a natural number greater than or equal to one. The SPTOK3 token
separates the term “header k” from the actual value of the header, whereas
SPTOK2 has the same functionality as described before. We use the SPTOK4 token to
concatenate with other column headers and surround Qc’s header with [START],
[\START] tokens. Figure 2(B) shows the pseudo sentence for the table headers.

We use the strategy introduced by [10] for the position embeddings. The
SPTOK2 token acts as the pivot: Word pieces to the left of the pivot get numerically
increasing position IDs, whereas, for word pieces to the right, the position IDs are



Linking Tabular Columns to Unseen Ontologies 5

numerically increasing but are reset as soon as we hit the SPTOK4 special token.
The SPTOK4 token always gets a position ID that is one less than the position
ID of the [SEP] token. This assignment of position IDs is shown in green for
Figure 2(A), (B). Also, we use the standard strategy for encoding Token Types
and attention masks. Therefore, we have omitted their illustrations for brevity.

Finally, the [CLS] vector and the [START] vector corresponding to the final
Transformer layer is used as the representations for the query column Qc and the
table headers H, respectively. This encoding strategy ensures that the column
representation remains unchanged even if the cell values are randomly shuffled.
In other words, the column representation is invariant to the ordering of the cell
values within the query column.

2.2 Encoding the target type

In this section, we describe our strategy for encoding the target types. The
JSON structure on the right in Figure 2 illustrates the target Wikidata type
Film Award. Each target type also has a glossary and a list of two-hop is-a
ancestor labels from the ontology. In this work, we consider the number of hops
as a hyper-parameter that remains fixed throughout.

Figure 2(C) illustrates our strategy for encoding the target type. First, we
linearize the two-hop is-a ancestor labels as follows. As observed in Figure 2,
the two-hop is-a ancestor labels can be viewed as a list of lists wherein the inner
list (or a path) contains at most two type label strings. In this example, there
are two inner lists (or paths) which are Award, Distinction and Competition,
Event, respectively. We concatenate the type label strings for each path using
the special token SPTOK3 as the separator. This action results in a single list of
linearized paths. All the paths are then concatenated together using the special
token SPTOK4 as the separator. This sequence of steps yields a linearized view of
the two-hop is-a ancestor label attribute for a given target type.

Finally, we concatenate the type label and the glossary using the special token
SPTOK1 as the separator. We then concatenate the result with the linearized view
of the two-hop is-a ancestor labels. For the second step, we use the special token
SPTOK2 as the separator. This process yields the overall pseudo sentence in yellow
(Figure 2(C)).

We use a total of four token type IDs TOK0 through TOK3 in our architec-
ture. As shown in Figure 2(C), we use the token ID zero for the type label, one
for the glossary, two for the parent type labels and three for the grand-parent
type labels. We initialize TOK0 and TOK1 to the two pre-trained token type em-
beddings of a BERT-like model. By BERT-like model, we refer to a pre-trained
Transformer encoder model that has two Token Type IDs. For TOK2 and TOK3,
we discovered that initializing it with the pre-trained token type embedding for
token ID one of a BERT-like model generates the best results. We also tried out
other initialization strategies, whose results are shown in Table 2.

Besides, we use a similar strategy as Section 2.1 for assigning Position IDs.
Moreover, we use the standard approach for encoding attention masks, which is
why we have omitted them from Figure 2.



6 S. Dash et al.

2.3 Putting it all together

Our model architecture is illustrated in Figure 3, which puts together the con-
tents of the previous two subsections. The query column Qc and the table head-
ers H are first encoded using the strategy described in Section 2.1. Once the
encoding is complete, it is processed through two Transformer encoder mod-
els named TransformerA and TransformerB respectively. The [CLS] vector from
TransformerA and the [START] vector from TransformerB are considered as the
representations for Qc and H respectively. Both these representations are then
concatenated together, processed through a linear layer first, followed by a GELU
layer [14] to yield the final query vector qv.

Fig. 3. Overview of our model architecture. Given a query column Qc and table headers
H, Section 2.1 describes how to generate the Query column and Table header sequences.
Section 2.2 describes how to build the target type sequence.

On the other hand, the target type labels, together with the associated glos-
sary and two-hop is-a ancestor labels, are first encoded using the strategy de-
scribed in Section 2.2. It is then processed through TransformerC. The overall
score s is calculated as a dot product between the query vector qv and the [CLS]
vector from TransformerC.

During the training phase, each instance, i.e., column Qc, table headers H,
and associated table metadata, may have one or more positive ground truth
(GT) types. We use random sampling to generate negative types and then score
both positive and negative types using the architecture described in Figure 3.
Furthermore, we use a binary cross-entropy loss for training.

During scoring, each test instance is provided a list of all possible type la-
bels, a glossary, and information regarding two-hop is-a ancestor labels from the
target ontology. This target ontology need not be the same ontology used during



Linking Tabular Columns to Unseen Ontologies 7

training; it can be a different ontology altogether bought in for scoring purposes
only, which is unseen during training. As long as the target ontology has labels,
a glossary, and is-a ancestor labels, we can use a Transformer model to encode
this information as described above.

Since the list of all possible types from the target ontology stays fixed across
all test instances, it can be processed once through TransformerC, and the tar-
get type representations can be pre-computed. We can then re-use these pre-
computed target type representations to generate a ranked list of types for each
test instance. Alternatively, one can also use an off-the-shelf library for large-
scale vector-similarity search, such as FAISS [23] for faster scoring. We use Mean
Reciprocal Rank (MRR) and Hits@k metrics for evaluations.

3 Dataset Construction

We use three tabular datasets: WikiTables, BioDivTab, and Tough Tables, and
three ontologies: Wikidata, DBpedia, and UMLS Semantic network [24]. All of
our experiments below are done in English only; we leave multi-lingual column
linking models as a source of future work. For training our models, we use the
variant of the WikiTables corpus [4] released by [11] under Apache License 2.0,
which consists of 580,171 tables. We did an 80:10:10 split of the tables to build
the train, valid, and test folds. Splitting at a table level ensures that all the
columns from one table fall entirely within a fold.

For the scoring phase, we use WikiTables and Tough Tables datasets with
target types from DBpedia, and BioDivTab with target types from UMLS Se-
mantic Network. The following sections describe the annotation procedures for
the benchmarks mentioned above.

3.1 Building datasets using WikiTables

The WikiTables dataset contains Wikipedia page links for cell mentions, wher-
ever available. We collect all the available Wikipedia page links for a given col-
umn and map them to Wikidata entity QIDs via a SPARQL query. Once the
Wikidata QIDs are known, accumulating their corresponding types as a collec-
tion T is another SPARQL query. Assuming this column contains at least three
Wikipedia page links, we find the lowest common ancestor (LCA) type of T
within four hops. The lowest common ancestor (LCA) for K unique types is
the closest type in the ontology graph which is a superclass to all the k types.
Because the types that are too generic such as Thing or Concept are less useful
for the downstream tasks, only 4 hops of super-types for each type are looked
up for finding a common ancestor. If such an LCA type exists, we annotate it as
the target type. Note that there can be multiple LCA types, in such cases, we
consider all of them as target types.

During this annotation procedure, if the query column has less than three
Wikipedia page links, or no lowest common ancestor exists within four hops,
we assign a special NoType for this column. Moreover, generic Wikidata types



8 S. Dash et al.

such as class or entity are ignored. Additionally, we under-sample columns from
the NoType class to reduce skewness in the training distribution. Specifically,
we ensure that the size of the NoType class equals the size of the most frequent
Wikidata type within the training fold.

For the validation and test folds, we use an Elastic-search-based Wikidata
Lookup to generate the top twenty candidate types for each query column. If this
lookup doesn’t return any candidates for a query column, then that query column
is removed from the fold. If this step returns less than twenty candidate types,
we keep the query column and candidate types within the fold. During inference
time, the model is asked to rank these candidate types for every query column.
We have this lookup step because Wikidata has many types (≥ 50K), and scoring
all the Wikidata types for each query column is computationally expensive. In
the future, we plan on investigating alternative approaches to this task that do
not require a candidate generation step while working with Wikidata.

The annotation procedure, as described above, yields Wikidata types for
the WikiTables dataset, whose statistics are as follows: We have 491,739 query
columns for train, 61,204 for valid, and 69,135 for the test fold.

Next, we take the test fold tables of the WikiTables dataset and re-annotate
the columns to types from DBpedia. We follow a similar strategy as described
above. During the construction of this dataset, if we cannot find a ground truth
DBpedia type for a particular column, then that column is dropped altogether.

Additionally, because DBPedia has a total of 782 types, we do not employ an
Elastic-search-based candidate generation strategy; instead, we ask the model to
rank all of the 782 types while scoring for a query column. This procedure yields
an additional test dataset containing 47,849 columns from WikiTables test fold
annotated DBpedia types.

3.2 Building datasets using BioDivTab

The BioDivTab dataset [2] based on biodiversity research data is a domain-
specific tabular dataset consisting of 50 tables and is initially annotated with
Wikidata types. Because we want to evaluate on types from an ontology different
from the one used for training, we reannotated the columns within this dataset to
types from UMLS Semantic Network. We had three annotators for this task; they
had access to the ground truth Wikidata type and were asked to manually map
the Wikidata type to the best-matching UMLS Semantic Network type. The
disagreements in annotations were resolved via majority voting. Because our
training dataset did not contain columns with floating point values, we removed
such columns from this dataset. We leave the linking of columns containing
numerical values to a type within an ontology as a future task.

This annotation procedure yielded a test set with 205 columns in total. Like
DBpedia, while scoring for a query column, we ask the model to rank all 127
types belonging to the UMLS Semantic network.



Linking Tabular Columns to Unseen Ontologies 9

3.3 Tough Tables dataset

The Tough Tables (2T) dataset [9] is based on tables from multiple heterogeneous
sources. This dataset is annotated with DBpedia type labels which are manually
verified and puts particular emphasis on tables with ambiguous and misspelled
mentions. This dataset has 540 query columns overall.

Table 1 below denotes the differences in the distribution of the type labels
between datasets used for training and scoring. While scoring on DBpedia types,
the model is given 782 types for each query instance to generate a ranking. Of
the 782 type labels, only 268, i.e., 34.3%, have a non-empty description. For the
others, we use an empty string.

Ontology Property WD Train DBP UMLS SN

Type labels 5,327 782 127
Labels with non-empty glossary 4,588 268 127
Avg 1hop ancestor is-a labels per type label 1.94 0.92 0.98
Avg 2hop ancestor is-a labels per type label 3.67 0.73 0.95
Labels with ≥ five 1hop ancestor is-a labels 125 0 0
Labels with ≥ five 2hop ancestor is-a labels 1,567 0 0

Table 1. Statistics for WD (Wikidata) Train, DBP (DBpedia) and UMLS SN (Se-
mantic Network). WD train represents statistics from our training dataset.

For training using Wikidata, we have non-empty descriptions for 86.1% of the
Wikidata labels. Each Wikidata label, on average, has 3.67 two-hop ancestor is-a
type labels. Additionally, 2.3% and 29.4% of the train Wikidata labels have at
least five one-hop and two-hop ancestor is-a type labels, respectively. In contrast,
DBpedia and UMLS SN have less than one two-hop ancestor is-a type label per
target type.

4 Experiments and Analysis

We train a model once using the WikiTables training dataset annotated with
Wikidata labels. We initialize using a pre-trained Transformer encoder and then
fine-tune during our training procedure. Once training is complete, we evaluate
independently on three test datasets having labels from DBpedia (same broad
domain as Wikidata) and UMLS Semantic network (a more specialized biomed-
ical domain).

4.1 Results on WikiTables and DBpedia

Table 2 shows the results on the Column Type annotation (CTA) task for the
WikiTables test fold. We show results using both Wikidata (supervised task)
and DBpedia, i.e., evaluating on a new ontology unseen during training.



10 S. Dash et al.

Using Type labels only We describe our results and analysis in three blocks
depending upon the Ontological artifacts used (See Table 2) to build the model.
In the first block, we use the Type labels only to encode the target type. In this
baseline setting, we have five models depending upon the encoders used (See
Fig 3). The first two rows use TinyBERT [21] and BERTBase [12] to encode the
query column, the table header, and the target type label.

Ontological
artifacts used

Encoder(s)
Wikidata DBpedia

MRR H@1 MRR H@1 H@3

Type labels
only (Baselines)

TinyBERT 0.84 0.741 0.465 0.306 0.569
BERTBase 0.891 0.816 0.395 0.294 0.448
BERTBase + WD-to-DBP lookup 0.891 0.816 0.192 0.154 0.210
TAPASBase + BERTBase 0.884 0.804 0.378 0.292 0.422
TABBIE + BERTBase 0.702 0.533 0.279 0.167 0.348

Type labels +
Glossary

TinyBERT 0.857 0.764 0.489 0.374 0.531
BERTBase 0.891 0.814 0.380 0.260 0.444
TAPASBase + BERTBase 0.853 0.759 0.435 0.287 0.537

Type labels +
Glossary +
is-a parent
labels

TinyBERT + GraphConv (h=2) 0.859 0.767 0.395 0.244 0.478
TinyBERT + GATConv (h=2) 0.857 0.766 0.445 0.313 0.497
TinyBERT (Baseline1 encoding, h=2) 0.843 0.746 0.468 0.325 0.562
TinyBERT (Baseline2 encoding, h=2) 0.859 0.770 0.424 0.267 0.520
TinyBERT (Our encoding, h=1) 0.847 0.750 0.496 0.375 0.563
TinyBERT (Our encoding, h=2) 0.854 0.762 0.533 0.404 0.601

Table 2. Results for the CTA task on the WikiTables test fold with labels from Wiki-
data (supervised task) and DBpedia (linking to unseen ontology). h=k indicates parent
is-a labels upto k hops. H@k denotes Hits at k metric.

The third row in Table 2 illustrates the CTA results for a pipeline approach.
In this approach, we use the previous BERTBase encoder approach to generate
a ranked list of Wikidata (WD) types for each query instance in the test set.
For evaluating on DBpedia, we map the WD types to DBP types through a
sequence of owl:sameAs and rdf:type properties using a SPARQL query to
the DBpedia endpoint. We refer to this mapping as “WD-to-DBP lookup”. The
fourth row uses a pretrained TAPASBase [15] model to encode the query column
and BERTBase to encode the target type label. The fifth row uses a pretrained
TABBIE [20] model to encode the query table and separate BERTBase models
to encode the table metadata and the target type label. TABBIE is the current
state-of-the-art on supervised column linking and is table-centric, i.e., it encodes
the entire table and then gets the embedding for the query column. In contrast,
other models are column-centric, i.e., encode only the query column directly.
TABBIE performs similarly to TaBERT on the CTA task over Viznet Web Tables
[19] and outperforms SATO [33]. Thus, in our analysis, we compare against
TABBIE only.



Linking Tabular Columns to Unseen Ontologies 11

For predicting Wikidata types, we observe that BERTBase has a performance
gain of roughly five points over TinyBERT on the MRR metric. The TAPAS-
Base+BERTBase setup performs roughly similarly to BERTBase. In contrast,
using a pretrained TABBIE model to encode columns, as described before, yields
poorer results. Unlike [19] wherein a pretrained TABBIE is fine-tuned for CTA
over a dataset containing 78 type labels only, in our experiments, we fine-tune
over a training dataset containing 5,327 Wikidata Types (See Table 1). Addi-
tionally, unlike [19], our overall architecture is a Siamese network architecture
designed to learn meaningful representations for the query column and the type
labels to map the query column to the correct type label. The increase in the
total number of target types, combined with a change in architecture, could be
why fine-tuned TABBIE-based models yields poor results.

However, when evaluated on DBpedia target labels, we observe that the
TinyBERT has the best performance of the lot. A plausible reason behind this
could be that since BERTBase, TAPASBase, and TABBIE are bigger in size
than TinyBERT, they are likely overfitting on the training distribution and are
not generalizing as well as TinyBERT.

We observe that the pipeline approach (third row) performs very poorly
when evaluated on DBpedia. Compared to Wikidata, this drop in performance
can be attributed to errors within the “WD-to-DBP lookup”. This lookup has
insufficient coverage. Because it maps 50KWikidata (WD) types to 782 DBpedia
(DBP) types, many predicted WD types do not have an equivalent DBP type.
Moreover, the alignments within this lookup are not consistent. For example,
the WD type Q40357 (label: prison) does not map to the dbo:Prison DBP type.
Due to these issues, using a human-mapped alignment can cause errors while
linking to unseen ontologies. Moreover, based on the target unseen ontology,
such alignments may or may not exist.

Using Type labels and glossary In Rows six through eight of Table 2, we use
Type labels and related glossary information to encode the target type sequence.
In this setup, the type label gets the token ID zero and the glossary gets the
token ID one (Sec 2.2). Here, we use TinyBERT only, BERTBase only, and
TAPASBase + BERTBase, all of which have been introduced before.

Here we are using additional glossary information compared to the first block
in Table 2. Therefore, we believe that the models’ performance with glossary in-
formation would be better than without glossary information. For TinyBERT,
it is true, i.e., MRR on both Wikidata and DBpedia targets improves with glos-
sary. For BERTBase, the MRR stays roughly the same with glossary compared
to without. For TAPASBase + BERTBase, the MRR under DBpedia target im-
proves with glossary. While comparing models in this block, we observe that
TinyBERT still has the best MRR compared to others when scored against
unseen DBpedia types.

Using Type labels, glossary, and is-a parent labels In rows nine through
thirteen of Table 2, we use Type labels, glossary, and is-a parent labels, i.e., a



12 S. Dash et al.

partial Taxonomy structure to encode the target type. We use TinyBERT for all
experiments in this setting because of its smaller size, i.e., TinyBERT is roughly
7.5x-12x smaller than other Transformer encoders introduced in Sec 4.1. We are
interested in exploring how much we could push the envelope on the CTA task
by using semantically enriched types with a smaller-sized transformer encoder.

Ontological artifacts used Encoder(s)
BioDivTab 2T

MRR Hits at 10 MRR Hits at 1

Type labels only
(Baseline)

TinyBERT 0.243 0.444 0.325 0.222
BERTBase 0.262 0.537 0.296 0.219
TAPASBase + BERTBase 0.253 0.409 0.296 0.228
TABBIE + BERTBase 0.089 0.234 0.145 0.059

Type labels + Glossary +
2hop is-a parent labels

TinyBERT + GATConv 0.264 0.444 0.350 0.231
TinyBERT (Our Encoding) 0.193 0.566 0.350 0.263

Table 3. Results on BioDivTab and 2T datasets with types from UMLS Semantic
network and DBpedia respectively.

The ninth and tenth rows of Table 2 use GraphConv [25] and GATConv
[32] layers to encode the two-hop is-a partial taxonomy structure. This partial
taxonomy structure can be modeled as a Graph wherein the nodes correspond
to the types and edges correspond to “is-a” relation between the types. Only
the target type node in this graph has a label and a glossary; all other type
nodes only have a label string. We process the nodes through TinyBERT and
use the [CLS] vector at the final layer as the node embedding. While building
these models, we employ two layers of either GraphConv or GATConv, with a
ReLU and a drop-out layer in between. The target type node embedding is then
used to score against the query vector qv as shown in Figure 3.

The eleventh row denotes Baseline1 setup. Here, we use parent type labels up
to two hops, and all the tokens in the target type sequence (Sec 2.2) use a token
type ID of zero. The twelfth row denotes the Baseline2 encoding. Compared
to Baseline1, here we use four token type IDs, one each for the target type
label, glossary, parent, and grand-parent types. Additionally, we initialize the
two additional token type IDs (Sec 2.2) using Xavier Initialization [13] prior to
fine-tuning.

The final two rows denote models implementing our proposed strategy for
encoding semantically enriched types. Our encoding strategy (Row fourteen),
even when applied on TinyBERT, yields the best performance. Comparisons
amongst Baseline1, Baseline2, and Our encodings, i.e., rows eleven, twelve, and
fourteen, illustrate the ablation studies detailing the impact of different encoding
and initialization strategies on this task. These results indicate that encoding
richer ontological knowledge via meaningful representations results in better per-



Linking Tabular Columns to Unseen Ontologies 13

formance on an unseen ontology within the same general knowledge domain, i.e.,
from Wikidata to DBpedia in this case.

4.2 Results on BioDivTab and 2T

Table 3 illustrates the performance of our trained model when evaluated on
the BioDivTab and 2T datasets with labels from UMLS Semantic Network and
DBpedia respectively.

Following Sec 4.1, we divide the results into two groups and use a total of six
encoders for analysis. The sixth row uses TinyBERT to implement our strategy
for encoding semantically enriched types. We separately analyze our results on
BioDivTab and 2T datasets in the following sections.

Analysis on BioDivTab As described before, the tables in BioDivTab belong
to a biodiversity research domain and not an open domain like WikiTables.
Moreover, the target UMLS Semantic network is from the biomedical domain
which is more specialized than Wikidata, which was used for training. Thus, the
results in Table 3 are much lower than those in Table 2.

We observe that our encoding strategy using TinyBERT yields the best Hits
at 10 scores, outperforming baselines employing much larger encoders. However,
in this case, TinyBERT+GATConv has the best performance overall in terms
of MRR.

We manually analyzed the top-ranked predictions returned by the TinyBERT
model trained using our proposed encoding strategy (Row six of Table 3). Un-
like WikiTables, which contains English cell values, this dataset contains quite
a few query columns having Latin cell values (corresponding to species names)
which confuses our models trained on WikiTables. Therefore it makes errors
while differentiating between organism types based on Latin cell values. More-
over, BioDivTab does not contain any metadata information to provide context.
For columns containing numerical values, this absence of context promotes mis-
classifications, such as, our model predicts Age Group when the true label is
Quantitative Concept. We show a few examples of the outputs generated by our
proposed approach in Section 8.1.

Analysis on 2T From the results in Table 3, we observe that our proposed
encoding strategy, even when applied on a smaller Transformer encoder, yields
the best performance compared to baseline approaches, thereby indicating the
effectiveness of our approach. Because 2T contains misspelled mentions, it likely
confuses the models since they were trained on instances that did not have
misspells. This could be a plausible reason why the performance on this dataset
is lower than that of the WikiTables test fold with DBpedia target ontology
(Table 2).

We manually analyzed the top-ranked predictions returned by the TinyBERT
model trained using our proposed encoding strategy (Row six ). We notice that,
quite often, the model outputs are at a different granularity than the ground



14 S. Dash et al.

truth types. For example, there are four query columns having mentions of lakes
with a ground truth type place; however, our above model correctly classifies it
as lake. In another example, the model identifies four columns containing names
of monarchs as monarch, with the ground truth label being person. Additionally,
six columns contain names of cities with a ground truth type place. In this case,
our model predicts it as community. We believe that the top-ranked predictions
for the first two examples are better than the existing ground truth label. In
contrast, it is worse for the last example.

5 Related Work

Linking tabular columns to types in an ontology is a crucial task for many busi-
ness intelligence tasks such as semantic retrieval, data exploration, knowledge
discovery, etc. [6, 7, 11] have studied this task based on cell values only, i.e., us-
ing only the available information in a table for linking columns without doing
entity linking first. [11] introduce a new dataset for the supervised CTA task by
annotating WikiTables columns with Freebase types.

[16] introduced Viznet, a large-scale corpus of over 31 million datasets. The
dataset of particular interest here is the WebTables dataset. [33] introduce Sato,
a supervised model that combines topic modeling and structured learning with
single-column type prediction based on Sherlock [17]. Sato is trained on a subset
of the WebTables dataset comprising relational tables with valid headers only.

The Column Type Annotation task within the SemTab challenge [22] bench-
marks systems that annotate tabular data to types within a target ontology.
For this task, participating systems are not given training data. They are asked
to output a type for each query instance within a collection of held-out tables.
Systems such as MTab [27], JenTab [1], Kepler-aSI [3], DAGOBAH [18], etc.,
participating in this challenge follow a pipeline architecture. The first step links
cell mentions to entities within the target ontology. The second step predicts the
most likely type for the query column based on the linking results. MTab and
DAGOBAH also use additional information from the graph, such as entity rela-
tions, to improve cell linking accuracy. These approaches rely on the cell linking
performance and suffer if the target ontology does not contain any entities to
link to, which is very common in industry-specific ontologies.

Entity typing in a zero-shot fashion over textual data is a well-studied prob-
lem. FIGER [28] leverages Wikipedia descriptions of types to learn a multi-class
classifier given an entity mention and its context. MZET [35] uses a memory
network that models the relationship between the entity mention and the entity
type and transfers the knowledge from seen entity types to the zero-shot ones.
NZFET [29] uses a bi-LSTM architecture and employs entity type attention to
focus on information relevant to the entity type.

MSF [8] uses additional auxiliary information such as WordNet glossaries,
type hierarchy, and prototype mentions to get richer type representations. This
approach independently models the interaction between the query mention and
each auxiliary information. It obtains fused results in the next step. In contrast,



Linking Tabular Columns to Unseen Ontologies 15

our method jointly encodes the type label, the glossary, and the partial taxonomy
structure to yield more meaningful type representations.

6 Conclusion

This paper introduces a novel approach for linking tabular columns to types in a
new ontology unseen during training. We argue that this task is vital for business
intelligence applications wherein data discovery needs within enterprise data
lakes vary from one consumer role to another. We further argued that current
academic datasets used for research in Table Understanding are unsuitable for
this task and therefore introduced three new datasets. We enriched the ground
truth type label within each new dataset with a glossary and a partial taxonomy
structure. We show that encoding this auxiliary information for types via our
proposed approach yields meaningful representations, which we can combine to
build models that perform well on this task. Through extensive evaluation and
analysis on these new datasets, we demonstrate the effectiveness of our proposed
approach.

7 Limitations

In this work, we have used English WikiTables as the source of tabular datasets
and trained a column linking model using Wikidata types. We then apply this
trained model to score query columns against target ontologies having different
levels of type granularities. As evidenced by results in Sec 4.2, models trained on
broad-domain WikiTables might not be reliably used to handle domain-specific
jargon when working with the BioDivTab dataset, which contains cell values from
the biodiversity research domain. Alternatively, if the tabular dataset contains
misspells (e.g., 2T dataset), which is characteristic of many real-world datasets,
hoping that a model trained on WikiTables only will generalize in such cases,
might not hold.

In this work, we have shown results using Relational Tables only, i.e., tables
with a well-defined 2D structure. If a user brings in, let’s say, a non-relational
table and queries it for Column linking against our WikiTables-only trained
model, the results returned might be far from ideal. In other words, the scope
of the empirical evaluations covers 2D Relational Tables only.

Summarizing the above points, we believe that, with this implementation, the
Zero-shot performance on the Column linking task, when evaluated on domains
far apart from the one used during training, would be less than ideal. In such
cases, either building more extensive training data spanning multiple domains
and using it for training or employing a human-in-the-loop approach to provide
feedback to model predictions and then taking necessary corrective actions could
help alleviate the limitations described above.



16 S. Dash et al.

Supplemental Material Statement: The variant of the WikiTables corpus used in
our work (and as released by [11]) are available at: https://github.com/sunlab-
osu/TURL. Additionally, the original dataset files for BioDivTab annotated
with Wikidata, and Tough Tables annotated with DBPedia are available at
https://zenodo.org/record/6461556 and https://zenodo.org/record/6211551 re-
spectively.

We have attached the WikiTables benchmark, annotated with Wikidata and
DBPedia types, and the BioDivTab benchmark, annotated with UMLS Semantic
Network types, as supplemental materials to this submission. We will provide
the source code corresponding to this work, once the anonymity period ends.

The following enumerates the experimental details and the hyperparameters
used in all our experiments. We performed a grid search using the validation fold
of the WikiTables dataset containing Wikidata labels.

For the learning rate, we performed a grid search over {2e-5, 3e-5, 5e-5} and
decided to use 2e-5. All of our experiments are run for a maximum of 40 epochs,
with an early stopping criterion of 5 epochs. We had a fixed batch size of 64 in
all our experiments. We used random negative sampling in all our experiments
to generate negatives. For the transformer models in this task, we performed a
grid search for the max tokenizer length parameter over {128, 256} and decided
to use 128. We used a longest first truncation strategy, i.e., any sequence longer
than 128 tokens is truncated to a maximum token length of 128.

For experiments using Graph Neural Networks (GNN), we used two GNN
layers overall. We also used a ReLU layer and a drop-out layer between the two
GNN layers. For the drop-out value, we performed a grid search over {0.1, 0.2,
0.3, 0.5} and used 0.1 for GATConv, and 0.2 for GraphConv. For experiments
using TABBIE [20], we used a batch size of 2.

Furthermore, unless otherwise mentioned, we impose a max compute budget
of 48 hours (or 72 hours if a pretrained TABBIE model is used). If a training
run did not converge after 48 hours (or 72 hours for TABBIE), we used its last
serialized checkpoint for scoring. The compute budget ensures that the carbon
footprint corresponding to these training runs is bounded.

We used PyTorch v1.8.1, torch-scatter v2.0.9, torch-geometric v2.1.0.post1,
and torch-sparse v0.6.12 for running our experiments on Linux RHEL v8.5 op-
erating system using Intel x86 CPU and NVIDIA A100 GPU machines. All of
our experiments use a maximum RAM of 32G and a random seed value of 73.

References

1. Abdelmageed, N., Schindler, S.: Jentab meets semtab 2021’s new challenges. In:
SemTab@ ISWC. pp. 42–53 (2021)

2. Abdelmageed, N., Schindler, S., König-Ries, B.: BiodivTab: A Tabular Benchmark
based on Biodiversity Research Data. In: SemTab@ISWC, submitted (2021)

3. Baazouzi, W., Kachroudi, M., Faiz, S.: Kepler-asi at semtab 2021. In: SemTab@
ISWC. pp. 54–67 (2021)

4. Bhagavatula, C.S., Noraset, T., Downey, D.: Tabel: Entity linking in web tables.
In: Arenas, M., Corcho, Ó., Simperl, E., Strohmaier, M., d’Aquin, M., Srinivas, K.,



Linking Tabular Columns to Unseen Ontologies 17

Groth, P., Dumontier, M., Heflin, J., Thirunarayan, K., Staab, S. (eds.) The Seman-
tic Web - ISWC 2015 - 14th International Semantic Web Conference, Bethlehem,
PA, USA, October 11-15, 2015, Proceedings, Part I. Lecture Notes in Computer
Science, vol. 9366, pp. 425–441. Springer (2015). https://doi.org/10.1007/978-3-
319-25007-6 25, https://doi.org/10.1007/978-3-319-25007-6 25

5. Bogatu, A., Fernandes, A.A.A., Paton, N.W., Konstantinou, N.: Dataset discov-
ery in data lakes. 2020 IEEE 36th International Conference on Data Engineering
(ICDE) pp. 709–720 (2020)

6. Chen, J., Jiménez-Ruiz, E., Horrocks, I., Sutton, C.: Colnet: Em-
bedding the semantics of web tables for column type prediction. In:
The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI
2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019. pp.
29–36. AAAI Press (2019). https://doi.org/10.1609/aaai.v33i01.330129,
https://doi.org/10.1609/aaai.v33i01.330129

7. Chen, J., Jiménez-Ruiz, E., Horrocks, I., Sutton, C.: Learning semantic annotations
for tabular data. In: Kraus, S. (ed.) Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China, August 10-
16, 2019. pp. 2088–2094. ijcai.org (2019). https://doi.org/10.24963/ijcai.2019/289,
https://doi.org/10.24963/ijcai.2019/289

8. Chen, Y., Jiang, H., Liu, L., Shi, S., Fan, C., Yang, M., Xu, R.: An em-
pirical study on multiple information sources for zero-shot fine-grained en-
tity typing. In: Moens, M., Huang, X., Specia, L., Yih, S.W. (eds.) Pro-
ceedings of the 2021 Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2021, Virtual Event / Punta Cana, Domini-
can Republic, 7-11 November, 2021. pp. 2668–2678. Association for Com-
putational Linguistics (2021). https://doi.org/10.18653/v1/2021.emnlp-main.210,
https://doi.org/10.18653/v1/2021.emnlp-main.210

9. Cutrona, V., Bianchi, F., Jiménez-Ruiz, E., Palmonari, M.: Tough tables: Care-
fully evaluating entity linking for tabular data. In: International Semantic Web
Conference. pp. 328–343. Springer (2020)

10. Dash, S., Bagchi, S., Mihindukulasooriya, N., Gliozzo, A.: Permutation
invariant strategy using transformer encoders for table understanding.
In: Findings of the Association for Computational Linguistics: NAACL
2022. pp. 788–800. Association for Computational Linguistics, Seattle,
United States (Jul 2022). https://doi.org/10.18653/v1/2022.findings-naacl.59,
https://aclanthology.org/2022.findings-naacl.59

11. Deng, X., Sun, H., Lees, A., Wu, Y., Yu, C.: TURL: table un-
derstanding through representation learning. Proc. VLDB Endow.
14(3), 307–319 (2020). https://doi.org/10.5555/3430915.3442430,
http://www.vldb.org/pvldb/vol14/p307-deng.pdf

12. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirec-
tional transformers for language understanding. In: Burstein, J., Doran, C., Solorio,
T. (eds.) Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies,
NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and
Short Papers). pp. 4171–4186. Association for Computational Linguistics (2019).
https://doi.org/10.18653/v1/n19-1423, https://doi.org/10.18653/v1/n19-1423

13. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feed-
forward neural networks. In: Teh, Y.W., Titterington, D.M. (eds.) Pro-
ceedings of the Thirteenth International Conference on Artificial Intelligence



18 S. Dash et al.

and Statistics, AISTATS 2010, Chia Laguna Resort, Sardinia, Italy, May
13-15, 2010. JMLR Proceedings, vol. 9, pp. 249–256. JMLR.org (2010),
http://proceedings.mlr.press/v9/glorot10a.html

14. Hendrycks, D., Gimpel, K.: Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415 (2016)

15. Herzig, J., Nowak, P.K., Müller, T., Piccinno, F., Eisenschlos, J.:
TaPas: Weakly supervised table parsing via pre-training. In: Proceed-
ings of the 58th Annual Meeting of the Association for Computa-
tional Linguistics. pp. 4320–4333. Association for Computational Lin-
guistics, Online (Jul 2020). https://doi.org/10.18653/v1/2020.acl-main.398,
https://aclanthology.org/2020.acl-main.398

16. Hu, K., Gaikwad, N., Bakker, M., Hulsebos, M., Zgraggen, E., Hidalgo, C., Kraska,
T., Li, G., Satyanarayan, A., Demiralp, Ç.: Viznet: Towards a large-scale visualiza-
tion learning and benchmarking repository. In: Proceedings of the 2019 Conference
on Human Factors in Computing Systems (CHI). ACM (2019)

17. Hulsebos, M., Hu, K.Z., Bakker, M.A., Zgraggen, E., Satyanarayan, A., Kraska,
T., Demiralp, Ç., Hidalgo, C.A.: Sherlock: A deep learning approach to semantic
data type detection. In: Teredesai, A., Kumar, V., Li, Y., Rosales, R., Terzi, E.,
Karypis, G. (eds.) Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, August
4-8, 2019. pp. 1500–1508. ACM (2019). https://doi.org/10.1145/3292500.3330993,
https://doi.org/10.1145/3292500.3330993

18. Huynh, V.P., Liu, J., Chabot, Y., Deuzé, F., Labbé, T., Monnin, P., Troncy, R.:
Dagobah: Table and graph contexts for efficient semantic annotation of tabular
data. In: SemTab@ ISWC. pp. 19–31 (2021)

19. Iida, H., Thai, D., Manjunatha, V., Iyyer, M.: TABBIE: pretrained represen-
tations of tabular data. In: Toutanova, K., Rumshisky, A., Zettlemoyer, L.,
Hakkani-Tür, D., Beltagy, I., Bethard, S., Cotterell, R., Chakraborty, T., Zhou,
Y. (eds.) Proceedings of the 2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies,
NAACL-HLT 2021, Online, June 6-11, 2021. pp. 3446–3456. Association for Com-
putational Linguistics (2021). https://doi.org/10.18653/v1/2021.naacl-main.270,
https://doi.org/10.18653/v1/2021.naacl-main.270

20. Iida, H., Thai, D., Manjunatha, V., Iyyer, M.: TABBIE: Pretrained repre-
sentations of tabular data. In: Proceedings of the 2021 Conference of the
North American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies. pp. 3446–3456. Association for Computational Lin-
guistics, Online (Jun 2021). https://doi.org/10.18653/v1/2021.naacl-main.270,
https://aclanthology.org/2021.naacl-main.270

21. Jiao, X., Yin, Y., Shang, L., Jiang, X., Chen, X., Li, L., Wang, F.,
Liu, Q.: Tinybert: Distilling BERT for natural language understanding. In:
Cohn, T., He, Y., Liu, Y. (eds.) Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, Online Event, 16-20 November 2020. Find-
ings of ACL, vol. EMNLP 2020, pp. 4163–4174. Association for Computa-
tional Linguistics (2020). https://doi.org/10.18653/v1/2020.findings-emnlp.372,
https://doi.org/10.18653/v1/2020.findings-emnlp.372

22. Jiménez-Ruiz, E., Hassanzadeh, O., Efthymiou, V., Chen, J., Srinivas, K.: Semtab
2019: Resources to benchmark tabular data to knowledge graph matching systems.
In: European Semantic Web Conference. pp. 514–530. Springer (2020)



Linking Tabular Columns to Unseen Ontologies 19

23. Johnson, J., Douze, M., Jégou, H.: Billion-scale similarity search with gpus. CoRR
abs/1702.08734 (2017), http://arxiv.org/abs/1702.08734

24. McCray, A.T.: An upper-level ontology for the biomedical domain. Comparative
and Functional Genomics 4, 80 – 84 (2003)

25. Morris, C., Ritzert, M., Fey, M., Hamilton, W.L., Lenssen, J.E., Rat-
tan, G., Grohe, M.: Weisfeiler and leman go neural: Higher-order graph
neural networks. In: The Thirty-Third AAAI Conference on Artificial
Intelligence, AAAI 2019, USA, January 27 - February 1, 2019. pp.
4602–4609. AAAI Press (2019). https://doi.org/10.1609/aaai.v33i01.33014602,
https://doi.org/10.1609/aaai.v33i01.33014602

26. Mulwad, V., Finin, T., Syed, Z., Joshi, A.: Using linked data to interpret tables. In:
Hartig, O., Harth, A., Sequeda, J.F. (eds.) Proceedings of the First International
Workshop on Consuming Linked Data, Shanghai, China, November 8, 2010. CEUR
Workshop Proceedings, vol. 665. CEUR-WS.org (2010), http://ceur-ws.org/Vol-
665/MulwadEtAl COLD2010.pdf

27. Nguyen, P., Yamada, I., Kertkeidkachorn, N., Ichise, R., Takeda, H.: Semtab 2021:
Tabular data annotation with mtab tool. In: Jiménez-Ruiz, E., Efthymiou, V.,
Chen, J., Cutrona, V., Hassanzadeh, O., Sequeda, J., Srinivas, K., Abdelmageed,
N., Hulsebos, M., Oliveira, D., Pesquita, C. (eds.) Proceedings of the Semantic
Web Challenge on Tabular Data to Knowledge Graph Matching co-located with
the 20th International Semantic Web Conference (ISWC 2021), Virtual conference,
October 27, 2021. CEUR Workshop Proceedings, vol. 3103, pp. 92–101. CEUR-
WS.org (2021), http://ceur-ws.org/Vol-3103/paper8.pdf

28. Obeidat, R., Fern, X., Shahbazi, H., Tadepalli, P.: Description-based zero-shot
fine-grained entity typing. In: Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Papers). pp. 807–814 (2019)

29. Ren, Y., Lin, J., Zhou, J.: Neural zero-shot fine-grained entity typing. In:
Seghrouchni, A.E.F., Sukthankar, G., Liu, T., van Steen, M. (eds.) Compan-
ion of The 2020 Web Conference 2020, Taipei, Taiwan, April 20-24, 2020.
pp. 846–847. ACM / IW3C2 (2020). https://doi.org/10.1145/3366424.3382725,
https://doi.org/10.1145/3366424.3382725

30. Ritze, D., Lehmberg, O., Bizer, C.: Matching HTML tables to dbpedia. In: Ak-
erkar, R., Dikaiakos, M.D., Achilleos, A., Omitola, T. (eds.) Proceedings of the 5th
International Conference on Web Intelligence, Mining and Semantics, WIMS 2015,
Larnaca, Cyprus, July 13-15, 2015. pp. 10:1–10:6. ACM (2015)

31. Suhara, Y., Li, J., Li, Y., Zhang, D., Demiralp, Ç., Chen, C., Tan, W.C.: Annotat-
ing columns with pre-trained language models. arXiv preprint arXiv:2104.01785
(2021)

32. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph
attention networks. In: 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Pro-
ceedings. OpenReview.net (2018), https://openreview.net/forum?id=rJXMpikCZ

33. Zhang, D., Suhara, Y., Li, J., Hulsebos, M., Demiralp, Ç., Tan, W.: Sato: Con-
textual semantic type detection in tables. Proc. VLDB Endow. 13(11), 1835–1848
(2020), http://www.vldb.org/pvldb/vol13/p1835-zhang.pdf

34. Zhang, S., Balog, K.: Web table extraction, retrieval, and augmentation:
A survey. ACM Trans. Intell. Syst. Technol. 11(2), 13:1–13:35 (2020).
https://doi.org/10.1145/3372117, https://doi.org/10.1145/3372117



20 S. Dash et al.

35. Zhang, T., Xia, C., Lu, C.T., Philip, S.Y.: Mzet: Memory augmented zero-shot fine-
grained named entity typing. In: Proceedings of the 28th International Conference
on Computational Linguistics. pp. 77–87 (2020)

8 Appendix

8.1 Model Predictions

The following tables below shows examples of predictions returned by our pro-
posed model built using a pretrained TinyBERT encoder. This model is trained
using Wikidata labels and is asked to predict from the DBpedia target ontology
for the top two tables. For the bottom two tables, the model predicts from the
UMLS Semantic Network (UMLS SN).

The first row in the block titled Top model prediction returns model pre-
dictions using Type labels only. The second row returns predictions using Type
labels and associated glossaries. The final row in this block returns predictions
using our proposed encoding strategy. Note that the BioDivTab benchmark does
not contain table metadata.

PageTitle 1993-94 NBA Season
SecTitle Statistics leaders

Header Player

Query
column

David Robinson
Dennis Rodman
John Stockton
Dikembe Mutombo
Shaquille O’Neal

Dataset WikiTables
Ontology DBpedia

Top model
prediction

agent
american football coach
basketball player

True label basketball player

PageTitle 1970 TANFL season
SecTitle 1970 TANFL Ladder

Header Team

Query
column

Sandy Bay
Clarence
New Norfolk
North Hobart
Glenorchy

Dataset WikiTables
Ontology DBpedia

Top model
prediction

sports club
sports club
australian football team

True label australian football team



Linking Tabular Columns to Unseen Ontologies 21

Header Species Group

Query
column

plants
bryophytes
lichens
moths
heteroptera

Dataset BioDivTab
Ontology UMLS SN

Top model
prediction

organism attribute
human
organism

True label organism

Header genus

Query
column

ambloplites
catostomus
chrosomus
notropis
clinostomus

Dataset BioDivTab
Ontology UMLS SN

Top model
prediction

organism attribute
organism function
bacterium

True label fish


