
Assessing the Generalization Capabilities of
Neural Machine Translation Models for SPARQL

Query Generation

Samuel Reyd1 and Amal Zouaq1

Laboratoire LAMA-WeST⋆⋆, Polytechnique Montréal
{samuel.reyd,amal.zouaq}@polymtl.ca

Abstract. Recent studies in the field of Neural Machine Translation
for SPARQL query generation have shown rapidly rising performance.
State-of-the-art models have reached almost perfect query generation for
simple datasets. However, such progress raises the question of the ability
of these models to generalize and deal with unseen question-query struc-
tures and entities. In this work, we propose copy-enhanced pre-trained
models with question annotation and test the ability of several models
to handle unknown question-query structures and URIs. To do so, we
split two popular datasets based on unknown URIs and question-query
structures. Our results show that the copy mechanism effectively allows
non-pre-trained models to deal with unknown URIs, and that it also im-
proves the results of some pre-trained models. Our results also show that,
when exposed to unknown question-query structures on a simple dataset,
pre-trained models significantly outperform non-pre-trained models, but
both non-pre-trained and pre-trained models have a considerable drop in
performance on a harder dataset. However, the copy mechanism signifi-
cantly boosts the results of non-pre-trained models on all settings and of
the BART pre-trained model, except for the template split on LC-QuAD
2.0 dataset.

Keywords: SPARQL query generation; Generalization; Unknown templates;
Unknown URIs; Out-of-vocabulary problem

1 Introduction

The Knowledge Base/Graph Question Answering (KGQA) task has seen recent
progress thanks to the development of Neural Machine Translation (NMT) and
encoder-decoder architectures. Instead of directly generating or extracting the
answer to a question, NMT models generate a SPARQL query that is run against
the Knowledge Base (KB) to retrieve the answer.

Addressing English to SPARQL translation with NMT techniques can be
done by considering SPARQL as another language. However, there are specific

⋆⋆ http://www.labowest.ca/

http://www.labowest.ca/

2 Reyd et al.

challenges that arise from the fact that SPARQL is a formal language, and sub-
stituting a word with another, even one that might appear in a similar context,
might completely change the sense of the query and generate totally different
answers. Notably, the most challenging issue of classic encoder-decoder models is
the Out Of Vocabulary (OOV) problem. In general, for traditional NLP models,
the vocabulary is fixed in advance and any word that appears in a new input or
that is expected in the predicted output that has not been seen during training
cannot be taken into account or be generated. This is a very real problem in
SPARQL generation since most large KBs include many resources that are very
rarely used and are not available to be learned by models. Recent studies address
this problem by annotating the KB elements in the question and allowing models
to transfer tokens or sequences of tokens from the question to the predicted query
[10,1]. Even though modern technics improve the URI generation capabilities of
the traditional models, this point remains one of the most challenging parts of
the task, especially in the case of unseen or rare URIs. Even though some studies
[10] specifically try to evaluate how their approach handles this problem, none
systematically evaluate the capabilities of models to deal with unknown URIs.

Another challenge of neural SPARQL translation is the ability of state-of-
the-art models to generate question-query structures unseen in training. To our
knowledge, none of the previous approaches specifically evaluated this aspect.
This challenge is also linked to the way most datasets are generated. Since real-
world data is rarely available, most datasets feature automatically generated
question-query pairs that are built by filling placeholders inside structural tem-
plates with specific KB URIs. This allows models to rely on structures that are
limited. Even though some datasets feature questions that are reformulated by
human experts, the training data still encourage the model to fit a finite set
of question-query structures. To our knowledge, no study addresses the issue of
generating queries that do not correspond to the structures seen during training.

We will therefore address the following research questions:

– How do NMT models perform with unknown URIs?
– How do NMT models perform when they face unknown question-query struc-

tures?

Our contributions are: 1) to evaluate the capabilities of modern NMT ap-
proaches (Transformers [21], ConvSeq2Seq [7], BART [15] and T5 [17]) to han-
dle unknown URIs and question-query structures; 2) to highlight challenges in
NMT-based approaches and propose an algorithm to split datasets for better
generalization properties of the test set and 3) to test the ability of pretrained
models enhanced with a copy mechanism to handle unknown URIs and question-
query structures.

2 Related work

KGQA with NMT approaches. KGQA has been approached by many methods
but recent studies have focused on deep learning NMT approaches. For instance,

Generalization for SPARQL Query Generation 3

Yin et al. [22] used encoder-decoder architectures [19] to translate English ques-
tions into SPARQL queries and outperformed traditional neural architectures
using a Transformer model [21] and a ConvSeq2Seq model [7].

Hirigoyen et al. [10] proposed a copy mechanism inspired by CopyNet [8]
and PGN [18] to copy URIs from questions to SPARQL queries. Their copy
mechanism distinguishes itself from former copy approaches by introducing a
specific knowledge base vocabulary whose tokens are hidden from the encoder-
decoder block and that are the only ones that the copy mechanism can act on.
By annotating the questions with the URIs found in the golden queries, this
method allows improved performances by a great margin and improves OOV
token handling.

The most recent approaches, such as Debayan et al. [1], used pre-trained
models, namely BART [15] and T5 [17]. Debayan et al. [1] also annotate questions
by placing URIs at the end of the question next to their label from the KB. They
also propose a model based on an LSTM [11] encoder-decoder with BERT [5]
token embeddings enhanced by a copy block as defined by PGN [18]. However,
they report significantly lower results with this method than with their pre-
trained models.

Generalization. Generalization in sequence-to-sequence (seq-to-seq) models has
been extensively studied, and while models learn generalization as an implicit
set of patterns, they may not learn explicit rules required for compositional gen-
eralization. According to Baroni [2], neural machine translation (NMT) models
can adapt to unseen data, but they lack the cognitive ability to understand
explicit rules. Compositional generalization refers to the ability to understand
rules used for meaning construction based on how elements are composed. For
instance, understanding “jump” and “jump twice” should allow generalization to
“walk twice”. However, NMT models struggle with explicit composition rules, as
supported by experiments on the SCAN dataset [14].

In the field of SPARQL query generation from English questions, Keysers et
al. [13] further specify the concept of compositional generalization by measuring
the distribution of the Direct Acyclic Graphs (DAG) used for the generation
of the question query pairs. They create an English-to-SPARQL dataset with
appropriate compositional generalization properties and show a negative corre-
lation between seq-to-seq models’ performance and the level of compositional
generalization. Gu et al. [9] defined three levels of generalization. These defini-
tions are based on “logical forms”, i.e. the underlying structures in the question-
query pair. For instance, logical forms in another study [12] include the set of KB
classes and properties that appear in the query, the comparison operator in the
queries (e.g. =, <, etc.) and the SPARQL keyword COUNT. Based on these logical
forms, each test set data d0 can be associated to a level of generalization accord-
ing to the following definitions. 1) the I.I.D. level: there is a question-query pair
in the train set that has the same set logical forms as d0. 2) the compositional
level: all the logical forms in d0 belong to the set of all logical forms in the train
set, but no question-query pair of the train set had the same exact set of logical

4 Reyd et al.

forms. 3) The zero-shot level: there is at least one logical form in d0 that does
not belong to the set of all logical forms in the train set.

Jiang et al. [12] conducted a survey of the KGQA datasets and how they
comply with these levels. They also show that the models they tested (including
former approaches [3,4] and BART [15]) do not generalize well on these new
splits. In this work, we address specific NMT difficulties that can be interpreted
as variations of these generalization levels. For instance, we aim at evaluating
how models deal with unknown URIs, which is equivalent to the zero-shot level
when considering that all URIs are logical forms. This is also equivalent to
some definition of compositional generalization as proposed by Baroni [2] where
a model must understand the meaning of new symbols as it understood how
to compose with other symbols. Similarly, Hirigoyen et al. [10] attempted to
evaluate how their models dealt with unknown URIs by generating test sets
that do not share any URIs with the training sets. However, these test sets were
very limited in size (250 entries). In this work, we test the ability of modern
NMT models on popular SPARQL generation datasets and include pre-trained
language models enhanced by a copy mechanism.

3 Methodology

3.1 Task and data

The task of SPARQL query generation for KGQA uses pairs (called entries)
of sequences, composed of English questions and expected SPARQL queries.
For example: Question: “what is the office of richard coke ?” / Query: select
distinct ?uri where { dbr:Richard_Coke dbp:office ?uri }.

All the datasets that we consider use automatically generated entries based
on global templates. A global template is composed of a question template and
a query template that have matching placeholders that are later filled with spe-
cific KB URIs. We refer distinctly to question templates, query templates, and
global templates since some question templates or query templates might be
shared by several global templates. The placeholder can be filled by any KB el-
ement, including URIs and literals. URIs can be resources, or refer to properties
and classes. For instance, the above example was generated by the following tem-
plate: Question template: “what is the <1> of <2> ?” / Query template: select
distinct ?uri where {<2> <1> ?uri}.

We use three types of question annotation. 1) The raw questions are pre-
sented in the original datasets. 2) The tagged questions, where we use the global
templates to replace the natural language mentions with their corresponding
KB URIs, found in the corresponding placeholders in the SPARQL queries. This
tagging methodology is inspired by [10]. The above example has the following
tagged question: “what is the dbp:office of dbr:Richard_Coke ?” 3) The tag
end questions, where each KB element is randomly placed next to its label at
the end of the question, separated by <sep> tokens. This tagging methodol-
ogy is inspired by [1]. The above example has the following tag-end question:

Generalization for SPARQL Query Generation 5

“what is the office of richard coke ? <sep> dbr:Richard_Coke richard coke <sep>
dbp:office office”

3.2 NMT Models

Base architectures. Following [22] and [10], we experimented with ConvSeq2Seq
[7] and Transformer [21] models as well as a copy-enhanced architecture [10].
Similarly to [1], we also experimented with T5-small [17] and BART-base [15]
as pre-trained models. Finally, we proposed and tested a copy-enhanced version
of the pretrained language models.

Copy mechanism. As explained in [10], adding a copy-mechanism on top of a
non-pre-trained encoder-decoder can improve its performances by a great mar-
gin. The copy mechanism from [10] that we use is designed specifically to ad-
dress the main difficulty of the task of SPARQL query generation, as it helps
models to put the right URIs in the query. It is a block added on top of the
raw encoder-decoder model. This copy mechanism is well-suited for the task of
SPARQL query generation because it allows to not consider the KB elements
in the model’s vocabulary. For non-pretrained models, this means a significant
reduction in the size of the vocabulary. For pre-trained models, it allows avoiding
the tokenization of URIs and making "spelling" mistakes when generating the
URIs.

We consider an annotated question w0:m with tokens from the natural lan-
guage vocabulary W and the KB vocabulary K. The expected query q̂0:n is
composed of tokens from the SPARQL vocabulary S and the shared tokens from
K. When producing a new token, the model will choose to generate a token from
the SPARQL vocabulary or to copy a KB element (URI, literal) that belong to
the KB vocabulary from the annotated question.

To perform this choice between generating and copying, we first mask the
KB token from the annotated question before feeding it to the encoder-decoder.
Then, the copy block will compute a copy probability by applying a linear trans-
formation to the decoder logits. This copy probability will then be used to weight
the copy distribution and the generation distribution. The generation distribu-
tion is obtained by applying a softmax on the decoder logits. This distribution
therefore only covers the SPARQL vocabulary. The copy distribution is com-
puted by applying a softmax on the cross-attention weights (from the last at-
tention layer) between the token to be produced and the masked tokens of the
question. This distribution therefore only covers the KB elements that appear
in the question.

3.3 Evaluation of generalization capabilities

Generalization properties of a dataset. To evaluate the generalization ca-
pabilities of our models, we define generalization properties of our datasets and
their split based on some characteristics of the question-query pairs. The charac-
teristics of the entries are simply elements of interest, such as the global template

6 Reyd et al.

or the URIs that the entry features. The generalization properties are assess-
ments on the distribution of these characteristics with respect to the dataset
split. More formally, let D be a dataset, let D1 be a reference subset of this
dataset (usually the test set), and D1 be the rest of the dataset (usually the
train set). For all d ∈ D let c(d) be the set of characteristics of the data (in our
case either the URIs or the global template of a question-query pair), we say
that a generalization property gp holds if any data point d1 of D1 has at least
one characteristic that does not appear in D1, i.e.

gp(D,D1) ≡ ∀d1 ∈ D1 ∃c1 ∈ c(d1) : c1 /∈ ∪d∈D1
(c(d))

.
We then define two properties of our datasets that are useful for assessing

the generalization capabilities of NMT models.
We first evaluate the problem of unknown URIs, since generating the right

URIs is necessary to produce correct queries. This generalization capability is
very important because real knowledge bases cover very large types of subjects
and contain a very large number of URIs. Even though the datasets might aim at
covering as many areas and concepts as possible, none may feature enough data
to contain multiple examples of each possible URI. Hence, our first generalization
property is: a test set must feature only queries that have at least one URI that
is unseen during training.

We then aim to evaluate the generation of queries with structures that differ
from the ones seen during training. The handling of unknown question-query
structures is particularly important because it is unclear if models really generate
queries based on the sentence semantics, or if they simply map them to known
structures of queries. Hence, our second generalization property is: a test set
must feature only question-query pairs that were generated with different global
templates than the ones used in the train set.

Generation of test sets with generalization properties. We first partition
our dataset into subsets that we call groups, such that any set of groups can con-
stitute a reference subset of the dataset that has a generalization property. More
formally, given a dataset D, a partition of this dataset into groups {g1, ..., gk}
and a generalization property gp, for any set of these groups G ⊂ {g1, ..., gk} we
have that gp(D,

⋃
G) holds. We then define the procedure to build these groups

for each of our two generalization properties.

Groups for unknown templates split. In the case of unknown question-query
templates (aka unknown template split), the groups are composed of question-
query pairs that share the same question-query template. These groups can then
be assigned to the train set or test set. This ensures that there is no overlap.

Groups for unknown URI split. The URIs are exponentially distributed amongst
the question-query pairs. Therefore, most pairs share common URIs and most
pairs feature rare URIs that are not shared by many other pairs. The minimum

Generalization for SPARQL Query Generation 7

frequency of a URI to be considered rare is an experimental hyperparameter of
the algorithm. We explain how we choose it in Section 4.1. We first set aside
the few question-query pairs in the dataset D that only feature common URIs,
which are by default assigned to the train set. Thus our dataset D̃ contains only
question-query pairs that feature at least one rare URI. We then define a graph
where each node is a question-query pair of D̃, and there is an edge between two
nodes if the two question-query pairs share a rare URI. We define our groups as
the connected components of this graph. If we take any set of these groups, all
the question-query pairs within these groups will feature at least one URI that
does not appear in the rest of the groups. Indeed, if we take any rare URI in
any entry of these groups, it cannot appear in other groups because if it was the
case, there would have been an edge between entries from two different groups,
which can’t append since they are connected components of our graph.

Desired number of question-query pairs to assign to the train set. For both set-
tings, we aim at assigning 80% of the data to the train set and 20% to the test
set. We define N as the desired number of question-query pairs in the groups
that are assigned to the train set. In the case of the unknown template split,
N = 0.8×|D| with D being the dataset we want to split. In the case of unknown
URIs, since we reserved the question-query pairs without rare URIs to the train
set, we get N = 0.8× |D| − (|D| − |D̃|) = |D̃| − 0.2× |D|.

Split procedure. We then execute the following procedure. We initialize the train
set train and the test set test as empty sets. We then iterate over each group g.
If the size of train is larger than N , we assign the group to test. Reversely, if the
size of test is larger than |D|−N we assign the group to train. Finally, if neither
of these conditions is true, we compute a probability p = N−|train|

|D|−|train|−|test| and
assign the group to train with probability p or to test with probability 1− p.

By design of the groups, this ensures that the test set has the intended
generalization properties. We define a metric δ = |N−|train||

|D| that we wish to
minimize. In our procedure, once the train or test set has reached or exceeded its
desired size, no more groups can be assigned to it. Thus, we obtain δ < |gf |/|D|
where gf is the last group to be assigned. We run the procedure multiple times
and keep the run with the lowest δ, i.e. the one where the last assigned group is
the smallest.

4 Experiments

4.1 Data

We experimented with a simpler and a harder dataset, namely LC-QuAD 1.0 [20]
and LC-QuAD 2.0 [6]. They both provide question-query pairs from English to
SPARQL. We use processed versions that include the raw questions and queries,
as well as two annotated versions of the questions.

Table 1 reports the number of URIs, global templates, and question query
pairs of the entire dataset and each of its subsets, as well as the number of unseen

8 Reyd et al.

elements in the test set. As can be noticed, while many URIs are unknown in LC-
QuAD 2.0, global templates are all seen in training. Question-query pairs refer
to specific questions and queries. Those in the test set have not, by definition,
been seen in training.

Total Train Validation Test Unseen
All URIs

LC-QuAD 1.0 4751 4150 1068 1065 318
LC-QuAD 2.0 31018 25064 4978 9992 6724

Global templates
LC-QuAD 1.0 35 35 32 31 0
LC-QuAD 2.0 30 30 30 30 0

Entries
LC-QuAD 1.0 5000 4000 500 500 500
LC-QuAD 2.0 30225 21761 2418 6046 6046

Table 1. Number of URIs, global templates and question-query pairs in the datasets
for the original split

We chose an 80-10-10 split proportion for the train, validation, and test sets.
We used the split methodology described in Section 3.3 to get an 80-20 division
of our datasets [20,6] with the generalization properties introduced in the same
section. We then uniformly split the 20% into 10% for the validation set and
10% for the test set.

We obtained our unknown template splits in seconds by running our split pro-
cedure around a hundred times and keeping the split with lowest δ as explained
in Section 3.3. For the unknown URI split, we set the minimum frequency for a
URI to be rare at 5. Figure 1 shows that we have the most connected component
and the largest size of D̃ (D̃ being the set of entries with at least one rare URI,
see Section 3.3) around a minimum frequency of 5.

Finding the graph’s connected components took less than a second for LC-
QuAD 1.0 [20] and around 1.5min for LC-QuAD 2.0 [6]. We then ran the split
procedure around a hundred times, which took less than a second. We get δ =
6.6e−5 for the template split on LC-QuAD 2.0 [6] and δ = 0 for the template
split on LC-QuAD 1.0 [20] and for the URI split on both datasets [20,6].

Table 2 reports the number of URIs, global templates, and question query
pairs of the train/val/test sets obtained for the unknown URIs split and the
unknown template split. We can observe that we have fewer unknown URIs in
the test set of the unknown URI spit than in the test set of the original split.
This is because the original split did not use an 80-10-10 split and therefore had
around twice as many entries in its test set. However, our new split ensures that
100% entries of the test feature at least one unknown URI which is not the case
in the original split.

Generalization for SPARQL Query Generation 9

Fig. 1. Size of D̃ (see Section 3.3) and number of connected components as we raise
the minimum frequency for considering a URI rare

Total Train Val. Test Unseen Train Val. Test Unseen
Unknown template split Unknown URIs split

All URIs
LC-QuAD 1.0 4751 4183 925 912 282 3872 909 948 535
LC-QuAD 2.0 31018 27986 4403 4429 1619 25121 4738 4708 3437

Global templates
LC-QuAD 1.0 35 31 4 4 4 35 32 30 0
LC-QuAD 2.0 30 24 6 6 6 30 30 30 0

Entries
LC-QuAD 1.0 5000 4000 500 500 500 4000 500 500 500
LC-QuAD 2.0 30225 24178 3023 3024 3024 24180 3022 3023 3023

Table 2. Number of URIs, global templates, and question-query pairs in the datasets
for our splits

4.2 Models training and evaluation

Our non-pre-trained model architectures follow the ones of [22] and [10] in terms
of the number of layers (6 for Transformer and 15 for ConvSe2Seq), and number
of hidden units (1024 for Transformer and 512 for ConvSeq2Seq). The training
methodology is also the same with similar optimizer (ADAM for Transformer
and SGD for ConvSeq2Seq), learning rates (0.0005 for Transformer and 0.5 for
ConvSeq2Seq) and dropout (0.3 for Transformer and 0.2 for ConvSeq2Seq). Our
pre-trained models are T5-small and BART-base following [1]. We also adopt
their training parameters, using the ADAM optimizer for both models with a
learning rate of 0.000015 for BART and 0.0015 for T5, and a polynomial decay
schedule with warmup.

We ran our models for a fixed number of epochs three times, keeping the
model with the best validation loss at each run, and report the mean of the
three best models. The number of epochs and the batch size are fixed based on

10 Reyd et al.

our physical device’s abilities. For non-pre-trained models, we used 500 epochs
and a batch size of 32 for LC-QuAD 1.0 [20] and 150 epochs and a batch size
of 16 for LC-QuAD 2.0 [6]. For pre-trained models, we used 200 epochs and a
batch size of 16 for LC-QuAD 1.0 [20] and 50 epochs and a batch size of 8 for
LC-QuAD 2.0 [6].

During the evaluation, we generate the outputs greedily and compute several
evaluation measures, namely BLEU score [16], answer accuracy and F1 score.
We first compare the predicted queries to the gold queries using the BLEU score.
We also run the gold queries against a 2016 dump of DBPedia-based endpoint for
LC-QuAD 1.0 [20] and on the current public endpoint for LC-QuAD 2.0 [6], and
we only keep queries that return non-empty answers. We then run our predicted
queries on the same endpoints and compare expected answers with predicted
answers using answer accuracy, which measures if the two sets of answers are
identical and using the F1-score.

5 Results

We report results rounded to integers for an easier comparison between tables.

5.1 Original results

All results for the original split are reported in Table 3.
For non-pre-trained models, we can notice that the copy mechanism managed

to bring the performance for LC-QuAD 1.0 [20] close to 100%. For LC-QuAD
2.0 [6], even with copy, the task remains really challenging. Moreover, we can
see that in most settings, the Transformer architecture struggles with LC-QuAD
2.0 [6].

Contrary to non-pre-trained models, the original results of pre-trained mod-
els are quite heterogeneous. Both T5 [17] and BART [15] have low results on
raw questions (even though they are better than any setting of non-pre-trained
models without the copy mechanism). BART [15] without the copy mechanism
is the only pre-trained architecture that has performances noticeably lower than
ConSeq2Seq with the copy mechanism. In the case of LC-QuAD 1.0 [20] in its
original split, both BART [15] with the copy mechanism and T5 [17] with and
without the copy mechanism perform well. In the case of LC-QuAD 2.0 [6], T5
[17] performs well without the copy mechanism, whereas BART [15] performs
well only with the copy mechanism.

5.2 Unknown URIs split

All results for the unknown URIs split are reported in Table 4.
The results for non-pre-trained models show very clearly the impact of the

copy mechanism on the handling of unknown URIs and also clearly highlight
that our split creates a real difficulty for non-pre-trained models compared to
the original dataset.

Generalization for SPARQL Query Generation 11

No copy Copy No copy Copy
BLEU Acc F1 BLEU Acc F1 BLEU Acc F1 BLEU Acc F1

Transformer Conv

LC-QuAD 1.0

raw 69 33 37 / / / 69 23 27 / / /
tagged 82 41 44 98 95 95 78 28 32 98 95 95
tag end 74 38 41 49 1.9 1.9 75 25 28 91 77 78

BART T5
raw 83 59 62 / / / 77 42 46 / / /

tagged 96 85 85 99 97 97 98 96 96 98 96 96
tag end 96 85 85 98 96 96 98 95 95 97 93 93

Transformer Conv

LC-QuAD 2.0

raw 57 0.9 1.1 / / / 76 10 11 / / /
tagged 59 1.5 1.6 83 69 69 76 8.8 10 88 69 70
tag end 66 1.4 1.7 57 2.2 2.2 78 14 15 91 66 66

BART T5
raw 70 2.2 2.3 / / / 79 13 13 / / /

tagged 88 80 80 89 72 73 92 87 87 89 72 72
tag end 84 67 67 95 85 85 90 85 85 87 58 58

Table 3. Results for the original split

Without the copy mechanism, we can note that no non-pre-trained model
reaches 10% of accuracy on LC-QuAD 1.0 [20] nor 2% on LC-QuAD 2.0 [6]. Even
though the tagged questions lead to slightly higher performance, the annotation
impact is much less noticeable than for other settings.

On the contrary, with the copy mechanism, we clearly notice that the perfor-
mance of non-pre-trained models (based on all metrics) using tagged questions is
much higher than without the copy mechanism. We reach and even outperform
the results from the original split. This suggests that the unknown URIs are han-
dled, particularly using tagged questions. Indeed, the introduction of unknown
URIs in each test entry without any F1-score loss (as seen by comparing Table
3 and Table 4) suggests that the errors made might not be caused by unknown
URIs. The tag end setting does not however help the models.

For pre-trained models, with annotated questions, the results remain similar
to the original split for T5 [17]. BART [15] loses some F1 score points on LC-
QuAD 2.0 [6]. However, we see a great increase in performance between raw
data and annotated questions. This suggests that with question annotation, pre-
trained models are able to deal with unknown URIs to a good extent. We can
also see that T5 [17] with the copy mechanism slightly increases its performance
on LC-QuAD 1.0 [20].

5.3 Unknown templates split

All results for the unknown templates split are reported in Table 5.
For non-pre-trained models, we can observe that models without the copy

mechanism consistently suffer a huge drop in performance compared to the origi-
nal split. For LC-QuAD 1.0 [20], we still see a consistent increase in performance

12 Reyd et al.

No copy Copy No copy Copy
Bleu Acc F1 Bleu Acc F1 Bleu Acc F1 Bleu Acc F1

Transformer Conv

LC-QuAD 1.0

raw 59 7.0 10 / / / 64 6.9 10 / / /
tagged 70 8.0 12 98 95 95 71 8.4 12 98 96 96
tag end 67 6.1 8.6 46 0.2 0.2 70 6.9 9.6 86 60 62

BART T5
raw 77 38 41 / / / 72 24 26 / / /

tagged 96 85 85 99 96 96 98 95 95 99 97 98
tag end 95 83 83 96 93 94 98 94 94 98 96 96

Transformer Conv

LC-QuAD 2.0

raw 61 0.3 0.5 / / / 75 1.8 2.7 / / /
tagged 64 0.3 0.4 86 72 73 75 2.0 3.0 90 72 73
tag end 62 0.4 0.6 55 1.8 1.8 74 1.9 3.0 88 53 53

BART T5
raw 68 0.5 0.6 / / / 74 0.7 0.9 / / /

tagged 87 72 72 86 62 62 93 87 88 85 68 68
tag end 86 71 71 92 78 78 91 85 86 92 77 78

Table 4. Results for non-pre-trained models on the unknown URIs split

with question annotation but the answer accuracy still remains below 55%. For
LC-QuAD 2.0 [6] with Transformer, the results are even lower than in the origi-
nal split and the answers are almost always wrong. For ConvSeq2Seq, the model
has better performances but they remain low.

However, we can observe a noticeable impact of the copy mechanism on the
non-pre-trained models’ results. Even though they remain below those of the
original split, they are much better than without the copy mechanism. Moreover,
compared to the original split, the BLEU score is notably lower especially if we
also consider the answer accuracy. This would suggest that the structure of the
predicted queries does not always match the structure of the expected ones while
still providing correct answers. Explanations of why this might happen are given
in Section 6. Overall, non-pre-trained models seem to really struggle with global
templates unseen during training.

Contrarily to non-pre-trained models, pre-trained models appear to handle
unknown templates for simple datasets.

For LC-QuAD 1.0 [20], BART [15] and T5 [17] without the copy mechanism
both remain consistent in terms of answer metrics, while they show a significant
drop in BLEU score compared to the original split. However, we can observe
a huge drop in performance for T5 [17] with copy on both question annotation
settings (tagged, tag-end) and for BART [15] with copy on the tag-end questions.
Yet, BART [15] with copy on tagged questions demonstrates impressive and
almost perfect answers metrics.

In the LC-QuAD 2.0 [6] case, we can note that the results are low. No model
reaches 50% accuracy. In this case, both models perform better without the copy
mechanism.

Generalization for SPARQL Query Generation 13

No copy Copy No copy Copy
Bleu Acc F1 Bleu Acc F1 Bleu Acc F1 Bleu Acc F1

Transformer Conv

LC-QuAD 1.0

raw 37 6.9 8.0 / / / 43 17 19 / / /
tagged 36 6.3 6.4 50 24 24 46 19 22 50 41 41
tag end 42 11 12 37 2.8 2.8 50 18 20 60 55 55

BART T5
raw 62 41 42 / / / 65 52 53 / / /

tagged 79 87 88 63 99 99 80 92 92 57 50 50
tag end 80 90 90 61 42 43 75 78 79 66 51 51

Transformer Conv

LC-QuAD 2.0

raw 43 0.2 0.3 / / / 51 4.1 4.7 / / /
tagged 39 0.1 0.2 64 32 33 52 1.4 2.0 63 34 34
tag end 41 0.2 0.2 37 0.3 0.3 55 2.7 2.9 57 13 14

BART T5
raw 50 0.4 0.4 / / / 59 1.1 1.2 / / /

tagged 70 47 47 65 34 34 69 48 48 61 14 14
tag end 52 21 22 62 12 12 68 47 47 62 7.9 8.2

Table 5. Results for the unknown template split

6 Discussion

We showed that classic NMT approaches cannot handle unknown URIs or un-
known question-query structures. On the contrary, adding a copy mechanism or
using pre-trained models combined with question annotation allows the handling
of unknown URIs since having all test instances featuring unknown URIs almost
did not lower the performances. Indeed, the results of pre-trained models on the
unknown URIs split remain roughly similar compared to the original split with
tagged questions (-2 F1 point on average). Significant performance gains are ob-
tained only with tagged questions on the unknown URIs split, as we observe a
raise of 67.9 F1 points on average when using tagged questions instead of raw
questions for pre-trained models.

We also showed that the copy mechanism or the use of pre-trained models,
and sometimes specifically the combination of both, can allow models to deal
with unknown question-query structures. Yet, this type of generalization remains
a challenge for SPARQL query generation with NMT as our results don’t show
consistent handling across models, datasets, and data annotation.

Low performances for non-pre-trained models on tag-end questions in the un-
known URIs split. We observed that the copy mechanism allowed the non-pre-
trained models to reach the same performance on the unknown URIs split as on
the original split for tagged questions but not on tag-end questions. This can
be explained by the fact that the copy mechanism uses the label of the URI,
at the end of the question to map it to its position in the question and to its
position in the query. But in these settings, there are many unknown URIs, and
thus a very high probability that the label reported next to the URI is also an

14 Reyd et al.

unknown token. Even though the copy mechanism is able to overcome unknown
URIs, it needs an anchor to map the position of the given URI to the position
of its natural language mention in the question, which is often impossible in the
tag-end questions.

Drop of BLEU score for the unknown template split. We observed that in most
cases, the margin between the BLEU score and answer-based scores is lowered
if not reversed on the unknown template splits. This behavior suggests that the
models predict queries that do not match the expected ones but still produce
the gold answers.

We found a significant example of such behavior in the case of BART with
the copy mechanism on LC-QuAD 1.0 [20] with tagged questions. When we
look at the generated queries, we can see that they always follow the struc-
ture of a query template in the training set. We conclude that the model has
integrated the task of mapping a question template to a query template to-
gether with placeholder filling. When it is given a question from the test set,
it tries to associate the unknown structure to a known one from the training
set and then generates the corresponding query. An example of outputs from
BART with copy and tagged questions from the most common global tem-
plate in the test set of LC-QuAD 1.0 [20] can be found in Table 6. For in-
stance, for the test question “what is the dbp:hubs of dbr:Cascade_Airways?”
the model predicted select distinct ?uri where { dbr:Cascade_Airways
dbp:hubs ?uri . dbr:Cascade_Airways dbp:hubs ?uri } instead of select
distinct ?uri where { dbr:Cascade_Airways dbp:hubs ?uri }.

Generated structure from:
what is the <1> of <2> ?

Training global template it might come from

select distinct ?uri where
{ <mask> <mask> ?uri .
<mask> <mask> ?uri }

(298 occurrences)

- what is the <1> of the <2> and <3> ?
- select distinct ?uri where { <2> <1> ?uri.

<3> <1> ?uri }
- who is the <1> of the <2> and <3> of the <4> ?
- select distinct ?uri where { <2> <1> ?uri.

<4> <3> ?uri }

select distinct ?uri where
{ <mask> <mask> ?uri .
<mask> <mask> ?uri . }

(77 occurrences)

- what is the <1> of the <2> and <3> ?
- select distinct ?uri where { <2> <1> ?uri.

<3> <1> ?uri }
- who is the <1> of the <2> and <3> of the <4> ?
- select distinct ?uri where { <2> <1> ?uri.

<4> <3> ?uri }
select distinct ?uri where
{ ?uri <mask> <mask> . }

(1 occurrence)

- what are the <0> whose <1> is <2> ?
- select distinct ?uri where {?uri <1> <2> }

Table 6. Example of outputs generated by BART for the most common global template
of the test set (376 occurrences) which is Question: what is the <1> of <2> ? / Query:
select distinct ?uri where { <2> <1> ?uri } (one run of BART tagged copy on
LC-QuAD 2.0)

Generalization for SPARQL Query Generation 15

Challenging cases. Either thanks to the copy mechanism, to pre-trained models
or to the combination of both, we manage to obtain at least one model that
reaches above 80% of F1 score on almost each split of each dataset. The only
exception is the case of the unknown template split for LC-QuAD 2.0. In this
case, no model manages to reach above 48% of F1 score. We can notably see a
very strong drop of performance from the unknown template split of LC-QuAD
1.0 compared to the unknown template split of LC-QuAD 2.0. In particular,
we can observe that BART’s performance with the copy mechanism and tagged
questions decrease from 99% of F1 score to 34% of F1 score. On both LC-QuAD
2.0 and LC-QuAD 1.0, we note that the model generates queries that match
query templates from the training set that are associated to training questions
close to the test questions. In the case of LC-QuAD 1.0, this allowed to generate
queries that return the expected answers due to equivalent queries with different
structures (see the above example) but it is not the case for LC-QuAD 2.0.

Table 7 shows an example of how BART generated incorrect queries for
questions with a specific structure and used the same SPARQL templates as
those in the training set.

Question structure from the test set: How many <1> are by <2>?
Example: how many child are by gaia ?

Expected query structures for this question structure: select (count (?sub
) as ?value) { ?sub <1> <2> }
Example: select (count (?sub) as ?value) { ?sub wdt:P40 wd:Q93172 }

Predicted query structures for this question structure: select (count (
?obj) as ?value) { <2> <1> ?obj }
Example: select (count (?obj) as ?value) { wd:Q270503 wdt:P400 ?obj }

Question template associated to this query template in the train set: how
many <1> are for <2> ?
Example: how many platform are for tomb raider ?

Table 7. Example of how BART with the copy mechanism and tagged questions
handles an unknown template in LC-QuAD 2.0

Standard deviation of performance between runs with the copy mechanism. For
each result that we report, we averaged the results of three different runs where
the models are trained and evaluated with different random seeds. We noted
that there is, in some cases, a significant standard deviation between the runs
when we use models with the copy mechanism.

Complexity of finding unknown URIs groups. Despite the speed of the split pro-
cedure, our methodology for unknown URI splits has a higher time complexity.
Indeed, it requires finding the connected components in the graph, which is a
quadratic process in the size of the dataset.

16 Reyd et al.

7 Conclusion and future work

In this study, we defined two major issues of the NMT approach of SPARQL
query generation from English questions. We first show how they are related
to common definitions of generalization in the context of SPARQL query gen-
eration. We then presented a split algorithm to obtain datasets that test these
challenges in their train/test distribution: the unknown template split and the
unknown URI split. Finally, we tested pre-trained models and copy-enhanced
models with question annotation on a simple and a hard dataset. We also com-
pared these results to non-pre-trained models.

We showed that unknown templates are very often an issue for model train-
ing and testing since most results are low and only very specific combinations of
question annotation and model architecture (BART [15] with copy and tagged
questions and T5 [17] without copy) allow good results on LC-QuAD 1.0 [20].
Moreover, even when models generate queries that have correct answers, they
often follow structures matching those in the training set, which is an impor-
tant limitation. However, we showed that even though the performance remains
low, the copy mechanism allowed a significant improvement for non-pre-trained
models on LC-QuAD 2.0 [6]. We also showed that pre-training and question an-
notation or usage of the copy mechanism allows the handling of unknown URIs
contrary to non-pre-trained models (without copy).

Our future work will include other criteria to evaluate the ability of current
natural language to SPARQL datasets to test generative models. For instance,
LC-QuAD 1.0 [20] and LC-QuAD 2.0 [6] both include reformulated questions
that are produced by humans, which can constitute a good test set for models
trained on template questions. We also plan to consider other splitting criteria
that would show how models generalize to harder data, based on characteristics
such as the length of the query or the question, the number of placeholders, or
the number of triples in the query. Finally, we plan to enhance the performance
of the split algorithm for unknown URIs, by considering other graph algorithms
to find groups.

Supplemental Material Statement: The code and data for this paper can be
found at this link1.

Acknowledgements: This research has been funded by the NSERC Discovery
Grant Program. The authors acknowledge support from Compute Canada for
providing computational resources. We would like to thank Karou Diallo for
setting the DBpedia SPARQL endpoint used in this paper.

References

1. Debayan Banerjee, Pranav Ajit Nair, Jivat Neet Kaur, Ricardo Usbeck, and Chris
Biemann. Modern baselines for SPARQL semantic parsing. In Enrique Amigó,

1 Link to our GitHub

https://github.com/Lama-West/SPARQL_Query_Generation_PLM_General_ISWC23/

Generalization for SPARQL Query Generation 17

Pablo Castells, Julio Gonzalo, Ben Carterette, J. Shane Culpepper, and Gabriella
Kazai, editors, SIGIR ’22: The 45th International ACM SIGIR Conference on
Research and Development in Information Retrieval, Madrid, Spain, July 11 - 15,
2022, pages 2260–2265. ACM, 2022.

2. Marco Baroni. Linguistic generalization and compositionality in modern artificial
neural networks. Philosophical Transactions of the Royal Society B: Biological
Sciences, 375(1791):20190307, December 2019. Publisher: Royal Society.

3. IAIS bFraunhofer. Knowledge graph question answering using graph-pattern iso-
morphism. In Further with Knowledge Graphs: Proceedings of the 17th Interna-
tional Conference on Semantic Systems, 6-9 September 2021, Amsterdam, The
Netherlands, volume 53, page 103. IOS Press, 2021.

4. Yongrui Chen, Huiying Li, Guilin Qi, Tianxing Wu, and Tenggou Wang. Outlining
and filling: Hierarchical query graph generation for answering complex questions
over knowledge graphs. arXiv preprint arXiv:2111.00732, 2021.

5. Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
Pre-training of deep bidirectional transformers for language understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota, June 2019.
Association for Computational Linguistics.

6. Mohnish Dubey, Debayan Banerjee, Abdelrahman Abdelkawi, and Jens Lehmann.
Lc-quad 2.0: A large dataset for complex question answering over wikidata and
dbpedia. In Chiara Ghidini, Olaf Hartig, Maria Maleshkova, Vojtech Svátek, Is-
abel F. Cruz, Aidan Hogan, Jie Song, Maxime Lefrançois, and Fabien Gandon,
editors, The Semantic Web - ISWC 2019 - 18th International Semantic Web Con-
ference, Auckland, New Zealand, October 26-30, 2019, Proceedings, Part II, volume
11779 of Lecture Notes in Computer Science, pages 69–78. Springer, 2019.

7. Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N. Dauphin.
Convolutional sequence to sequence learning. In Doina Precup and Yee Whye Teh,
editors, Proceedings of the 34th International Conference on Machine Learning,
ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70 of Proceedings
of Machine Learning Research, pages 1243–1252. PMLR, 2017.

8. Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O. K. Li. Incorporating copying
mechanism in sequence-to-sequence learning. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics, ACL 2016, August 7-12,
2016, Berlin, Germany, Volume 1: Long Papers, pages 1631–1640. The Association
for Computer Linguistics, 2016.

9. Yu Gu, Sue Kase, Michelle Vanni, Brian Sadler, Percy Liang, Xifeng Yan, and
Yu Su. Beyond i.i.d.: Three levels of generalization for question answering on
knowledge bases. In Proceedings of the Web Conference 2021, WWW ’21, page
3477–3488, New York, NY, USA, 2021. Association for Computing Machinery.

10. Rose Hirigoyen, Amal Zouaq, and Samuel Reyd. A copy mechanism for handling
knowledge base elements in SPARQL neural machine translation. In Findings of
the Association for Computational Linguistics: AACL-IJCNLP 2022, pages 226–
236, Online only, November 2022. Association for Computational Linguistics.

11. Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural com-
putation, 9:1735–80, 12 1997.

12. Longquan Jiang and Ricardo Usbeck. Knowledge graph question answering
datasets and their generalizability: Are they enough for future research? In Enrique
Amigó, Pablo Castells, Julio Gonzalo, Ben Carterette, J. Shane Culpepper, and

18 Reyd et al.

Gabriella Kazai, editors, SIGIR ’22: The 45th International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval, Madrid, Spain, July
11 - 15, 2022, pages 3209–3218. ACM, 2022.

13. Daniel Keysers, Nathanael Schärli, Nathan Scales, Hylke Buisman, Daniel Furrer,
Sergii Kashubin, Nikola Momchev, Danila Sinopalnikov, Lukasz Stafiniak, Tibor
Tihon, Dmitry Tsarkov, Xiao Wang, Marc van Zee, and Olivier Bousquet. Mea-
suring Compositional Generalization: A Comprehensive Method on Realistic Data,
June 2020. arXiv:1912.09713 [cs, stat].

14. Brenden Lake and Marco Baroni. Generalization without systematicity: On the
compositional skills of sequence-to-sequence recurrent networks. In Jennifer Dy
and Andreas Krause, editors, Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Machine Learning Research, pages
2873–2882. PMLR, 10–15 Jul 2018.

15. Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mo-
hamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. BART: denois-
ing sequence-to-sequence pre-training for natural language generation, translation,
and comprehension. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel R.
Tetreault, editors, Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, ACL 2020, Online, July 5-10, 2020, pages 7871–7880.
Association for Computational Linguistics, 2020.

16. Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method
for automatic evaluation of machine translation. In Proceedings of the 40th An-
nual Meeting of the Association for Computational Linguistics, July 6-12, 2002,
Philadelphia, PA, USA, pages 311–318. ACL, 2002.

17. Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits
of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res.,
21:140:1–140:67, 2020.

18. Abigail See, Peter J. Liu, and Christopher D. Manning. Get to the point: Summa-
rization with pointer-generator networks. In Regina Barzilay and Min-Yen Kan,
editors, Proceedings of the 55th Annual Meeting of the Association for Computa-
tional Linguistics, ACL 2017, Vancouver, Canada, July 30 - August 4, Volume 1:
Long Papers, pages 1073–1083. Association for Computational Linguistics, 2017.

19. Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with
neural networks. In Zoubin Ghahramani, Max Welling, Corinna Cortes, Neil D.
Lawrence, and Kilian Q. Weinberger, editors, Advances in Neural Information Pro-
cessing Systems 27: Annual Conference on Neural Information Processing Systems
2014, December 8-13 2014, Montreal, Quebec, Canada, pages 3104–3112. Curran
Associates, Inc., 2014.

20. Priyansh Trivedi, Gaurav Maheshwari, Mohnish Dubey, and Jens Lehmann. Lc-
quad: A corpus for complex question answering over knowledge graphs. In Claudia
d’Amato, Miriam Fernández, Valentina A. M. Tamma, Freddy Lécué, Philippe
Cudré-Mauroux, Juan F. Sequeda, Christoph Lange, and Jeff Heflin, editors, The
Semantic Web - ISWC 2017 - 16th International Semantic Web Conference, Vi-
enna, Austria, October 21-25, 2017, Proceedings, Part II, volume 10588 of Lecture
Notes in Computer Science, pages 210–218. Springer, 2017.

21. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.
In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob
Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors, Advances in Neu-

Generalization for SPARQL Query Generation 19

ral Information Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pages 5998–
6008. Curran Associates, Inc., 2017.

22. Xiaoyu Yin, Dagmar Gromann, and Sebastian Rudolph. Neural machine translat-
ing from natural language to SPARQL. Future Gener. Comput. Syst., 117:510–519,
2021.

	Assessing the Generalization Capabilities of Neural Machine Translation Models for SPARQL Query Generation

