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Abstract. We propose the LLMs4OL approach, which utilizes Large
Language Models (LLMs) for Ontology Learning (OL). LLMs have shown
significant advancements in natural language processing, demonstrating
their ability to capture complex language patterns in different knowledge
domains. Our LLMs4OL paradigm investigates the following hypothesis:
Can LLMs effectively apply their language pattern capturing capability
to OL, which involves automatically extracting and structuring knowl-
edge from natural language text? To test this hypothesis, we conduct
a comprehensive evaluation using the zero-shot prompting method. We
evaluate nine different LLM model families for three main OL tasks:
term typing, taxonomy discovery, and extraction of non-taxonomic re-
lations. Additionally, the evaluations encompass diverse genres of onto-
logical knowledge, including lexicosemantic knowledge in WordNet, geo-
graphical knowledge in GeoNames, and medical knowledge in UMLS.
The obtained empirical results show that foundational LLMs are not
sufficiently suitable for ontology construction that entails a high degree
of reasoning skills and domain expertise. Nevertheless, when effectively
fine-tuned they just might work as suitable assistants, alleviating the
knowledge acquisition bottleneck, for ontology construction.

Keywords: Large Language Models · LLMs · Ontologies · Ontology
Learning · Prompting · Prompt-based Learning.

1 Introduction

Ontology Learning (OL) is an important field of research in artificial intelligence
(AI) and knowledge engineering, as it addresses the challenge of knowledge ac-
quisition and representation in a variety of domains. OL involves automatically
identifying terms, types, relations, and potentially axioms from textual infor-
mation to construct an ontology [30]. Numerous examples of human-expert cre-
ated ontologies exist, ranging from general-purpose ontologies to domain-specific
ones, e.g., Unified Medical Language System (UMLS) [9], WordNet [41], GeoN-
ames [53], Dublin Core Metadata Initiative (DCMI) [66], schema.org [20], etc.
Traditional ontology creation relies on manual specification by domain experts,
which can be time-consuming, costly, error-prone, and impractical when knowl-
edge constantly evolves or domain experts are unavailable. Consequently, OL
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techniques have emerged to automatically acquire knowledge from unstructured
or semi-structured sources, such as text documents and the web, and transform
it into a structured ontology. A quick review of the field shows that traditional
approaches to OL are based on lexico-syntactic pattern mining and cluster-
ing [67,42,37,26,4,21,61,54,28,2,24,23]. In contrast, recent advances in natural
language processing (NLP) through Large Language Models (LLMs) [46] offer
a promising alternative to traditional OL methods. The ultimate goal of OL is
to provide a cost-effective and scalable solution for knowledge acquisition and
representation, enabling more efficient and effective decision-making in a range
of domains. To this end, we introduce the LLMs4OL paradigm and empirically
ground it as a foundational first step.

Currently, there is no research explicitly training LLMs for OL. Thus to
test LLMs for OL for the first time, we made some experimental considera-
tions. The first being: Do the characteristics of LLMs justify ontology learning?
First, LLMs are trained on extensive and diverse text, similar to domain-specific
knowledge bases [51]. This aligns with the need for ontology developers to have
extensive domain knowledge. Second, LLMs are built on the core technology of
transformers that have enabled their higher language modeling complexity by
facilitating the rapid scaling of their parameters. These parameters represent
connections between words, enabling LLMs to comprehend the meaning of un-
structured text like sentences or paragraphs. Further, by extrapolating complex
linguistic patterns from word connections, LLMs exhibit human-like response
capabilities across various tasks, as observed in the field of “emergent” AI. This
behavior entails performing tasks beyond their explicit training, such as gener-
ating executable code, diverse genre text, and accurate text summaries [59,64].
Such ability of LLMs to extrapolate patterns from simple word connections, en-
coding language semantics, is crucial for OL. Ontologies often rely on analyzing
and extrapolating structured information connections, such as term-type tax-
onomies and relations, from unstructured text [18]. Thus LLMs4OL hypothesis
of LLMs’ fruitful application for OL appeared conceptually justified.

LLMs are being developed at a rapid pace. At the time of writing of this
work, at least 60 different LLMs are reported [5]. This led to our second main
experimental consideration. Which LLMs to test for the LLMs4OL task hypoth-
esis? Empirical validation of various LLMs is crucial for NLP advancements and
selecting suitable models for research tasks. Despite impressive performances in
diverse NLP tasks, LLM effectiveness varies. For the foundational groundwork of
LLMs4OL, we comprehensively selected eight diverse model families based on ar-
chitecture and reported state-of-the-art performances at the time of this writing.
The three main LLM architectures are encoder, decoder, and encoder-decoder.
The selected LLMs for validation are: BERT [16] (encoder-only); BLOOM [56],
MetaAI’s LLaMA [60], OpenAI’s GPT-3 [10], GPT-3.5 [46], GPT-4 [47] (all
decoder-only); and BART [33] and Google’s Flan-T5 [11] (encoder-decoder).
Recent studies show that BERT excels in text classification and named entity
recognition [16], BART is effective in text generation and summarization [33],
and LLaMA demonstrates high accuracy in various NLP tasks, including reason-
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ing, question answering, and code generation [60]. Flan-T5 emphasizes instruc-
tion tuning and exhibits strong multi-task performance [11]. BLOOM’s unique
multilingual approach achieves robust performance in tasks like text classifica-
tion and sequence tagging [56]. Lastly, the GPT series stands out for its human-
like text generation abilities [10,46,47]. In this work, we aim to comprehensively
unify these LLMs for their effectiveness under the LLMs4OL paradigm for the
first time.

With the two experimental considerations in place, we now introduce the
LLMs4OL paradigm and highlight our contributions. LLMs4OL is centered around
the development of ontologies that comprise the following primitives [39]: 1. a
set of strings that describe terminological lexical entries L for conceptual types;
2. a set of conceptual types T ; 3. a taxonomy of types in a hierarchy HT ; 4. a
set of non-taxonomic relations R described by their domain and range restric-
tions arranged in a heterarchy of relations HR; and 5. a set of axioms A that
describe additional constraints on the ontology and make implicit facts explicit.
The LLMs4OL paradigm, introduced in this work, addresses three core aspects
of OL as tasks, outlined as the following research questions (RQs).

– RQ1: Term Typing Task – How effective are LLMs for automated type
discovery to construct an ontology?

– RQ2: Type Taxonomy Discovery Task – How effective are LLMs to recognize
a type taxonomy i.e. the “is-a” hierarchy between types?

– RQ3: Type Non-Taxonomic Relation Extraction Task – How effective are
LLMs to discover non-taxonomic relations between types?

The diversity of the empirical tests of this work are not only w.r.t. LLMs con-
sidered, but also the ontological knowledge domains tested for. Specifically, we
test LLMs for lexico-semantic knowledge in WordNet [41], geographical knowl-
edge in GeoNames [1], biomedical knowledge in UMLS [8], and web content type
representations in schema.org [48]. For our empirical validation of LLMs4OL, we
seize the opportunity to include PubMedBERT [19], a domain-specific LLM de-
signed solely for the biomedical domain and thus applicable only to UMLS. This
addition complements the eight domain-independent model families introduced
earlier as a ninth model type. Summarily, our main contributions are:

– The LLMs4OL task paradigm as a conceptual framework for leveraging
LLMs for OL.

– An implementation of the LLMs4OL concept leveraging tailored prompt
templates for zero-shot OL in the context of three specific tasks, viz. term
typing, type taxonomic relation discovery, and type non-taxonomic relation
discovery. These tasks are evaluated across unique ontological sources well-
known in the community. Our code source with templates and datasets per
task are released here https://github.com/HamedBabaei/LLMs4OL.

– A thorough out-of-the-box empirical evaluation of eight state-of-the-art domain-
independent LLM types (10 models) and a ninth biomedical domain-specific
LLM type (11th model) for their suitability to the various OL tasks consid-
ered in this work. Furthermore, the most effective overall LLM is finetuned
and subsequently finetuned LLM results are reported for our three OL tasks.

https://github.com/HamedBabaei/LLMs4OL
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2 Related Work

There are three avenues of related research: ontology learning from text, prompt-
ing LLMs for knowledge, and LLM prompting methods or prompt engineering.
Ontology Learning from Text. One of the earliest approaches [23] used lex-
icosyntactic patterns to extract new lexicosemantic concepts and relations from
large collections of unstructured text, enhancing WordNet [41]. WordNet is a
lexical database comprising a lexical ontology of concepts (nouns, verbs, etc.)
and lexico-semantic relations (synonymy, hyponymy, etc.). Hwang [24] proposed
an alternative approach for constructing a dynamic ontology specific to an ap-
plication domain. The method involved iteratively discovering types and tax-
onomy from unstructured text using a seed set of terms representing high-level
domain types. In each iteration, newly discovered specialized types were incor-
porated, and the algorithm detected relations between linguistic features. The
approach utilized a simple ontology algebra based on inheritance hierarchy and
set operations. Agirre et al.[2] enhanced WordNet by extracting topically related
words from web documents. This unique approach added topical signatures to
enrich WordNet. Kietz et al.[28] introduced the On-To-Knowledge system, which
utilized a generic core ontology like GermaNet [22] or WordNet as the founda-
tional structure. It aimed to discover a domain-specific ontology from corporate
intranet text resources. For concept extraction and pruning, it employed statis-
tical term frequency count heuristics, while association rules were applied for
relation identification in corporate texts. Roux et al.[54] proposed a method to
expand a genetics ontology by reusing existing domain ontologies and enhancing
concepts through verb patterns extracted from unstructured text. Their system
utilized linguistic tools like part-of-speech taggers and syntactic parsers. Wagner
[61] employed statistical analysis of corpora to enrich WordNet in non-English
languages by discovering relations, adding new terms to concepts, and acquiring
concepts through the automatic acquisition of verb preferences. Moldovan and
Girju [43] introduced the Knowledge Acquisition from Text (KAT) system to
enrich WordNet’s finance domain coverage. Their method involved four stages:
(1) discovering new concepts from a seed set of terms, expanding the concept list
using dictionaries; (2) identifying lexical patterns from new concepts; (3) discov-
ering relations from lexical patterns; and (4) integrating extracted information
into WordNet using a knowledge classification algorithm. In [4], an unsupervised
method is presented to enhance ontologies with domain-specific information us-
ing NLP techniques such as NER and WSD. The method utilizes a general NER
system to uncover a taxonomic hierarchy and employs WSD to enrich existing
synsets by querying the internet for new terms and disambiguating them through
cooccurrence frequency. Khan and Luo [26] employed clustering techniques to
find new terms, utilizing WordNet for typing. They used the self-organizing tree
algorithm [17], inspired by molecular evolution, to establish an ontology hier-
archy. Additionally, Xu et al. [67] focused on automatically acquiring domain-
specific terms and relations through a TFIDF-based single-word term classifier,
a lexico-syntactic pattern finder based on known relations and collocations, and
a relation extractor utilizing discovered lexico-syntactic patterns.
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Predominantly, the approaches for OL [62] that stand out so far are based
on lexico-syntactic patterns for term and relation extraction as well as cluster-
ing for type discovery. Otherwise, they build on seed-term-based bootstrapping
methods. The reader is referred to further detailed reviews [6,38] on this theme
for a comprehensive overall methodological picture for OL. Traditional NLP
was defined by modular pipelines by which machines were equipped step-wise
with annotations at the linguistic, syntactic, and semantic levels to process text.
LLMs have ushered in a new era of possibilities for AI systems that obviate the
need for modular NLP systems to understand natural language which we tap
into for the first time for the OL task in this work.

Prompting LLMs for Knowledge. LLMs can process and retrieve facts based
on their knowledge which makes them good zero-shot learners for various NLP
tasks. Prompting LLMs means feeding an input x using a template function
fprompt(x), a textual string prompt input that has some unfilled slots, and then
the LLMs are used to probabilistically fill the unfilled information to obtain a
final string x′, from which the final output y can be derived [35]. The LAMA:
LAnguage Model Analysis [52] benchmark has been introduced as a probing tech-
nique for analyzing the factual and commonsense knowledge contained in unidi-
rectional LMs (i.e. Transformer-XL [13]) and bidirectional LMs (i.e. BERT and
ELMo [49]) with cloze prompt templates from knowledge triples. They demon-
strated the potential of pre-trained language models (PLMs) in probing facts –
where facts are taken into account as subject-relation-object triples or question-
answer pairs – with querying LLMs by converting facts into a cloze template
which is used as an input for the LM to fill the missing token. Further studies
extended LAMA by the automated discovery of prompts [25], finetuning LLMs
for better probing [3,32,68], or a purely unsupervised way of probing knowledge
from LMs [50]. These studies analyzed LLMs for their ability to encode vari-
ous linguistic and non-linguistic facts. This analysis was limited to predefined
facts that reinforce the traditional linguistic knowledge of the LLMs, and as
a result do not reflect how concepts are learned by the LLMs. In response to
this limitation, Dalvi et al. [14] put forward a proposal to explore and exam-
ine the latent concepts learned by LLMs, offering a fresh perspective on BERT.
They defined concepts as “a group of words that are meaningful,” i.e. that can
be clustered based on relations such as lexical, morphological, etc. In another
study [55], they propose the framework ConceptX by extending their studies on
seven LLMs in latent space analysis with the alignment of the grouped concepts
to human-defined concepts. These works show that using LLMs and accessing
the concept’s latent spaces, allows us to group concepts and align them to pre-
defined types and type relations discovery.

Prompt Engineering. As a novel discipline, prompt engineering focuses on
designing optimal instructions for LLMs to enable successful task performance.
Standard prompting [63] represents a fundamental approach for instructing LLMs.
It allows users to craft their own customized “self-designed prompts” to effec-
tively interact with LLMs [10] and prompt them to respond to the given prompt
instruction straightaway with an answer. Consider the manually crafted FLAN
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collection [36] addressing diverse NLP tasks other than OL as an exemplar. No-
tably, the nature of some problems naturally encompass a step-by-step thought
process for arriving at the answer. In other words, the problem to be solved can
be decomposed as a series of preceding intermediate steps before arriving at the
final solution. E.g., arithmetic or reasoning problems. Toward explainability and
providing language models in a sense “time to think” helping it respond more
accurately, there are advanced prompt engineering methods as well. As a first, as
per the Chain-of-Thought (CoT) [65] prompting method, the prompt instruction
is so crafted that the LLM is instructed to break down complex tasks as a series
of incremental steps leading to the solution. This helps the LLM to reason step-
by-step and arrive at a more accurate and logical conclusion. On the other hand
Tree-of-Thoughts (ToT) [69] has been introduced for tasks that require explo-
ration or strategic lookahead. ToT generalizes over CoT prompting by exploring
thoughts that serve as intermediate steps for general problem-solving with LLMs.
Both CoT and ToT unlock complex reasoning capabilities through intermediate
reasoning steps in combination with few-shot or zero-shot [29] prompting. An-
other approach for solving more complex tasks is using decomposed prompting
[27], where we can further decompose tasks that are hard for LLMs into simpler
solvable sub-tasks and delegate these to sub-task-specific LLMs.

Given the LLMs4OL task paradigm introduced in this work, complex prompt-
ing is not a primary concern, as our current focus is on the initial exploration
of the task to identify the areas where we need further improvement. We want
to understand how much we have accomplished so far before delving into more
complex techniques like CoT, ToT, and decomposed prompting. Once we have a
clearer picture of the model’s capabilities and limitations in a standard prompt-
ing setting, we can then consider other than standard prompt engineering ap-
proaches by formulating OL as a stepwise reasoning task.

3 The LLMs4OL Task Paradigm

The Large Language Models for Ontology Learning (LLMs4OL) task paradigm
offers a conceptual framework to accelerate the time-consuming and expensive
construction of ontologies exclusively by domain experts to a level playing field
involving powerful AI methods such as LLMs for high-quality OL results; con-
sequently and ideally involving domains experts only in validation cycles. In
theory, with the right formulations, all tasks pertinent to OL fit within the
LLMs4OL task paradigm. OL tasks are based on ontology primitives [39], in-
cluding lexical entries L, conceptual types T , a hierarchical taxonomy of types
HT , non-taxonomic relations R in a heterarchy HR, and a set of axioms A to
describe the ontology’s constraints and inference rules. To address these prim-
itives, OL tasks [45] include: 1) Corpus preparation - selecting and collecting
source texts for ontology building. 2) Terminology extraction - identifying and
extracting relevant terms. 3) Term typing - grouping similar terms into concep-
tual types. 4) Taxonomy construction - establishing ”is-a” hierarchies between
types. 5) Relationship extraction - identifying semantic relationships beyond ”is-



LLMs4OL: Large Language Models‌ for Ontology Learning 7

Corpus
Preparation

Conceptualization
 (1) Term Typing              (2) Types Taxonomy        (3)  Relationships Extraction

Terminology
Extraction

Axiom
Discovery

WordNet

GeoNames

NCI
MEDCIN

SNOMEDCT_US

8.7M

Task A: Term Typing Task B:  Types Taxonomy Task C: Relation Extraction 

28K

120K

347K
346K

4 Types

680 Types

125 Types

125 Types

87 Types

Ontology Learning

schema.org

Investigated

Not Investigated

No. of types

No. of terminologies

Corpus Name

LLMs4OL

Task

Fig. 1. The LLMs4OL task paradigm is an end-to-end framework for ontology learning
in various knowledge domains, i.e. lexicosemantics (WordNet), geography (GeoNames),
biomedicine (NCI, MEDICIN, SNOMEDCT), and web content types (schema.org). The
three OL tasks empirically validated in this work are depicted within the blue arrow,
aligned with the greater LLMs4OL paradigm.

a.” 6) Axiom discovery - finding constraints and inference rules for the ontology.
This set of six tasks forms the LLMs4OL task paradigm. See Figure 1 for the
proposed LLMs4OL conceptual framework.

In this work, we empirically ground three core OL tasks using LLMs as a
foundational basis for future research. However, traditional AI paradigms rely
on testing models only on explicitly trained tasks, which is not the case for
LLMs. Instead, we test LLMs for OL as an “emergent” behavior [59,64], where
they demonstrate the capacity to generate responses on a wide range of tasks
despite lacking explicit training. The key to unraveling the emergent abilities of
LLMs is to prompt them for their knowledge, as popularized by GPT-3 [10], via
carefully designed prompts. As discussed earlier (see section 2), prompt engineer-
ing for LLMs is a new AI sub-discipline. In this process, a pre-trained language
model receives a prompt, such as a natural language statement, to generate
responses without further training or gradient updates to its parameters [35].
Prompts can be designed in two main types based on the underlying LLM pre-
training objective: cloze prompts [51,12], which involve filling in blanks in an
incomplete sentence or passage per masked language modeling pre-training; and
prefix prompts [34,31], which generate text following a given starting phrase and
offer more design adaptability to the underlying model. The earlier introduced
LLMs4OL paradigm is empirically validated for three select OL tasks using re-
spective prompt functions fprompt(.) suited to each task and model.

Task A - Term Typing . A generalized type is discovered for a lexical term.

The generic cloze prompt template is fA
c−prompt(L) := [S?]. [L] [Pdomain] is a

[MASK]. where S is an optional context sentence, L is the lexical term prompted
for, Pdomain is a domain specification, and the special MASK token is the
type output expected from the model. Since prompt design is an important
factor that determines how the LLM responds, eight different prompt template
instantiations of the generic template were leveraged with final results reported

https://www.quantamagazine.org/the-unpredictable-abilities-emerging-from-large-ai-models-20230316/
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for the best template. E.g., if WordNet is the base ontology, the part-of-speech
type for the lexical term is prompted. In this case, template 1 is “[S]. [L] POS is
a [MASK].” Note here “[Pdomain]” is POS. Template 2 is “[S]. [L] part of speech
is a [MASK].” Note here “[Pdomain]” is “part of speech.” In a similar manner,
eight different prompt variants from the generic template were created. However,
the specification of “[Pdomain]” depended on the ontology’s knowledge domain.

The prefix prompt template reuses the cloze prompt template but appends
an additional “instruction” sentence and replaces the special [MASK] token
with a blank or a “?” symbol. Generically, it is fA

p−prompt(T ) = [instruction] +

fA
c−prompt(T ), where the instruction is “Perform a sentence completion on the
following sentence:” Based on the eight variations created from the generic cloze
template prompt, subsequently eight template variations were created for the
prefix prompting of the LLMs as well with best template results reported.

Task B - Taxonomy Discovery . Here a taxonomic hierarchy between pairs of
types is discovered.

The generic cloze prompt template is fB
c−prompt(a, b) := [a|b] is [Phierarchy] of

[b|a]. This statement is [MASK].Where (a, b) or (b, a) are type pairs, Phierarchy

indicates superclass relations if the template is initialized for top-down taxon-
omy discovery, otherwise indicates subclass relations if the template is initialized
for bottom-up taxonomy discovery. In Task B, the expected model output for
the special [MASK] token for a given type pair was true or false.

Similar to term typing, eight template variations of the generic template
were created. Four of which were predicated on the top-down taxonomy discov-
ery. E.g., “[a] is the superclass of [b]. This statement is [MASK].” Note here,
[Phierarchy] is “superclass”. Other three templates were based on [Phierarchy] ∈
parent class, supertype, ancestor class. And four more template instantiations
predicated on the bottom-up taxonomy discovery were based on [Phierarchy] ∈
subclass, child class, subtype, descendant class. Thus eight experiments per tem-
plate instantiation for the applicable LLM were run and the results from the best
template were reported.

The prefix prompt template, similarly, reuses the cloze prompt template with
the [MASK] token replaced with a blank or “?” symbol. It is fB

p−prompt(a, b) =

[instruction] + fB
c−prompt(a, b), with instruction “Identify whether the following

statement is true or false:”

Task C -Non-Taxonomic Relation Extraction. This task discovers non-taxonomic
semantic heterarchical relations between types.

The cloze prompt template is fC
c−prompt(h, r, t) := [h] is [r] [t]. This statement

is [MASK]. Where h is a head type, t is a tail type, and r is a non-taxonomic
relationship between h and r. To support the discovery of a heterarchy that can
consist of a 1-M relational cardinality, for a given relation, all possible type pairs
of the ontology were created. The expected output for the [MASK] token was
again true or false. Note, unlike in Task A and B, the given template was used
as is and no variations of it were created.
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Again, the prefix prompt template reuses the cloze prompt template as
the other tasks, with instructions similar to task B. It is fC

p−prompt(h, r, t) =

[instruction] + fC
c−prompt(h, r, t)

4 LLMs4OL - Three Ontology Learning Tasks Evaluations

4.1 Evaluation Datasets - Ontological Knowledge Sources

To comprehensively assess LLMs for the three OL tasks presented in the previous
section, we cover a variety of ontological knowledge domain sources. Generally,
across the tasks, four knowledge domains are represented, i.e. lexicosemantic –
WordNet [41], geographical – GeoNames [1], biomedicine – Unified Medical Lan-
guage System (UMLS) [8] teased out as the National Cancer Institute (NCI) [44],
MEDCIN [40], and Systematized Nomenclature of Medicine – Clinical Terms
United States (SNOMEDCT US) [57] subontologies, and content representa-
tions in the web – schema.org [48]. Tasks A, B, and C applied only to UMLS. In
other words, the ontology has a supporting knowledge base with terms that can
be leveraged in the test prompts for term typing as Task A, taxonomic hierar-
chical relational prompts as Task B, and non-taxonomic heterarchical relational
prompts as Task C. The GeoNames source came with a knowledge base of terms
instantiated for types and taxonomic relations, therefore, was leveraged in the
Task A and B as OL tests with LLMs of this work. The WordNet source could be
leveraged only in Task A since it came with an instantiated collection of lexical
terms for syntactic types. It was not applicable in the Tasks B and C for OL
defined in this work since the semantic relations in WordNet are lexicosemantic,
in other words, between terms directly and not their types. Finally, since the
schema.org source offered only typed taxonomies as standardized downloads, it
was leveraged only in the OL Task B of this work. In this case, we refrained from
scraping the web for instantiations of the schema.org taxonomy. For all other on-
tological knowledge sources considered in this work that were relevant to Task A,
the term instantiations were obtained directly from the source. This facilitates
replicating our Task A dataset easily. Detailed information on the ontological
knowledge sources per task with relevant dataset statistics are presented next.
Task A Datasets. Table 1 shows statistical insights for the Task A dataset
where we used terms from WordNet, GeoNames, and UMLS. For WordNet we
used the WN18RR data dump [15] that is derived from the original WordNet but
released as a benchmark dataset with precreated train and test splits. Overall, it
consists of 40,943 terms with 18 different relation types between the terms and
four term types (noun, verb, adverb, adjective). We combined the original vali-
dation and test sets as a single test dataset. GeoNames comprises 680 categories
of geographical locations, which are classified into 9 higher-level categories, e.g.
H for stream, lake, and sea, and R for road and railroad. UMLS contains almost
three million concepts from various sources which are linked together by seman-
tic relationships. UMLS is unique in that it is a greater semantic ontological
network that subsumes other biomedical problem-domain restricted subontolo-
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Table 1. Task A term typing dataset counts across three core ontological knowledge
sources, i.e. WordNet, GeoNames, and UMLS, where for Task A UMLS is represented
only by the NCI, MEDCIN, and SNOMEDCT US subontological sources. The unique
term types per source that defined Task A Ontology Learning is also provided.

Parameter WordNet GeoNames NCI MEDCIN SNOMEDCT US

Train Set Size 40,559 8,078,865 96,177 277,028 278,374
Test Set Size 9,470 702,510 24,045 69,258 69,594
Types 4 680 125 87 125

gies. We grounded the term typing task to the semantic spaces of three select
subontological sources,i.e. NCI, MEDCIN, and SNOMEDCT US.

The train datasets were reserved for LLM fine-tuning. Among the 11 models,
we selected the most promising one based on its zero-shot performance. The test
datasets were used for evaluations in both zero-shot and fine-tuned settings.
Task B Datasets. From GeoNames, UMLS, and schema.org we obtained 689,
127, and 797 term types forming type taxonomies. Our test dataset was con-
structed as type pairs, where half represented the taxonomic hierarchy while the
other half were not in a taxonomy. This is based on the following formulations.

∀(a ∈ Tn, b ∈ Tn+1) 7−→ (aRb ∧ b¬Ra)

∀(a ∈ Tn, b ∈ Tn+1, c ∈ Tn+2); (aRb ∧ bRc) 7−→ aRc

∀(a ∈ Tn, b ∈ Tn+1, c ∈ Tn+2); (c¬Rb ∧ b¬Ra) 7−→ c¬Ra

Where a, b, and c are types at different levels in the hierarchy. T is a collection
of types at a particular level in the taxonomy, where n + 2 > n + 1 > n and
n is the root. The symbol R represents “a is a super class of type b” as a true
taxonomic relation. Conversely, the ¬R represents “b is a super class of type
a” as a false taxonomic relation. Furthermore, transitive taxonomic relations,
(aRb∧ bRc) 7−→ aRc, were also extracted as true relations, while their converse,
i.e. (c¬Rb ∧ b¬Ra) 7−→ c¬Ra were false relations.
Task C Datasets. As alluded to earlier, Task C evaluations, i.e. non-taxonomic
relations discovery, were relegated to the only available ontological knowledge
source among those we considered i.e. UMLS. It reports 53 non-taxonomic rela-
tions across its 127 term types. The testing dataset comprised all pairs of types
for each relation, where for any given relation some pairs are true while the rest
are false candidates. Task B and Task C datasets’ statistics are in Table 2.

4.2 Evaluation Models - Large Language Models (LLMs)

As already introduced earlier, in this work, we comprehensively evaluate eight
main types of domain-independent LLMs reported as state-of-the-art for dif-
ferent tasks in the community. They are: BERT [16] as an encoder-only archi-
tecture, BLOOM [56], LLaMA [60], GPT-3 [10], GPT-3.5 [46], and GPT-4 [47]
as decoder-only models, and finally BART [33] and Flan-T5 [11] as encoder-
decoder models. Note these LLMs are released at varying parameter sizes. Thus
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Table 2.Dataset statistics as counts per reported parameter for Task B type taxonomic
hierarchy discovery and Task C type non-taxonomic heterarchy discovery across the
pertinent ontological knowledge sources respectively per task.

Task Parameter GeoNames UMLS schema.org

Task B

Types 689 127 797
Levels 2 3 6
Positive/Negative Samples 680/680 254/254 2,670/2,670
Train/Test split 272/1,088 101/407 1,086/4,727

Task C
Non-Taxonomic Relations - 53 -
Positive/Negative Samples - 5,641/1,896 -
Train/Test Split - 1,507/6,030 -

qualified by the size in terms of parameters written in parenthesis, in all, we
evaluate seven LLMs: 1. BERT-Large (340M), 2. BART-Large (400M), 3. Flan-
T5-Large (780M), 4. Flan-T5-XL (3B), 5. BLOOM-1b7 (1.7B), 6. BLOOM-3b
(3B), 7. GPT-3 (175B), 8. GPT-3.5 (174B), 9. LLaMA (7B), and GPT-4 (>1T).
Additionally, we also test an eleventh biomedical domain-specific model Pub-
MedBERT [19].

In this work, since we propose the LLMs4OL paradigm for the first time, in
a sense postulating OL as an emergent ability of LLMs, it is important for us
to test different LLMs on the new task. Evaluating different LLMs supports: 1)
Performance comparison - this allows us to identify which models are effective for
OL, 2) Model improvement - toward OL one can identify areas where the models
need improvement, and 3) Research advancement - with our results from testing
and comparing different models, researchers interested in OL could potentially
identify new areas of research and develop new techniques for improving LLMs.

4.3 Evaluations

Metrics. Evaluations for Task A are reported as the mean average precision
at k (MAP@K), where k = 1, since this metric was noted as being best suited
to the task. Specifically, in our case, for term typing, MAP@1 measures the
average precision of the top-1 ranked term types returned by an LLM for prompts
initialized with terms from the evaluation set. And evaluations for Tasks B and
C are reported in terms of the standard F1-score based on precision and recall.

Results - Three Ontology Learning Tasks Zero-shot Evaluations. The
per task overall evaluations are reported in Table 3. The three main rows of the
table marked by alphabets A, B, and C correspond to term typing, type taxon-
omy discovery, and type non-taxonomic relational hetrarchy discovery results, re-
spectively. The five subrows against Task A shows term typing results for Word-
Net, GeoNames, and the three UMLS subontologies, viz. NCI, SNOMEDCT US,
and MEDCIN. The three subrows against Task B shows type taxonomy discovery
results for GeoNames, UMLS, and schema.org, respectively. Task C evaluation



12 Babaei Giglou et al.

Table 3. Zero-shot results across 11 LLMs and finetuned Flan-T5-Large and Flan-T5-
XL LLMs results reported for ontology learning Task A i.e. term typing in MAP@1,
and as F1-score for Task B i.e. type taxonomy discovery, and Task C i.e. type non-
taxonomic relation extraction. The results are in percentages.
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A

WordNet 27.9 - 2.2 31.3 52.2 79.2 79.1 37.9 91.7 81.4 90.1 76.9 86.3
GeoNames 38.3 - 23.2 13.2 33.8 28.5 28.8 22.4 35.0 29.5 43.3 16.9 18.4

NCI 11.1 5.9 9.9 9.0 9.8 12.4 15.6 12.7 14.7 7.7 16.1 31.9 32.8
SNOMEDCT US 21.1 28.5 19.8 24.3 31.6 37.0 37.7 24.4 25.0 13.8 27.8 33.4 43.4

MEDCIN 8.7 15.6 12.7 13.0 18.5 28.8 29.8 25.7 23.9 4.9 23.7 38.4 51.8

B
GeoNames 54.5 - 55.4 59.6 52.4 36.7 48.3 53.2 67.8 33.5 55.4 62.5 59.1
UMLS 48.2 33.7 49.9 55.3 64.3 38.3 37.5 51.6 70.4 32.3 78.1 53.4 79.3

schema.org 44.1 - 52.9 54.8 42.7 48.6 51.3 51.0 74.4 33.8 74.3 91.7 91.7

C UMLS 40.1 42.7 42.4 46.0 49.5 43.1 42.7 38.8 37.5 20.3 41.3 49.1 53.1

results are provided only for UMLS. We first examine the results in the zero-shot
setting, i.e. for LLMs evaluated out-of-the-box, w.r.t. three RQs.
RQ1: How effective are LLMs for Task A, i.e. automated type discov-
ery? We examine this question given the results in 5 subrows against the row
A, i.e. corresponding to the various ontological datasets evaluated for Task A.
Of the five ontological sources, the highest term typing results were achieved on
the 4-typed WordNet at 91.7% MAP@1 by GPT-3.5. This high performance can
be attributed in part to the simple type space of WordNet with only 4 types.
However, looking across the other LLMs evaluated on WordNet, in particular
even GPT-3, scores in the range of 30% MAP@1 seem to be the norm with a low
of 2.2% by BART-Large. Thus LLMs that report high scores on WordNet should
be seen as more amenable to syntactic typing regardless of the WordNet sim-
ple type space. Considering all the ontological sources, Geonames presents the
most fine-grained types taxonomy of 680 types. Despite this, the best result ob-
tained on this source is 43.3% from GPT-4 with BERT-Large second at 38.3%.
This is better than the typing evaluations on the three biomedical datasets.
Even the domain-specific PubMedBERT underperforms. In this regard, domain-
independent models with large-scale parameters such a BLOOM (3B) are more
amenable to this complex task. Since biomedicine entails deeper domain-specific
semantics, we hypothesize better performance not just from domain-specific fine-
tuning but also strategically for task-specific reasoning.

The results overview is: 91.7% WordNet by GPT-3.5 > 43.3% GeoNames
by GPT-4 > 37.7% SNOMEDCT US by BLOOM-3b > 29.8% MEDCIN by
BLOOM-3b > 16.1% NCI by GPT-4.
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Notably this work addresses Task A as a text generation task for the term
types. We wish to highlight that Task A can alternatively be tackled as a clas-
sification task. For instance, given the set of types for Task A: WordNet - 4,
GeoNames - 680, NCI - 125, MEDICIN - 87, and SNOMED CT - 125, the task
can be respectively formulated as a multiclass classification task. We anticipate
the classification task complexity to grow with the number of classes. Generally,
our only reservation here is that the set of types needs to be known in advance.
By following the LLM generation approach instead, we allow the LLM to gener-
ate the closest class it thinks applicable and in this work then evaluate how close
its generated class is to the one the human-annotated or typed for the term.

RQ2: How effective are LLMs to recognize a type taxonomy i.e. the
“is-a” hierarchy between types? We examine this question given the re-
sults in the 3 subrows against the main row B, i.e. corresponding to the three
ontological sources evaluated for Task B. The highest result was achieved for
UMLS by GPT-4 at 78.1%. Of the open-source models, Flan-T5-XL achieved
the best result at 64.3%. Thus for term taxonomy discovery, LLMs on average
have proven most effective in the zero-shot setting on the biomedical domain.

The results overview is: 78.1% UMLS by GPT-4 > 74.4% schema.org by
GPT-3.5 > 67.8% GeoNames by GPT-3.5. Note the three GPT models were not
open-sourced and thus we tested them with a paid subscription. For the open-
source models, the results overview is: 64.3% UMLS by Flan-T5-XL > 59.6%
GeoNames by Flan-T5-XL > 54.8% schema.org by Flan-T5-Large.

RQ3: How effective are LLMs to discover non-taxonomic relations
between types? We examine this question given the results in Table 3 row for
Task C, i.e. for UMLS. The best result achieved is 49.5% by Flan-T5-XL. We
consider this a fairly good result over a sizeable set of 7,537 type pairs that are
in true non-taxonomic relations or are false pairs.

Finally, over all the three tasks considered under the LLMs4OL paradigm,
term typing proved the hardest obtaining the lowest overall results for most
of its ontological sources tested including the biomedical domain in particular.
Additionally in our analysis, GPT, Flan-T5, and BLOOM variants showed im-
proved scores with increase in parameters, respectively. This held true for the
closed-sourced GPT models, i.e. GPT-3 (175B) and GPT-3.5 (175B) to GPT-4
(>1T) and the open-sourced models, i.e. Flan-T5-Large (780M) to Flan-T5-XL
(3B) and BLOOM from 1.7B to 3B. Thus it seems apparent that with an in-
creased number of LLM parameters, we can expect an improvement in ontology
learning.

Note, UMLS offers a robust empirical foundation for Task C. In future work,
we propose ConceptNet [58] encompassing commonsense knowledge facts and
DBpedia [7] encompassing general knowledge on wide range of topics, including
but not limited to geography, history, science, literature, arts, and sports.

Results - Three Ontology Learning Tasks Finetuned LLM Evaluations.
Our zero-shot test results indicate that while LLMs seem promising for OL they
would need task-specific finetuning to be a practically viable solution. To this
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Task X Training Dataset Task X Specific Prompt Functions

Integration

If "[S]", then what is the [X] in medical
care?

Let's say that "[S]"
Can we now say that "'[X]' is kind of [LABEL]
in medicine where [b] is child class of [a]"? 

Let's say that "[S]"
Can we now say that "'[X]' is kind of [LABEL]
in medicine where [t] is [r] [h]"?

Task X Specific Label

Flan-T5

Fig. 2. An illustration of the LLM finetuning workflow on tasks for ontology learning.

end, we adopt the method of “instruction tuning” proposed as the FLAN col-
lection which is the only known systematically deconstructed, effective way to
finetune LLMs [36]. For finetuning, we choose the Flan-T5 LMM for two reasons:
1) it is open-source: we intend to foster future research directions for models un-
hidden behind paywalls to aid in democratizing LLM research, and 2) it showed
consistently good performance across all tasks. The finetuning instructions were
instantiated from a small selection of eight samples of each knowledge source’
reserved training set and fed in a finetuning workflow shown in Figure 2. The
finetuned Flan models’ results (see last two columns in Table 3) are significantly
boosted across almost all tasks. For task A, we observed an average improve-
ment of 25% from zero-shot to the finetuned model for both Flan-T5 variants.
Notably, SNOMEDCT US showed least improvement of 9%, while the Word-
Net showed the most improvement of 45%. For task B we marked an average
improvement of 18%, and for task C 3%. Given an illustration of the results in
Figure 3 shows that on average finetuned models, even with fewer parameters
outperforms models with 1000x or more parameters across the three OL tasks.
These insights appear crucial to expedite developmental research progress for
practical tools for OL using LLMs which we plan to leverage in our future work.

BERT-Large PubMedBERT BART-Large Flan-T5-Large BLOOM-1b7 Flan-T5-XL BLOOM-3b LLaMA-7B GPT-3 GPT-3.5 GPT-4
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Flan-T5-Large* Flan-T5-XL*

Task A: WordNet Task A: GeoNames Task A: NCI Task A: SNOMEDCT Task A: Medcin Task B: GeoNames Task B: UMLS Task B: schema.org Task C: UMLS

Zero-Shot Testing Finetuned

Fig. 3. Comparative visual of the zero-shot and finetuned results. Unfilled shapes, filled
shapes, and small filled stars represent performances in tasks A, B, and C, respectively.

https://github.com/google-research/FLAN/blob/main/flan/templates.py
https://github.com/google-research/FLAN/blob/main/flan/templates.py
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5 Error Analysis and Limitations

For error analysis, our evaluation results are summarized in Figure 3 depicting
comparable model ranks.

LLaMA-7B overall low performance. For Task A, the model produced code
or prompts instead of correct responses. It performed relatively better on GeoN-
ames due to term types present in location names (e.g., ”Huggins Church” in-
cludes the type ”church”). For Tasks B and C, it exhibited a bias towards the
false category. A limitation in our experiments is the absence of few-shot test-
ing. We hypothesize that models like LLaMA can achieve better performance if
shown task examples within the prompt.

Dataset Specific Error Analysis (WN18RR) – Task A. WordNet consists
of ≈7k nouns, ≈2K verbs, and ≈0.4K rest of POS tags (adjective and adverbs‌).
Note LLMs tested for Task A are tested for a generation task, which means they
can generate text for types that do not map one-to-one to the gold standard.
E.g., the best model i.e. GPT-3.5 for 9k test samples generated 43 distinct texts
as types with the most frequent being: noun, verb, noun phrase, and adjective.
This points out a second limitation of our work, i.e. the possibility for heuristics-
based generated answer set mapping to the gold standard.

BERT, showing among the lowest performance on the task (63% lower than
the best), generated 177 different answer texts with “verb” being the most fre-
quent (7k times), followed by: noun, joke, and pun. Thus the BERT-based mod-
els, including BART, seem to not grasp the syntactic typing task directly from
a zero-shot prompt, thus pointing toward the earlier identified limitation of our
work for few-shot tests as the alternative method for better results.

Dataset Specific Error Analysis (NCI) – Task A. Overall, the LLMs are
least effective on Task A for the NCI biomedical knowledge source. The best-
performing open-source BLOOM-3B LLM generated 4k distinct answer texts for
a test set of 24k instances, with the most frequently generated texts being: “pro-
tein that is involved in,” “drug that is used to,” “rare disease,” and “common
problem.” On the other hand, the best-performing closed-sourced GPT-4 model
generated 17k different answer texts from the identical test set, with the most
frequently generated texts being: “term that does not exist,” “term that does
not exist or is not recognized in,” and “term that does not exist or is not com-
monly used.” Both models show varying proficiency and limitations in the NCI
biomedical ontology. The NCI Thesaurus covers cancer-related topics, including
diseases, agents, and substances. The low LLM performance could be attributed
to high domain specialization. Even domain-specific LLMs like PubMedBERT
did not yield promising results, suggesting a need for task-specific training or
finetuning. While our finetuning experiments obtained boosted scores offering
credence to our hypothesis, a limitation is the low number of training samples
used which can be addressed by using a large training set.
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6 Conclusions and Future Directions

Various initiatives benchmark LLM performance, revealing new task abilities
[59,64]. These benchmarks advance computer science’s understanding of LLMs.
We explore LLMs’ potential for Ontology Learning (OL) [18,39] through our in-
troduced conceptual framework, LLMs4OL. Extensive experiments on 11 LLMs
across three OL tasks demonstrate the paradigm’s proof of concept. Our code-
base facilitates replication and extension of methods for testing new LLMs. Our
empirical results are promising to pave future work for OL.

Future research directions in the field of OL with LLMs can focus on sev-
eral key areas. First, there is a need to enhance LLMs specifically for OL tasks,
exploring novel architectures and fine-tuning to capture ontological structures
better. Second, expanding the evaluation to cover other diverse knowledge do-
mains would provide a broader understanding of LLMs’ generalizability. Third,
hybrid approaches that combine LLMs with traditional OL techniques, such
as lexico-syntactic pattern mining and clustering, could lead to more accurate
and comprehensive ontologies. Fourth, further research can delve into the ex-
traction of specific semantic relations, like part-whole relationships or causality,
to enhance the expressiveness of learned ontologies. Standardizing evaluation
metrics, creating benchmark datasets, exploring dynamic ontology evolution,
and domain-specific learning are important directions. Additionally, integrating
human-in-the-loop approaches with expert involvement would enhance ontology
relevance and accuracy. Exploring these research directions will advance LLM-
based OL, enhancing knowledge acquisition and representation across domains.

Supplemental Material Statement: Our LLM templates, detailed results, and
codebase are publicly released as supplemental material on Github https://
github.com/HamedBabaei/LLMs4OL.
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52. Petroni, F., Rocktäschel, T., Riedel, S., Lewis, P., Bakhtin, A., Wu, Y., Miller,
A.: Language models as knowledge bases? In: Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Association
for Computational Linguistics (2019)

53. Rebele, T., Suchanek, F., Hoffart, J., Biega, J., Kuzey, E., Weikum, G.: Yago:
A multilingual knowledge base from wikipedia, wordnet, and geonames. In: The
Semantic Web–ISWC 2016: 15th International Semantic Web Conference, Kobe,
Japan, October 17–21, 2016, Proceedings, Part II 15. pp. 177–185. Springer (2016)

54. Roux, C., Proux, D., Rechenmann, F., Julliard, L.: An ontology enrichment method
for a pragmatic information extraction system gathering data on genetic interac-
tions. In: ECAI Workshop on Ontology Learning (2000)

55. Sajjad, H., Durrani, N., Dalvi, F., Alam, F., Khan, A.R., Xu, J.: Analyzing encoded
concepts in transformer language models (2022)

56. Scao, T.L., Fan, A., Akiki, C., Pavlick, E., Ilić, S., Hesslow, D., Castagné, R.,
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