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Abstract. Knowledge graphs comprise structural and textual informa-
tion to represent knowledge. To predict new structural knowledge, current
approaches learn representations using both types of information through
knowledge graph embeddings and language models. These approaches
commit to a single pre-trained language model. We hypothesize that
heterogeneous language models may provide complementary information
not exploited by current approaches. To investigate this hypothesis, we
propose a unified framework that integrates multiple representations
of structural knowledge and textual information. Our approach lever-
ages hypercomplex algebra to model the interactions between (i) graph
structural information and (ii) multiple text representations. Specifically,
we utilize Dihedron models with 4*D dimensional hypercomplex num-
bers to integrate four different representations: structural knowledge
graph embeddings, word-level representations (e.g., Word2vec and Fast-
Text), sentence-level representations (using a sentence transformer), and
document-level representations (using FastText or Doc2vec). Our unified
framework score the plausibility of labeled edges via Dihedron products,
thus modeling pairwise interactions between the four representations.
Extensive experimental evaluations on standard benchmark datasets con-
firm our hypothesis showing the superiority of our two new frameworks
for link prediction tasks.

Keywords: Knowledge Graph Embedding · Pre-trained Language
Model · Textual Information.
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1 Introduction

Knowledge Graphs (KGs) have become an integral part of many AI systems,
ranging from question answering and named entity recognition to recommendation
systems [12, 8, 22]. KGs represent knowledge in the form of multi-relational
directed labeled graphs, where nodes with labels can represent entities (e.g.,
“Q5220733”), and labeled edges represent relations between entities (e.g., P19).
Therefore, a fact can be represented as a triple, (node, edge label, node), such as
(Q5220733, P19, Q621549) in Wikidata.

In order to enable machine learning to act on KGs with symbolic information
[34], Knowledge Graph embeddings (KGE) map nodes and edge labels to a low-
dimensional vector space. These embeddings are assumed to capture semantic
and structural knowledge and can support machine learning tasks such as link
prediction, entity linking, and question answering. However, despite the large
number of facts contained in KGs, they are still incomplete compared to the
facts that exist in the world, which can have a negative impact on downstream
tasks. Consider Figure 1 and assume that the purple dashed edge (Q5220733,
P19, Q621549) is unknown because the entity “Q5220733” is only connected
to one other entity, “Q193592”. Although structural graph information alone
cannot help bridge the gap between “Q5220733” and “Q621549”, a second textual
representation, such as additional information from a source like Wikipedia6,
could be used to provide a solution.

Q5220733
(Danny Pena)

Q1424495
(Reggie Theus)

Q11326790
(Hollywood Park Racetrack)

Q313013
(Brian Wilson)

Q193592
(midfielder)

Danny Pena (born June 17, 1968 in 
Inglewood, California) is a retired U.S. 
soccer defensive midfielder. He spent most 
of his career, both indoors and outdoors, 
with teams in the western U.S. …

Inglewood is a city in southwestern Los 
Angeles County, California, southwest of 
downtown Los Angeles. As of the 2010 
U.S. Census, the city had a population of 
109,673. It was incorporated …

Q621549
(Inglewood)P19

(place of birth)

P19
(place of birth)

P19
(place of birth)

P131
(located in)P413

(position played on team)

Fig. 1. Knowledge Graph with textual descriptions of entities. The entity “Q5220733”
lacks proper structural information, but it comes with a rich textual description, which
may help to predict the place of birth.

Early approaches such as DKRL [37] and ConMask [27], have gone beyond
structural graph knowledge and incorporated textual information for link predic-
tion using deep learning methods, such as convolutional neural networks (CNNs)
and attention mechanisms to transform textual information into joint latent
6 https://en.wikipedia.org/wiki/Danny_Pena
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representations with structure-based KGEs. More recent approaches [39, 41, 18,
35] have incorporated pre-trained language models into KGE models by unifying
their two loss functions. However, these approaches only represent texts with
a single pre-trained language model, which may lead to inferior performance
when encoding textual information in certain KGs. For example, while BERT is
employed in [39, 41, 35], evaluations [11, 33] demonstrate that fastText [2], Glove
[23] or their combination outperform BERT on some datasets.

In this paper, we contend that relying on a single pre-trained language
model is inadequate for KGE models for two main reasons. Firstly, the textual
information available in different knowledge graphs can vary significantly, which
can lead to varying performance of pre-trained language models. For example,
entity descriptions in Freebase may consist of multiple sentences, whereas in
Wikidata, they may be just a short sentence. Secondly, different pre-trained
language models excel in different levels of information. For example, while
BERT excels in extracting word and sentence-level information, Doc2Vec [17]
captures the document-level information. As a result, the use of multiple pre-
trained language models is crucial in improving the performance of KGE models.
Therefore, we extend previous KGE models that integrate textual information
by incorporating multiple textual representations. These representations capture
different levels of semantics through the use of different pre-trained language
models for word, sentence, and document embeddings. In order to integrate
these various representations efficiently, we employ a 4*D dimensional space of
hypercomplex numbers to represent structured and textual knowledge of KGs in
a unified representation. We utilize Dihedrons as 4*D dimensional hypercomplex
spaces, where each textual representation is a basis and the link prediction process
can be modeled by a rotation (from source entity to target entity) in various
geometric subspaces induced by Dihedron numbers. This allows us to model
interactions between different textual representations jointly in our KGE model.

Our contributions can be summarized as follows:

1. To our knowledge, we are the first work to incorporate multiple textual
representations from pre-trained language models into a KGE model.

2. We develop a novel KGE model with Dihedron algebra, which is more versatile
in representing interactions between textual representations from pre-trained
language models.

3. We conduct informative experiments, ablation studies, and analyses on
various datasets to investigate the impact of incorporating different pre-
trained language models into KGE models.

2 Related Work

2.1 Structural Knowledge Graph Embedding Models

We will begin by introducing KGE models that consider only structural informa-
tion from knowledge graphs. TransE [3] and TransH [36] are early KGE models
that score triples using different distance-based scoring functions. These models
minimize the distance between the tail entity and the query, which is formulated
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by adding the head entity and the relation (edge) label. TransH [36] further
improves on TransE by projecting entities onto relation-specific hyperplanes,
resulting in different representations of an entity with respect to different re-
lation labels. ComplEx [31] uses the Hermitian dot product in complex space
to model the scoring function, which characterizes the asymmetric relations in
knowledge graphs. RotatE [28] is more expressive than previous approaches,
as it can represent a relation composed of the natural join between two other
relations. To achieve this, it models relations using rotations in the complex
space. AttE and AttH [7] incorporate an attention mechanism on rotation and
reflection in hyperbolic space. QuatE [40] and Dihedral [38, 20] model KGEs
using Quaternions and Dihedrons, respectively. While these models rely on struc-
tural knowledge in knowledge graphs, they do not exploit the advantages of
complementary knowledge such as text. On the contrary, our method jointly
utilizes both structural and textual information of KGs. As a result, we are better
equipped to tackle the incompleteness of KGs.

2.2 Text-enhanced Knowledge Graph Embedding Models

Several KGE approaches have been proposed that integrate textual information,
such as textual descriptions and names of entities, along with the structural
information of KGs. As an early work, DKRL [37] extends TransE by considering
entity descriptions. Entity descriptions are encoded by a Convolutional Neural
Network (CNN) and jointly optimized together with the TransE scoring function.
ConMask [27] claims that an entity may involve multiple relations. It extracts
relation-specific information from the entity description by training a network
that computes attention over entity descriptions. However, these approaches were
proposed before the emergence of large-scale pre-trained language models like
BERT, and as a result, their performance is limited.

Recent approaches have exploited large-scale pre-trained language models to
enhance the performance of KGE models. KG-BERT [39] and LAnguage Model
Analysis (LAMA) [24] demonstrate that structural knowledge in KGs can be
stored in pre-trained language models. They treat triples in the KG as a sequence
of text and obtain the representation of triplets with BERT. PretrainKGE [41]
extracts knowledge from BERT by representing entity descriptions and relation
names with BERT embeddings, which can be utilized to enhance different KGE
algorithms. MLMLM [9] claims that KG-BERT cannot generalize well on unseen
entities. This work proposes a novel masked language model that yields strong
results with unseen entities of arbitrary length in the link prediction task. StAR
[32] argues that previous work such as KG-BERT may not be effective in learning
the structural knowledge in KGs well, and the evidence is that KG-BERT can
achieve good results on Top-K recall when K is relatively large (Top-10) but
performs poorly when K is small (Top-1). To address this issue, StAR proposes a
hybrid framework that combines pre-trained language models with KGE methods
such as RotatE, which aims to obtain the benefits of both approaches. More
recent approaches [18, 26, 5] also explore different methods to combine pre-trained
language models and KGE to improve the performance of link prediction tasks
in KGs. However, all the KGE approaches mentioned above only incorporate one
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pre-trained language model, which may not be optimal for all KGs. Evaluations
[11, 33] have shown that pre-trained language models perform differently on
different datasets, indicating that there is no single optimal pre-trained language
model for all KGs. In contrast, our approach incorporates multiple pre-trained
language models. This allows us to not only capture different levels of information
(word/sentence/document) in a single text but also better fit the different textual
information present in various KGs.

3 Preliminaries

In this section, we introduce the preliminaries necessary to understand our
proposed models.

Knowledge Graph: A knowledge graph is a collection of triples K = {(h, r, t)|
h, t ∈ E , r ∈ R} ⊂ E × R × E , where E and R are the sets of all entities and
relation labels in the KG, respectively.

Textual Knowledge Graph: For a given KG K, we can collect words, sentences,
or documents associated with each node or relation label to construct a textual
KG T K defined as T K = {(hT , rT , tT )|hT , tT ∈ ET , rT ∈ RT } ⊂ ET ×RT × ET ,
where hT , rT , tT denote the word (T = W ), sentence (T = S), or document
(T = D) representations of entities and relation labels. For instance, consider an
entity h = “Berlin” in the KG that has the word representation hW = “Berlin”,
sentence representation hS = “Berlin is the capital and largest city of Germany
by both area and population”, and document representation hD = “Berlin is the
capital and largest city of Germany by both area and population. Its 3.7 million
inhabitants make it the most populous city in the European Union...”.

Knowledge Graph Embedding: A knowledge graph K can be represented by
a low-dimensional vector embedding, denoted as KGE = {(h, r, t)|h, t ∈ E, r ∈
R} ⊂ E × R × E, where E,R are the sets of entity and relation label embeddings
in the KG, respectively. These embeddings are ne ×D and nr ×D dimensional,
respectively, where ne and nr are the number of entities and relation labels, and
D is the embedding dimension.

Pre-trained Language Model KG Embedding: The word, sentence, and doc-
ument representations of triples can be vectorized using pre-trained language mod-
els. Thus, we represent the embedding of T K as a set T KE = {(hT , r, tT )|hT , tT ∈
ET , r ∈ R} ⊂ ET ×R×ET , where ET represents the embeddings of all word/sen-
tence/document representations of entities in the KG. These embeddings are
generated by feeding the word/sentence/document representation of an entity
into the corresponding pre-trained language model.

Quaternion and Dihedron Algebra: To integrate the structural, word, sen-
tence, and document representations of an entity or a relation label into a unified
representation, we utilize a 4*D dimensional algebra, which has been extensively
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studied in the field of hypercomplex numbers. Specifically, we employ Quaternion
Q [40] and Dihedron D [38, 29, 20] algebra as 4*D dimensional hypercomplex num-
bers, which are defined as u = s+xi+yj+zk, where i, j, and k are the three imag-
inary parts. In Quaternion and Dihedron representations, we have, respectively,
i2 = j2 = k2 = ijk = 1̄, ij = k, jk = i, ki = j, ji = k̄, kj = ī, ik = j̄,
and i2 = 1̄, j2 = k2 = 1, ij = k, jk = ī, ki = j, ji = k̄, kj = i, ik = j̄,
where ā = −a, a ∈ i, j, k. The prime operators of Quaternion and Dihedron
are defined in the following paragraphs.

Quaternion Product: This product is also known as the Hamilton product.
Let u = su + xui + yuj + zuk, v = sv + xvi + yvj + zvk be two Quaternion
numbers. The Hamilton product between u, v is defined as follows:

u⊗Q v := (susv − xuxv − yuyv − zuzv) + (suxv + xusv + yuzv − zuyv) i
+ (suyv − xuzv + yusv + zuxv) j + (suzv + xuyv − yuxv + zusv) k.

(1)

Dihedron Product: Let u, v be two Dihedron numbers. The Dihedron
product is defined as

u⊗D v := (susv − xuxv + yuyv + zuzv) + (suxv + xusv − yuzv + zuyv) i
+ (suyv − xuzv + yusv + zuxv) j + (suzv + xuyv − yuxv + zusv) k.

(2)

Inner Product: In both the Dihedron and the Quaternion spaces, the inner
product is defined as 〈u, v〉 = u · v := susv + xuxv + yuyv + zuzv.

Conjugate: The conjugate in both representations is ū = s− xi− yj − zk.
Norm: The norm in the representations of the Quaternions and Dihedrons is

defined as ‖u‖ = 〈u, ū〉 which are
√
s2u + x2

u + y2u + z2u and
√

s2u + x2
u − y2u − z2u,

respectively.
Previous approaches [40, 6] employed Quaternion as another algebra in the

hypercomplex space. Both the Quaternion and Dihedron spaces offer various
geometric representations. Quaternion numbers of equal length represent hyper-
spheres, while Dihedron numbers of equal length can represent various shapes,
including spheres, one-sheets, two-sheets, and conical surfaces. Therefore, the Di-
hedron space is more expressive than the Quaternion space in terms of geometric
representation.

4 Our Method

In this section, we introduce a family of embedding models based on the Quater-
nion or Dihedron algebra that operate in 4*D dimensional spaces. These spaces
capture the four types of entity representations, namely graph, word, sentence,
and document embeddings, and allow for modeling the interactions between
different elements, resulting in a comprehensive feature representation that can
be used to assess the plausibility score of links. As shown in Figure 2, our frame-
work involves splitting a triple, such as (Q5220733, P19, Q621549), into a triple
pattern, e.g., (Q5220733, P19, ?), and a tail, e.g., Q621549, which corresponds to
a query such as “Where was Danny Pena born?”. We then compute embeddings
for the query and the tail using both textual and structural information, and
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Danny Pena (born June 17, 1968 in 
Inglewood, California) is a retired U.S. 
soccer defensive midfielder. He spent 
most of his career, both indoors and 
outdoors, with teams in western U.S. …
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Fig. 2. The proposed model’s overall architecture considers various entity represen-
tations, such as word, sentence, and document levels, and maps them into a joint
geometric space using the Quaternion or Dihedron algebra. This joint space can be
either spherical or hyperbolic.

calculate the plausibility score by measuring the distance between them in the
embedding space.

In the rest of this section, we will present our embedding model and provide
technical details on the dimension adjustment that aligns the different repre-
sentations of entities in the same geometric space. This process is accomplished
through the following order: a) Entity, Relation, and Query Representation, b)
Dimension Adjustment and c) Triple Plausibility Score and Training. The purpose
of b) is to match the dimensions of the KGE model with the pre-trained vectors
from language models in cases where the dimensions do not match.

4.1 Entity, Relation, and Query Representation

We represent each entity e as a Quaternion or Dihedron vector with dimensions
4 ∗D, which captures its structural and textual information at different levels of
granularity, as follows:

e = se + xT1
e i+ yT2

e j + zT3
e k, (3)

where se is the node representation in the graph embedding of the KG and
Ti, i = 1, 2, 3 are pre-trained language models. For one entity description, we feed
the text into a set of pre-trained language models Ti and initialize corresponding
embeddings xT1

e , yT2
e , zT3

e .
In Figure 1, the entities “Q5220733” and “Q621549” both possess textual

descriptions. To extract word, sentence, and document representations from these
descriptions, we use a variety of pre-trained language models. By doing so, we
obtain a comprehensive representation of the entities.
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Each relation is represented as a rotation in the hypercomplex space, which is

r =
sr + xT1

r i+ yT2
r j + zT3

r k√
s2r + (xT1

r )2 + (yT2
r )2 + (zT3

r )2
. (4)

To calculate the plausibility score of a triple (h, r, t), we divide it into a triple
pattern (h, r, ?) and a tail entity t. Both the triple pattern and the tail entity
are represented in a 4*D dimensional space. Table 1 presents three different
approaches for representing the triple pattern (h, r, ?) in our model. The following
methods are proposed for the representation of the query:

Name query (h, r, ?) embedding h, r ∈ Dd

Tetra q = h ⊗ r/ h = sh + xT1
h i+ yT2

h j + zT3
h k, r/ = r

|r|

Robin q = h ⊗ h/T1

lt + hT0
l + hT1

t + r/ hT1
lt = sl

T0

h + xlT0

h i+ ytT1

h j + zt
T1

h k,h/T1

lt =
h
T1
lt

|hT1
lt

|

Lion q = h ⊗ h/T1T2

t + hT1
t + hT2

t + r/ hT1T2
t = st

T1

h + xtT1

h i+ ytT2

h j + zt
T2

h k,h/T1T2

t =
h
T1T2
t

|hT1T2
t |

Table 1. Query representations derived by our models.

Text-enhanced relaTional RotAtion (Tetra): This model comprises four
parts for representing each entity. For each head entity, node representation sh
is learned from a graph embedding of the KG structure, and the components
(xT1

h , yT2

h , zT3

h ) are learned from textual embeddings (word, sentence, and document)
of the entities using three pre-trained language models. Likewise, for each tail
entity, st and (xT1

t , yT2
t , zT3

t ) are also learned. The Tetra model represents the query
by learning relation-specific rotations of the head in Quaternion or Dihedron
space, and ⊗ refers to the Quaternion or Dihedron products (see equation 1,
2) in Quaternion or Dihedron space. The resulting query inherently contains
pairwise correlations between each of sh, xT1

h , yT2

h , zT3

h , thus providing a rich feature
representation for the corresponding query.

Multi-texts RelatiOn-Based rotatIon and translatioN (Robin): In this
model, we incorporate both the vector of the entity name (e.g., “Berlin”) indexed
by l (i.e., hT0

l ) and the vector of the textual description indexed by t (i.e., hT1
t ).

We perform a rotation of the form h ⊗ h/T 1

lt and a translation of the form
hT0

l + hT1
t + r/ derived from these two sources of information. Specifically, h/T1

lt

is obtained by normalizing hT 1
lt . We always use Word2Vec (T0) to embed entity

names, but we use a different pre-trained language model for embedding entity
descriptions, which is selected based on performance in experiments (details
provided in the experimental section). We utilize two distinct neural networks
(details in Section 4.2) to generate distinct representations slT0

h and xlT0

h given
the same embedding from Word2Vec T0. Similarly, ytT1

h and ztT1

h are distinct
representations given the same embedding from another pre-trained language
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model T1. Consequently, the query is computed by combining the head entity
embedding from the KG, relation label embedding, entity name, and entity
description through translation and rotation in Quaternion or Dihedron space:
q = h⊗h/T1

lt +hT0

l +hT1
t + r/, where h is the graph embedding of the head entity.

Incorporating both translation and rotation improves the model’s expressiveness
compared to utilize only a single rotation [21, 7].

Multi-Language models relatIon rOtation and translatioN (Lion): In
this model, we utilize two pre-trained language models (T1, T2) to embed the same
entity description and adjust their dimensions using NNs (detailed in Section
4.2). We then construct a vector for rotation as follows: hT1T2 = stT1

h + xtT1

h i+

ytT2

h j+ ztT2

h k,hT1T2
/
= hT1T2

|hT1T2 | . Together with the rotation h⊗h/T1T2

t , we use the
embedding of the entity description hT1

t ,hT2
t to represent a translation for query

representation in Quaternion or Dihedron spaces: q = h⊗h/T1T2

t +hT1
t +hT2

t +r/.
The query representations mentioned above are related to the triple pattern

(h, r, ?). For the triple pattern (?, r, t), we adopt the approach of using (t, r−1, ?)
for query representation, where r−1 is a reverse relation label corresponding
to the relation label r. To create a set of |R| embeddings of reverse relation
labels R−1, we add an additional triple (t, r−1, h) to the training set for each
embedding of the reverse relation label r−1 ∈ R−1, following the approach used
in previous works [13, 15]. When representing queries for these triples, we use the
equations presented in Table 1, but with h replaced by t and r replaced by r−1.
It is worth noting that the choice of the appropriate model from Table 1 may
depend on various characteristics of the KG, such as sparsity and density, quality
of textual description, etc. For instance, if the KG has a complex structure, a
more expressive model like the Robin and Lion may be required, because they
mix both the translation and the rotation, which could be preferred over the
Tetra relying solely on the rotation.

4.2 Dimension Adjustment

The underlying assumption of Equation 3 is that the vectors se, xT1
e , yT2

e , and zT3
e

have the same dimension D. However, since pre-trained language models may
produce vectors of different dimensions, we use a neural network to adjust their
dimensions. Thus, we can rewrite Equation 3 as follows:

e = se +NN(xT1
e )i+NN(yT2

e )j +NN(zT3
e )k, (5)

where NN is a multilayer perceptron whose input and output dimensions are
DTi and D, respectively.

In our dimension-adjustment module, we use an individual multi-layer network
NN for each embedding from pre-trained language models. The input and output
dimension of each NN are DTi

and D, respectively. Among all embeddings, the
largest embedding from BERT has size of 512, so we always adapt all embedding
dimension D to 512. Our NN has two layers, each layer consists of a linear
transformation and then a non-linear transformation. For the activation function
in the non-linear transformation, we simply use hyperbolic tangent function.



10 Authors Suppressed Due to Excessive Length

4.3 Triple Plausibility Score and Training

To measure the plausibility score of a triple (h, r, t), we calculate the distance
between the query q and the corresponding tail t as follows:

f(h, r, t) = −d(q, t) + bh + bt, (6)

where bh, bt are entity-specific biases proposed in [1].
In Figure 1, a series of geometric representations are presented (located on

top of the figure) in which the query and corresponding tail are matched (from
the blue dot to the red dot). The textual description of “Q5220733” mentions
the entity “Q621549” and the term “born”, which is closely related to the “P19”
relation label. Similarly, the textual description of “Q621549” includes the entities
“Inglewood”. These descriptions are strongly correlated and effectively cover the
mention of the triple elements (head, relation label, tail). Consequently, based
on the textual descriptions of these entities, it can be inferred that “Q5220733”
was born in “Inglewood”.

During the training phase, we minimize the cross-entropy loss function with
uniform negative sampling as described in [7]. In particular, for a positive triple
(h, r, t), we obtain negative triples by uniformly sampling negative tail entities
t′ ∈ E such that (h, r, t′) /∈ K. Besides, for any positive triple, we always train
another triple involving inverse relation (t, r−1, h′), where we similarly perform
negative sampling to obtain negative head entities h′. This is based on previous
work [16] that suggests the inclusion of triples with inverse relations can improve
model performance.

Given positive and negative triples, the loss function can be defined as follows:

L = −
∑

h,r,t;t′

yt;t
′

logf(h, r, t; t′)−
∑

t,r−1,h;h′

yh;h
′

logf(t, r−1, h;h′) (7)

where yt;t
′

= ±1 is the label for positive or negative triples when sampling tail
entities, and yh;h

′

is similarly for head entities. During the training process, we em-
ploy the Adagrad optimizer [10] to optimize the model parameters. Furthermore,
we utilize early stopping on the validation dataset to prevent overfitting.

5 Experiments

5.1 Experimental Setup

Datasets, Environments and Hyperparameters: We evaluate our proposed
models on two domain-specific KG datasets: NATIONS [14], Diabetes [42],
and two commonsense KG datasets: FB15k-237 [30], and YAGO-10. Table 2
provides a summary of types and other statistic details of each dataset. Other
details of datasets can be found in Appendix A. Besides, the details of our
environments and hyperparameters can be found in Appendix B.
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Dataset Type #ent #rel #train #val #test
NATIONS domain specific 14 55 1,592 199 201
Diabetes domain specific 7,886 67 56,830 1,344 1,936
FB15k-237 commonsense 14,904 237 271,431 17,503 20,427
YAGO-10 commonsense 103,222 30 490,214 2,295 2,292

Table 2. The statistics of our datasets.

Evaluation Metrics: We evaluated our models using the link prediction task
and the following standard evaluation metrics: Mean Reciprocal Rank (MRR)
and Hits@K, where K is set to 1, 3, and 10. MRR calculates the mean reciprocal
rank of the correct tail entity across all queries, while Hits@K measures the
proportion of correct tail entities that rank in the top K positions. In accordance
with prior work, we also employed the filtering setup [4] during evaluation to
remove existing triples in the dataset from the ranking process.

Baselines and Our Ablation Models: We compare our proposed models
against four baselines that do not consider textual information: TransE [3],
ComplEx [31], AttE, and AttH [7]. We also compare against baselines that
incorporate textual information: DKRL [37], ConMask [27], PretrainKGE [41],
KG-BERT [39], and StAR [32]. We reimplemented ConMask and PretrainKGE
and obtained the codes for DKRL, KG-BERT and StAR online.

We conducted an ablation study to evaluate different variants of our model
with different combinations of pre-trained language models. To simplify, we
use the abbreviations {W,F,D, S} to represent the pre-trained language models
Word2Vec, FastText, Doc2Vec, SentenceTransformer, respectively. We compared
four variants of Robin that utilize one of {W,F, S,D} individually for modeling
the entity descriptions and always use W for modeling the entity names, namely,
Robin_W, Robin_F, Robin_S and Robin_D. We further compared two variants of
Lion that use {S,D} or {F, S}, namely, Lion_SD and Lion_SF. We also compare
three variants of Tetra that use only {S, F} for Tetra_SF and use {W,S, F}
for Tetra_WSF. Besides, we do not incorporate any pre-trained language model
into Tetra_zero. All our variants employ the Dihedron representation for better
performance. By comparing the performance of our ablation models, we evaluated
different aspects of our model, as shown in Table 3:

Ablation models to compare Purpose of evaluation
different variants of Robin difference from each individual pre-trained language model
different variants of Lion different combinations of two pre-trained language models
different variants of Tetra difference from numbers of incorporated pre-trained language models

Robins and Lions different numbers of texts (name, description) utilized in our model

Table 3. The design of our ablation models.
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5.2 Link Prediction results and analysis

Table 4 presents the results of the link prediction task for the embedding di-
mensions D = 32 and D = 500, respectively. Our proposed models consistently
outperform all baselines on all datasets.

However, the performance of our ablation variants varies across different
datasets. In the small NATIONS dataset, Tetra outperforms Robin and Lion
by a significant margin. This is due to the fact that on smaller datasets, the
amount of structural information from the KG is limited, and the incorporation
of additional textual information becomes more crucial. Tetra performs better in
this scenario because it incorporates three different pre-trained language models,
allowing for a more comprehensive exploitation of textual information. The
results on the three KGs suggest that Lion generally outperforms Robin, with
the most significant improvement of a 3% higher MRR observed on YAGO-10
in the low-dimensional setting. These results demonstrate that incorporating
more pre-trained language models to extract information from the same text
is more effective than incorporating more types of text, such as entity names
and descriptions. Additionally, Tetra’s performance is comparable to Lion in the
high-dimensional setting on FB15k-237, with Tetra_SF even achieving the best
performance among all ablation variants on YAGO-10 in the high-dimensional
setting. Since the primary difference between the Tetra and Lion variants is the
mixture of translation and rotation, these results suggest that this mixture is
more suitable in the low-dimensional setting.

We also compared all the different variants of Robin and Lion models together
since they all use two pre-trained language models. We observed that their
performances on smaller datasets such as NATIONS and Diabetes were quite
similar, but on larger datasets, there were more noticeable differences. For instance,
on the YAGO-10 dataset, Lion_SD outperformed Robin_S by 3.4% in terms
of MRR in the low dimensional setting, and Lion_SF had 9% higher MRR
than Robin_D in the high dimensional setting. These results suggest that the
selection of the incorporated pre-trained language models is more critical on
larger datasets.

For various Tetra variants, our findings indicate that Tetra_zero consistently
underperforms, which highlights the significance of incorporating pre-trained
language models. Comparing Tetra_SF and Tetra_WSF, we observe that the
former generally exhibits superior performance on smaller datasets, while the
latter performs better on larger datasets. This evidence suggests that incorporat-
ing more pre-trained language models is more appropriate when the structural
information is insufficient, such as on smaller datasets.

Results of models purely based on pre-trained language models: We
also conduct a comparison of the results obtained by KG-BERT [39] and StAR
[32] in Tables 5. Please note that these approaches do not explicitly provide
embeddings for entities and relation labels, and thus the embedding dimension
D is not applicable. We obtained these results by replicating their experiments
on the other three datasets, while their results on FB15k-237 were obtained
from the original papers. The KG-BERT takes too much time running on the
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Elements Model Nations Diabetes FB15k-237 YAGO-10
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

Baselines
D=32

TransE 0.684 0.542 0.779 0.990 0.166 0.089 0.182 0.322 0.274 0.197 0.298 0.428 0.368 0.284 0.403 0.534
ComplEx 0.610 0.460 0.697 0.978 0.136 0.069 0.144 0.273 0.250 0.178 0.275 0.395 0.344 0.277 0.365 0.480
AttE 0.648 0.488 0.741 0.980 0.125 0.060 0.135 0.259 0.283 0.205 0.307 0.436 0.364 0.289 0.394 0.518
AttH 0.728 0.610 0.804 0.990 0.120 0.058 0.124 0.247 0.280 0.200 0.307 0.443 0.380 0.300 0.415 0.538
DKRL 0.660 0.505 0.774 0.998 0.158 0.085 0.171 0.310 0.230 0.159 0.250 0.368 0.339 0.255 0.373 0.509
ConMask 0.662 0.505 0.761 0.988 0.155 0.083 0.169 0.305 0.245 0.171 0.268 0.390 0.362 0.294 0.389 0.504
PretrainKGE 0.674 0.540 0.756 0.985 0.151 0.078 0.164 0.300 0.251 0.175 0.276 0.397 0.349 0.274 0.380 0.502

Ours
D=32

Robin_W 0.730 0.610 0.801 0.990 0.173 0.096 0.188 0.333 0.290 0.208 0.317 0.449 0.363 0.281 0.396 0.528
Robin_F 0.732 0.609 0.811 0.993 0.173 0.095 0.186 0.338 0.300 0.213 0.329 0.471 0.365 0.285 0.397 0.524
Robin_S 0.732 0.612 0.799 0.980 0.173 0.095 0.188 0.333 0.304 0.222 0.331 0.465 0.363 0.282 0.398 0.528
Robin_D 0.728 0.610 0.789 0.993 0.173 0.097 0.187 0.333 0.294 0.213 0.321 0.452 0.366 0.286 0.401 0.528
Lion_SD 0.736 0.624 0.801 0.988 0.167 0.090 0.180 0.330 0.304 0.217 0.333 0.478 0.397 0.314 0.441 0.554
Lion_SF 0.727 0.605 0.801 0.993 0.175 0.097 0.190 0.340 0.301 0.214 0.330 0.475 0.395 0.314 0.439 0.548
Tetra_zero 0.547 0.356 0.647 0.978 0.134 0.069 0.141 0.266 0.264 0.187 0.288 0.414 0.330 0.274 0.349 0.451
Tetra_SF 0.773 0.652 0.856 0.990 0.157 0.086 0.166 0.299 0.278 0.196 0.304 0.439 0.255 0.178 0.274 0.421
Tetra_WSF 0.780 0.669 0.858 0.995 0.155 0.084 0.169 0.302 0.266 0.188 0.289 0.421 0.169 0.113 0.180 0.288

Baselines
D=500

TransE 0.712 0.590 0.789 0.990 0.178 0.100 0.194 0.341 0.318 0.231 0.350 0.492 0.421 0.351 0.461 0.556
ComplEx 0.626 0.483 0.699 0.978 0.144 0.077 0.155 0.283 0.308 0.223 0.337 0.482 0.410 0.341 0.443 0.550
AttE 0.795 0.699 0.858 0.993 0.187 0.105 0.205 0.355 0.272 0.195 0.295 0.429 0.356 0.294 0.389 0.471
AttH 0.789 0.684 0.861 0.995 0.185 0.102 0.202 0.354 0.265 0.188 0.287 0.420 0.313 0.256 0.336 0.431
DKRL 0.706 0.582 0.786 0.990 0.162 0.083 0.176 0.328 0.239 0.169 0.260 0.375 0.333 0.239 0.371 0.520
ConMask 0.713 0.587 0.808 0.993 0.165 0.086 0.180 0.335 0.258 0.183 0.284 0.405 0.381 0.306 0.421 0.519
PretrainKGE 0.718 0.592 0.803 0.993 0.159 0.082 0.172 0.323 0.262 0.187 0.287 0.407 0.320 0.231 0.353 0.495

Ours
D=500

Robin_W 0.731 0.614 0.796 0.993 0.192 0.111 0.207 0.363 0.328 0.235 0.362 0.514 0.402 0.327 0.442 0.541
Robin_F 0.721 0.597 0.791 0.995 0.192 0.110 0.208 0.366 0.331 0.236 0.366 0.520 0.402 0.327 0.442 0.541
Robin_S 0.730 0.614 0.786 0.993 0.192 0.109 0.208 0.368 0.325 0.231 0.360 0.512 0.436 0.365 0.471 0.571
Robin_D 0.729 0.612 0.801 0.995 0.191 0.107 0.208 0.368 0.332 0.237 0.370 0.522 0.35 0.272 0.395 0.500
Lion_SD 0.726 0.605 0.801 0.993 0.193 0.110 0.209 0.369 0.330 0.235 0.366 0.519 0.433 0.363 0.471 0.562
Lion_SF 0.725 0.602 0.801 0.993 0.194 0.111 0.209 0.369 0.332 0.237 0.367 0.521 0.440 0.366 0.478 0.577
Tetra_zero 0.787 0.689 0.851 0.995 0.179 0.099 0.196 0.343 0.324 0.234 0.356 0.503 0.356 0.279 0.384 0.516
Tetra_SF 0.816 0.709 0.884 0.995 0.181 0.102 0.195 0.345 0.336 0.245 0.368 0.518 0.445 0.367 0.489 0.593
Tetra_WSF 0.822 0.731 0.893 0.993 0.186 0.102 0.204 0.360 0.323 0.233 0.353 0.501 0.443 0.365 0.482 0.588

Table 4. Link prediction results for both low (D=32) and high (D=500) dimensional
settings. In each dimensional setting, numbers are the best results for each dataset.

Model Nations Diabetes FB15k-237 YAGO-10
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

KG-BERT 0.592 0.420 0.716 0.982 0.063 0.022 0.057 0.143 - - - 0.420 - - - 0.292
StAR 0.545 0.348 0.677 0.950 0.102 0.033 0.103 0.229 0.296 0.205 0.322 0.482 0.254 0.169 0.271 0.426
Our best 0.822 0.731 0.893 0.995 0.194 0.111 0.209 0.369 0.336 0.245 0.370 0.522 0.445 0.367 0.489 0.593

Table 5. Comparison of LM-based baselines and our best results. In each dimensional
setting, numbers are the best results for each dataset.

YAGO-10, so we can only report its intermediate testing result of Hits@10. These
results from both baselines are lower than our best results. The reason for this is
that approaches such as KG-BERT and StAR model triples as sequences of text
using pre-trained language models, disregarding the structural information in
KGs. As a result, they encounter entity ambiguity problems on larger datasets.
Unlike these approaches, KGE models that explicitly model entity embeddings
naturally possess a unique representation for each entity. In contrast, models
like KG-BERT and StAR only have a unique representation for each word, and
entities are represented as a sequence of words. This become noisy with long
entity descriptions, leading to noisy entity representations.

The importance of integration in the hypercomplex space To demonstrate
the significance of integrating different features from texts in the hypercomplex
space, we construct an ablation model, TransE_Concat, by concatenating four
representations {W,F,D, S} and treating it as the input for TransE. The purpose
of TransE_Concat is to assess whether the performance gain truly arises from
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the integration of the hypercomplex space or not. We reused the low-dimensional
results of TransE and the Dihedron version of our models from Tables 4. Simul-
taneously, we re-run the TransE_Concat model, and the results are presented in
Table 6. We observe that TransE_Concat outperforms TransE on the smallest
dataset, Nations, but it falls short in comparison to our best model, Tetra_WSF.
For the other larger datasets, TransE_Concat yield inferior results compared
to Lion and even TransE. These findings suggest that the simple concatenation
strategy fails to efficiently capture the interaction between different features.
In contrast, our approach inherently accounts for such interactions due to the
essence of the Dihedron product in Equation 2, along with various geometric
perspectives illustrated in Figure 2.

Model Nations Diabetes FB15k-237 YAGO-10
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TransE 0.684 0.542 0.779 0.990 0.166 0.089 0.182 0.322 0.274 0.197 0.298 0.428 0.368 0.284 0.403 0.534
TransE_Concat 0.726 0.612 0.786 0.983 0.161 0.088 0.174 0.312 0.257 0.182 0.278 0.406 0.149 0.087 0.160 0.272
Lion_SD 0.736 0.624 0.801 0.988 0.167 0.090 0.180 0.330 0.304 0.217 0.333 0.478 0.397 0.314 0.441 0.554
Lion_SF 0.727 0.605 0.801 0.993 0.175 0.097 0.190 0.340 0.301 0.214 0.330 0.475 0.395 0.314 0.439 0.548
Tetra_WSF 0.780 0.669 0.858 0.995 0.155 0.084 0.169 0.302 0.266 0.188 0.289 0.421 0.169 0.113 0.180 0.288
Table 6. Ablation study results of concatenating representations for the low (D=32)
dimensional setting, where numbers are the best results for each dataset.

Comparison of Quaternion and Dihedron: We conducted a comparison
of the query representation using Quaternion and Dihedron on three variants of
our model (Robin_S, Lion_SF, and Tetra_WSF) by performing link prediction
experiments on FB15k-237. We reused the results of the Dihedron version of
each model from Tables 4, while rerunning the Quaternion version. The results,
as shown in Table 7, indicate that Dihedron generally outperforms Quaternion,
which is in line with our earlier claim in the Preliminary that Dihedron is a more
expressive representation than Quaternion.

FB15k-237 (D=32) FB15k-237 (D=500)
Model MRR H@1 H@3 H@10 MRR H@1 H@3 H@10
Robin_S (Quaternion) 0.290 0.205 0.317 0.459 0.322 0.229 0.355 0.505
Robin_S (Dihedron) 0.304 0.222 0.331 0.465 0.325 0.231 0.360 0.512
Lion_SF (Quaternion) 0.295 0.208 0.322 0.465 0.320 0.228 0.353 0.505
Lion_SF (Dihedron) 0.301 0.214 0.330 0.475 0.332 0.237 0.367 0.521
Tetra_WSF (Quaternion) 0.270 0.192 0.294 0.420 0.318 0.227 0.351 0.499
Tetra_WSF (Dihedron) 0.269 0.192 0.295 0.419 0.328 0.237 0.361 0.509

Table 7. Link prediction results on FB15k-237 with both dimensions. Each model use
Quaternion product in Equation 1 or Dihedron product in Equation 2.

5.3 Effect Of Textual Information In Entity Representation
In this visualization, we demonstrate the impact of pre-trained language models
on the Tetra_WSF model’s performance. We selected two datasets, FB15k-237
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Fig. 3. Cosine similarities of the query
and tail of triples on FB15k-237 .

Fig. 4. Cosine similarities of the query
and tail of triples on YAGO-10.

and YAGO-10, and computed the average cosine similarities on all testing triples
of each dataset. The heat maps in Figure 3 and 4 show the cosine similarities
between the four parts of our 4*D dimensional representation: entity embedding,
word embedding, sentence embedding, and document embedding. By examining
the similarities on the diagonal of the heat maps, we can assess the contribution
of each part when matching the query and the tail in the link prediction task.

Among the four types of embeddings, the similarities between word-word,
sentence-sentence, and document-document embeddings are higher than the
similarity between entity-entity embeddings, indicating that semantic information
at the word, sentence, and document levels are helpful in matching queries
and tails. We conclude that all three levels of textual information from entity
descriptions capture important semantic information during the matching between
queries and tails.

5.4 Contribution of individual sentences

In this analysis, we aim to investigate how our Robin_S model leverages sentence-
level representations by selecting important sentences. Specifically, we evaluate
the model’s performance on the YAGO-10 dataset for link prediction and collect
sentences from the descriptions of the head and tail entities for each triple. We
then compute the importance of each sentence using the Shapley value method
[25] and rank them in descending order of importance. Finally, we manually
inspect the semantics of each highly ranked sentence, and conclude that our
model effectively exploits sentence-level information for the corresponding triple
if a semantically important sentence receives a high rank.

Table 8 presents the top-3 important sentences from the entity descriptions,
as identified by the Shapley value, in the YAGO-10 dataset. For the first triple
(MarsCallahan, created, Zigs(film)), the top-ranked sentence comes from the tail
description and contains the keywords “directed by Mars Callahan,” which is
about the head entity. For the second triple (MargaretOfGeneva, isMarriedTo,
ThomasCountOfSavoy), the top-1 and top-2 sentences refer to the definition
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of both entities. Notably, the keywords “escorting” and “carried her off” in
the top-3 sentence provide information about the relation label “isMarriedTo.”
These examples demonstrate how our model effectively exploits sentence-level
information from the entity descriptions for link prediction.

Triple Sentence
rank

Sentence
source Sentence

MarsCallahan,
created,
Zigs(film)

1 tail Zigs is a 2001 English language drama starring Jason Priestley Peter Dobson and Richard Portnow
and directed by Mars Callahan.

2 tail The film received an r rating by the MPAA.
3 head At the age of eleven Callahan toured with a children’s musical group through thirty-seven states.

MargaretOfGeneva,
isMarriedTo,
ThomasCountOfSavoy

1 tail Thomas Tommaso I was count of savoy from 1189 to 1233 he is sometimes numbered Thomas I
to distinguish him from his son of the same name who governed savoy but was not count.

2 head Margaret of Geneva 1180-1252 countess of savoy was the daughter of William I count of Geneva.
3 head When her father was escorting her to France in May 1195 Thomas I of savoy carried her off.

Table 8. Examples about sentence contribution of our model, where a sentence with
higher rank (smaller number) is more important. The source of the sentence indicates
whether a sentence comes from the description of a head or tail entity.

6 Conclusion

In this study, we investigated the effectiveness of incorporating multi-level textual
information by using multiple pre-trained language models in a KGE model. Our
novel KGE model based on the Dihedron algebra captures the interactions between
embeddings from pre-trained language models, resulting in better representations
for incomplete KGs. Our experiments demonstrate that the incorporation of more
pre-trained language models is beneficial for extracting information from text in
KGs, particularly on small or sparse KGs. While other recent work [19] focuses
on unifying information from multiple sources, our work is the first to explore
the use of multiple pre-trained language models in the representation learning of
KGs. In future work, we plan to investigate the incorporation of multi-source
information in multi-hop KG completion scenarios. Beside the KG completion
task, we also plan to apply our model to various other tasks. For instance, we can
adapt it to predict entity types given a schema or to facilitate complex logical
query answering.

Supplemental Material Statement: The datasets and our implementation are avail-
able at https://github.com/ZihaoWang/text_enhanced_KGE. The Appendix
can be found in our full Arxiv version https://arxiv.org/abs/2208.02743.
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