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Abstract. Structured knowledge bases (KBs) are the backbone of many
knowledge-intensive applications, and their automated construction has
received considerable attention. In particular, open information extrac-
tion (OpenIE) is often used to induce structure from a text. However,
although it allows high recall, the extracted knowledge tends to inherit
noise from the sources and the OpenIE algorithm. Besides, OpenIE tu-
ples contain an open-ended, non-canonicalized set of relations, making
the extracted knowledge’s downstream exploitation harder. In this paper,
we study the problem of mapping an open KB into the fixed schema of an
existing KB, specifically for the case of commonsense knowledge. We pro-
pose approaching the problem by generative translation, i.e., by training
a language model to generate fixed-schema assertions from open ones.
Experiments show that this approach occupies a sweet spot between tra-
ditional manual, rule-based, or classification-based canonicalization and
purely generative KB construction like COMET. Moreover, it produces
higher mapping accuracy than the former while avoiding the association-
based noise of the latter. Code and data are available34.

Keywords: Open Knowledge Base · Generative Language Model · Schema
matching

1 Introduction
Motivation and Problem Open Information Extraction (OpenIE) automatically
extracts knowledge from a text. The idea is to find explicit relationships, together
with the subject and the object they link. For example, from the sentence “In
nature, fish swim freely in the ocean.”, OpenIE could extract the triple (fish, swim
in, the ocean). Here, the text explicitly mentions the subject, the predicate, and
the object. Therefore, if one uses OpenIE to construct a knowledge base (we call
it an Open Knowledge Base, open KB) from a longer text, one obtains many
predicates, redundant statements, and ambiguity.

OpenIE is often used for commonsense knowledge base (CSKB) construction.
Previous works such as TupleKB [18], Quasimodo [28,27] or Ascent [19,20,21] use
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OpenIE to extract knowledge from different textual sources (textbooks, query
logs, question-answering forums, search engines, or the Web), and then add ad-
ditional steps to clean and normalize the obtained data. Another example is
ReVerb [10], which was used to get OpenIE triples from a Web crawl. The out-
put of OpenIE typically inherits noise from sources and extraction, and the
resulting KBs contain an open-ended set of predicates. This generally is not the
case for knowledge bases with a predefined schema. Famous instances of this
type are manually constructed, like ConceptNet [31] and ATOMIC [15]. They
tend to have higher precision. Besides, they are frequently used in downstream
applications such as question-answering [11,42], knowledge-enhanced text gener-
ation [43], image classification [40], conversation recommender systems [47], or
emotion detection [46]. These applications assume there are a few known predi-
cates so that we can learn specialized parameters for each relation (a matrix or
embeddings with a graph neural network). This is not the case for open KBs.

Still, many properties of open KBs, such as high recall and ease of construc-
tion, are desirable. In this paper, we study how to transform an open KB into a
KB with a predefined schema. More specifically, we study the case of common-
sense knowledge, where ConceptNet is by far the most popular resource. From
an open KB, we want to generate a KB with the same relation names as Con-
ceptNet. This way, we aim to increase precision and rank the statements better
while keeping high recall. Notably, as we reduce the number of relations, we ob-
tain the chance to make the statements corroborate. For example, (fish, live in,
water, freq:1), (fish, swim in, water, freq:1) and (fish, breath in, water, freq:1)
can be transformed into (fish, LocatedIn, water, freq:3), and therefore they all
help to consolidate that statement.

Transforming open triples to a predefined schema raises several challenges.
In the simplest case, the subject and object are conserved, and we only need
to predict the correct predefined predicate. This would be a classification task.
For example, (fish, live in, water) can be mapped to (fish, LocatedAt, water) in
ConceptNet. We could proceed similarly in cases where subject and object are
inverted, like mapping (ocean, contain, fish) to (fish, LocatedAt, ocean), with just
an order detection step. However, in many cases, the object is not expressed in
the same way or only partially: (fish, live in, the ocean) can be mapped to (fish,
LocatedAt, ocean). In other cases, part or all of the predicate is in the object, like
(fish, swim in, the ocean) that can be mapped to (fish, CapableOf, swim in the
ocean). Here, the initial triple could also be mapped to (fish, LocatedAt, ocean),
showing that the mapping is not always unique. Other problems also arise, like
with (near) synonyms. For example, we might want to map (fish, live in, sea)
to (fish, LocatedAt, ocean).
Approach and Contribution We propose to approach the mapping of an open KB
to a predefined set of relations as a translation task. We start by automatically
aligning triples from the source and target KB. Then, we use these alignments to
finetune a generative language model (LM) on the translation task: Given a triple
from an open KB, the model produces one or several triples in the target schema.
The generative nature of the LM allows it to adapt to the abovementioned
problems while keeping a high faithfulness w.r.t. the source KB. Besides, we



Mapping and Cleaning OpenKBs with Generative Translation 3

show that this improves the precision of the original KB and provides a better
ranking for the statements while keeping a high recall. Our contributions are:

1. We define the problem of open KB mapping, delineating it from the more
generic KB canonicalization and the more specific predicate classification.

2. We propose a generative translation model based on pre-trained language
models trained on automatically constructed training data.

3. We experimentally verify the advantages of this method compared to tradi-
tional manual and rule-based mapping, classification, and purely generative
methods like COMET.

2 Previous Work

2.1 Commonsense Knowledge Bases

ConceptNet ConceptNet [31], built since the late 1990s via crowdsourcing, is
arguably today’s most used commonsense knowledge base. Due to user-based
construction, it has high precision. ConceptNet comprises a limited set of pre-
defined relations and contains non-disambiguated entities and concepts. For ex-
ample, we find (mouse, PartOf, computer) and (mouse, PartOf, rodent family).
Thus, when mapping an open KB to ConceptNet, one needs to focus mainly on
the predicates and, to some extent, the modification of the subject and object.
Open Knowledge Base An open knowledge base (open KB) is a collection of SPO
triples (subject, predicate, object) with no further constraints on the components.
This means that they are not canonicalized. For example, the triples (The Statue
of Liberty, is in, New York) and (Statue of Liberty, located in, NYC), although
equivalent, could be present in the same knowledge base. The subject and the
object are noun phrases (NP), whereas the predicate is a relational phrase (RP).
As a comparison, knowledge bases with a predefined schema like Wikidata [36],
YAGO [33] or ConceptNet [31] come with a set of predefined predicates and/or
entities for the subjects and the objects. This paper will call such a knowledge
base a Closed Knowledge Base (closed KB).

This paper will use two open KBs: Quasimodo and Ascent++. Quasimodo [28]
is an open commonsense knowledge base constructed automatically from query
logs and question-answering forums. Ascent++ [19] is also an open commonsense
knowledge base created from Web content. The extraction follows a classical
pipeline and outputs an open KB in both cases.

2.2 From Open KBs to Closed KBs

Open Knowledge Base Canonicalization The task of open KB canonicaliza-
tion [12] consists of turning an open triple (s, p, o), where s and o are an NP
and p is an RP, into an equivalent (semantically) new triple (se, pe, oe), where
se and oe represent entities (generally through a non-ambiguous NP), and pe
is a non-ambiguous and unique representation of a predicate. It means there is
no other p′e such that (se, pe, oe) is semantically equivalent to (se, p′e, oe). For
example, we would like to map (Statue of Liberty, located in, NYC) to (The
Statue of Liberty, AtLocation, New York City), where “The Statue of Liberty”
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represents only the famous monument in New York City, “New York City” rep-
resents the American city unambiguously, and “AtLocation” is a predicate used
to give the location of the subject.

NP canonicalization is more studied than RP canonicalization, but the task
is generally treated as a clusterization problem [12]. It is essential to notice
that an NP or an RP does not necessarily belong to a single cluster, as this
cluster may depend on the context. For example, in (Obama, be, president of
the US), “Obama” refers to the entity “Barack Obama”, whereas in (Obama,
wrote, Becoming), “Obama” refers to “Michele Obama”. Also, we must notice
that canonicalization does not have a target: The transformation does not try
to imitate the schema of an existing knowledge base. The main goal is to reduce
redundancy, but the number of predicates (and entities) might remain high.
Entity Linking Entity Linking is the task of mapping an entity name to an entity
in a knowledge base. For example, we would like to map Paris in (Paris, be, city
of love) to Q90 in Wikidata, the entity that represents the capital of France. In
the triple (Paris, be, a hero), Paris should be mapped to Q167646 in Wikidata,
the entity that represents the son of Priam. When mapping an open KB to
a closed KB, most systems first perform entity linking before processing the
predicate [6,44]. This supposes that the subject and the object remain unchanged
during the mapping. This is a problem when we want to map to ConceptNet as
this KB is not canonicalized, and the subject and object might be modified.
Knowledge Base Construction Knowledge base construction can be done man-
ually by asking humans to fill in the KB [31,15] or automatically using pattern
matching [33,1] or OpenIE [28,19,18]. In general, manual approaches have higher
accuracy but struggle to scale. Translating an open KB to a closed KB can be
seen as an additional stage in an OpenIE extraction pipeline like Quasimodo or
Ascent++. By doing so, we make the KB match a predefined schema. The same
result would be possible directly from the corpus using traditional IE techniques.
However, this approach is more human-labor intensive, depends on the domain,
and does the scale [48].
Ontology Matching Ontology matching is the task of mapping one structured
schema into another [9]. This task has a long history in databases and semantic
web research. However, due to the input being of little variance in predicates,
it is typically approached as a structured graph alignment problem [5,8]. We
cannot simply map one predicate to another in the present problem, as textual
predicates are generally ambiguous. The mapping may differ for different s-o-
pairs with the same p.

2.3 Existing Systems

In this paper, we are interested in a task that was barely tackled by previ-
ous works: We want to map an entire open KB to the schema of an existing
closed KB. In the Ascent++ paper [19], the authors noticed that using an open
KB in practice was difficult due to the lack of existing frameworks. Therefore,
they proposed to map Ascent++ to ConceptNet’s schema. However, they did a
straightforward manual mapping that involved translating as many relations as
possible manually. This approach is simplistic and does not yield good results, as
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we will see later. KBPearl [17] did a variation of the manual mapping in which
they used the existing labels of entities and predicates, which greatly limits the
system.

When we look at similar tasks, we find two main ideas to transition between
an open KB and a closed KB. First, some authors approached this problem
via rule mining, a generalization of the manual mapping of predicates. Previous
systems [29,30,6] often use a rule mining system (automatic or manual) that relies
on the type of subject and object and keywords in the triple. They often return a
confidence score. The main issues with these frameworks are that they generalize
poorly (particularly to unseen predicates) and require significant human work.

The second way to see our problem is as a classification task: Given an open
triple (s, p, o), we want to predict a semantically equivalent/related triple (s,
p’, o) that would be in the considered closed KB. OpenKI [44] used neighbor
relations as input of their classifier. Later [41], word embeddings were included to
represent the predicate and help with the generalization. However, their training
and testing dataset is constructed using an open KB and a closed KB with
entities already aligned by humans (ReVerb [10] and Freebase in the original
paper). This is not generally the case in practice. Besides, this approach considers
that the subject and object remain the same, thus ignoring modification of the
subject and object, inverse relations, or closely related entities.

In [24], the authors propose a method to compute the similarity between a
triple in an open KB and a triple in a closed KB. This differs from our approach
because we do not know potential candidates in the closed KB in advance. In-
deed, the closed KB is often incomplete, and we want to generate new triples
thanks to the open KB. Therefore, we focus more on the generation rather than
the comparison. However, it is essential to notice that this approach integrates
word embeddings for comparison. Besides, the authors use the distant supervi-
sion approach to create a dataset automatically: Given a close triple, they find
sentences (in a different corpus) containing both entities from the triple. Then,
they apply an OpenIE algorithm to obtain an open triple. This triple is used as
a ground truth. In our case, we do not have this additional textual source: The
inputs are the open KB and the closed KB.

T-REx [7] aligns Wikipedia abstracts with the Wikidata triples using a rule-
based system. However, it comes with several limitations. First, it takes as input
text and not open triples. Even if we were to take the documents used for con-
structing Ascent++ (a web crawl), the computation time would be much longer
because of the difference in scale. Second, T-REx needs to perform named-entity
recognition which does not apply to commonsense. Third, there is a strong depen-
dency between Wikipedia and Wikidata. Some pages are even created automat-
ically from Wikidata. Despite these limitations, we can consider the rule-based
alignment presented in Section 4.1 as a generalization of their AllEnt aligner.
T-REx was used for evaluating language models in a zero-shot fashion [38,23],
or for OpenIE [37].

In [13], the authors introduce a methodology to manually evaluate the align-
ment of triples from an open KB with a closed KB. Besides, they studied how
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much an open KB (OPIEC [14] in their case) can be expressed by a closed KB
(DBpedia [1]). They found that the open triples can often be aligned to DBpe-
dia facts, but they are generally more specific. Also, one can usually express an
OpenIE fact in the DBpedia schema. Still, this expressivity is limited if we con-
sider only a single relation rather than a conjunction (or even a more expressive
logical formula).

3 Problem Formulation
An open triple t consists of a subject s, a predicate p, and an object o. An
open knowledge base KO is a set of open triples. A closed schema RC is a set
of relations {R1, . . . , Rn}. A triple mapping m is a function that takes an open
triple t and a closed schema RC and produces a set of triples with predicates
from RC .

Note that m is not defined as producing a single output triple per input triple
- depending on the closed schema’s structure, some open triples may give rise
to several closed triples. Besides, the subject and object are not guaranteed to
remain the same.

Problem Given an open KB KO and a closed set of relations RC , the task is to
find a mapping m that enables to build a closed KB KC = m(KO,RC), with the
following properties:
1. Preserves source recall. In other words, ensure that as many triples as

possible are mapped to a nonempty set, maximizing | {tO ∈ KO | m(tO,RC) 6=
∅) | .

2. Remains source-faithful. In other words, ensure that each triple in the
output stems from one or several semantically similar statements in the
input, that is, that for each tc ∈ KC , m−1(tC ,RC) is semantically similar to
tC .

3. Corrects errors. In other words, the goal is to minimize the set of triples
in KC that are factually wrong.

The definition above hinges on the concept of semantic similarity. In line with
previous work [13], we specifically refer to semantic equivalence or entailment.
In summary, the truth of tO should be a sufficient condition for the truth of tC .
However, our method does not desire the opposite direction, i.e. producing tC
statements that are sufficient conditions for tO.

4 Methodology
As we saw in Section 2 and will describe in more detail in Section 5.2, previous
works propose to tackle the open KB mapping task in three different ways: man-
ual mapping, rule mining mapping, or classifier mapping. However, these meth-
ods all come with challenges: They require much human work, cannot modify
the subject and the object, cannot cover all cases, and, as we will see, have low
performance. Therefore, we introduce here a new methodology to tackle these
issues. We present in Figure 1 our approach. It is composed of four steps:
1. Alignment : We automatically create a dataset of alignments using the open

KB and the closed KB.
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2. Finetuning : We use this dataset to finetune a generative language model
(GPT-2 here) to generate alignments.

3. Generation: We generate one or several mappings for each triple in the open
KB.

4. Ranking : Using the score in the original KB, the generation score, and the
rank of the generated alignment, we create a final score for each closed triple.

datasetAUTOMATED
ALIGNMENTCLOSED

KB

OPEN
KB

Generative model

FINETUNING GPT2

MAPPING
GENERATION

RANKING OUTPUT
KB

Fig. 1. The Steps of Our Methodology.

4.1 Creating Weakly-Labelled Training Data

The generative translation mapping and existing classification and rule min-
ing approaches require a training dataset of alignments, that is, pairs of open
triples and semantically equivalent or entailed closed triples. Creating this at
scale manually is hardly feasible. Therefore, we decided to adopt two automatic
approaches to generate a broader dataset, even if they contain some noise.

Rule-Based Alignment The first approach we consider is based on rules. To
align an open KB with ConceptNet, we used the following algorithm:

1. Lemmatization and stopwords removal.
2. For each triple (s, p, o) in our open KB, we create one or several alignments

(we used _ as a general placeholder):
– s, _, o is in Conceptnet (standard alignment)
– o, _, s is in Conceptnet (reverse alignement)
– s, _, p + o is in Conceptnet (predicate in the object)
– p + o, _, s is in Conceptnet (reverse predicate in the object)

This approach has the advantage of not creating divergence in the alignment:
We have hard constraints (words) that do not allow us to align statements that
are too different. However, this is not true with the following technique.

LM-Based Alignment Here, we propose an entirely unsupervised method.
First, we compute the embeddings of each triple in both KBs and then align each
open triple with the nearest close triple. For computing the triple embeddings, we
used a sentence embeddings neural network fed with the subject, the predicate,
and the object, separated by a comma. The Python library SBert provides a
MiniLM [39] model finetuned on a paraphrasing task. Then, we used Scikit-
learn [22] K-nearest neighbor algorithm to find the nearest neighbor in a closed
KB for each triple in an open KB (or the opposite, marked as INV later) and
the distance between the two triples. Finally, as considering all the alignments
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might introduce noise, we assess several scenarios in which we only take the top
1k, 10k, and 100k alignments according to the distance score. As generating the
mapping is expensive, we will not finetune this parameter more.

With this technique, we might have alignments that are not related. However,
compared to the previous method, we will be able to have a larger dataset, and
we might get semantic relatedness coming from using different wording (e.g.,
with synonyms) that was not captured before.

4.2 Generative Translation Mapping

The second step consists in finetuning a generative language model to generate
the mappings. This can be seen as a translation problem, similar to machine
translation. We formatted our input by separating the OpenIE triple and its
aligned ConceptNet triple with a [SEP] token. In our experiments, we used the
GPT-2 model [25] and the script provided by HuggingFace to finetune GPT-2.
Unfortunately, GPT-3 [3] is not publicly available. We also tried T5 [26], but we
did not obtain better results (see T5-GenT in Table 1). We also accessed a very
large language model, LLaMa [35], following Alpaca [34,45]. However, this model
failed to adapt to the structure of the closed KB, even when given various explicit
prompts. We hypothesize that such a model lost flexibility as it better understood
natural language. Succeeding in reintroducing structured information in very
large LM can lead to exciting future works. Another disadvantage of very large
LMs is their computation cost at training and during inference.

The third step is the actual generation. We used a beam search for the
generation part to obtain the top K results for each statement in our knowledge
base. We filter the results to keep only well-formed triples and triples so that
the subject and object differ. Considering more than one alignment per triple
can help in many ways. First, a triple can have several translations. Second, the
system learned to generate related statements that might help rank the final
statements.

Finally, once we have all the translations to ConceptNet triples, we compute
a score for each triple based on the frequency at which it appeared (several
OpenIE triples generally generate the same closed triple) and the inverse rank
among the predictions. More formally, we obtain the score of a triple t using:

FinalScore(t) =
∑

t’ generates t
score(t′)

rank(t′,t)+1

We will also consider two other scores in Section 6. The first only considers the
open KB score part of the previous formula (a sum of scores), while the second
only considers the ranks (a sum of reciprocal ranks). Here, it is essential to notice
that the score of an open triple is provided by the open KB. Therefore, if the
open KB is not good at scoring triples, we will inherit negative signals that we
hope to compensate with the ranks.

In the end, we can generate a ranking for all our statements. Moreover,
using a generative LM allows for having friendly properties missing in previous
works. For example, it can adapt the subject and the object to match the new
predicate. Besides, it can also correct the original statement if it contains a
mistake (spelling or truth). Furthermore, it can inverse the subject and the
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object without additional help. Finally, it can generate multiple outputs from
one input, bringing value to the end KB. We will demonstrate these properties
in Section 6.

5 Experiment Setup
5.1 Evaluation

Automatic Global Metrics To get a general understanding of the generated
KB after the mapping, we compute the size of the KB. However, as the size
is insufficient to evaluate the recall [28], we consider that ConceptNet is our
gold standard as humans filled it. Then, we measure the number of triples from
ConceptNet we can generate. We call it the automatic recall. Likewise, we create
the automatic precision:

Ra(KBtrans) =
|KBtrans∩KBtarget|

|KBtarget| Pa(KBtrans) =
|KBtrans∩KBtarget|

|KBtrans|

As a part of the target KB can be used in the training dataset, we also define
R̄a as:

Ra(KBtrans) =
|KBtrans∩KBtarget−Dtrain|

|KBtarget−Dtrain|

We also define Pa following the same rationale as Ra. However, this metric
does not capture the ranking of our statements. The ranking is crucial in open
KBs as these KBs are often noisy. Ideally, we want to have correct and important
statements with a high score. We introduce metrics to measure that property.
First, we will also use an automatic precision at K where, instead of considering
the entire KBtrans, we will only consider its top K statements. However, these
metrics do not consider the entire KB. Therefore, we introduce a generalized
mean reciprocal rank of the final ranked KB as follows:

MRR(KBtrans) =

∑
KBtrans[i]∈KBtarget

1
i

|KBtarget|
MRR(KBtrans) =

∑
KBtrans[i]∈KBtarget−Dtrain

1
i

|KBtarget−Dtrain|

These metrics allow us to measure the recall, but it gives more weight to
correct high-ranked statements.

All the metrics presented depend on the quality and coverage of the original
open knowledge base. Therefore, when considering a translated KB, we prefer
relative metrics where the metric is divided by the metric computed for the open
knowledge base, ignoring the relations.

Automatic Triple Alignment Metrics In Section 4.1, we suggested methods
to align an open KB with a closed KB. These techniques generate a dataset of
alignments that can be split into a training and a testing set used to evaluate
the MRR, the precision (@K), and the recall (@K).

Manual Metrics The automatic metrics we presented above are cheap to run
but give a coarse approximation of the quality of the resulting knowledge. There-
fore, we introduce manual metrics here. They are more expensive to run as they
require human work but will provide a more precise evaluation.
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Manual Triple Metrics Inspired by [13], we would like to evaluate the quality of
the triple mapping according to three parameters:

– Correct mapping : Is the generated triple a correct mapping of the open triple,
i.e., is it semantically equivalent/related to the original triple?

– Correct prediction: Is the resulting triple true? Independently of whether the
mapping is correct, we would like to know if the resulting triple is accurate.
This can be useful for several reasons. First, even if the mapping is incorrect,
we would prefer that it does not hurt the quality of the knowledge base we
construct next. Second, as the input triple may be noisy and incorrect, we
would prefer that the system generates a correct statement rather than a
correct mapping. Finally, if such a property holds, it will prove that the
system has some cleaning properties that will help improve the quality of
the open KB.

– Correct open triple: Is the original open triple correct? This information will
help evaluate what the system predicts depending on the quality of the input
triple (see the point above).

Knowledge Base Level Metrics Precision and recall are crude automated heuris-
tics w.r.t. another data source. To evaluate the quality of novel CSK resources
meaningfully, we rely on the typicality notion of previous works [28,20]: We ask
humans how often a statement holds for a given subject. Possible answers are:
Invalid (the statement makes no sense) or Never / Rarely / Sometimes / Often
/ Always. Each answer has a score between 0 and 4 to compute a mean.

5.2 Baselines

Manual Mapping. For this baseline, we manually map the relations in an
open KB to relations in ConceptNet. It is inspired by an idea from [19]. Given a
predicate p in an open knowledge base, we ask humans to turn it into a predicate
p’ in ConceptNet (including inverse relations). There are many relations in an
open KB, so we only mapped the top relations. We also notice that, in many
cases, a triples (s, p, o) can directly be mapped to the triple (s, CapableOf, p
+ o). For example, (elephant, live in, Africa) could be mapped to (elephant,
CapableOf, live in Africa). If we cannot find a better translation, we default to
this translation. This approach is a simple rule system. In our case, we annotated
100 predicates for Quasimodo and Ascent++. By doing so, we cover 82% of
triples in Quasimodo and 57% of triples in Ascent++.

Rule Mining Given that no previous work made their implementation pub-
lic, we propose a rule mining approach inspired by previous works [29,30,6].
Our method requires a training dataset of mappings. In our case, this dataset
was constructed automatically (see Section 4.1) using the rule-based alignment
method. The LM-based alignment is inappropriate as the subject and object
must remain unchanged with the rule mining approach. Like in previous works,
we also used WordNet to get the type of the concepts.

We use AMIE [16] to mine Horn rules of the form B ⇒ r(x, y). The PCA
confidence proposed in AMIE yields poor results. Therefore, we used the stan-
dard confidence. Ultimately, we only keep rules with a confidence score greater
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than 0.5. An advantage of this method is that it provides high interpretability:
For each final generation, we can see which open triples were used to generate
it and which rules were applied.

Classification Task. For this baseline inspired by OpenKI [44], we want to use
a classifier to predict the ConceptNet relation of an open triple. Given a triple (s,
p, o) in an open KB, we want to predict a relation p′ (including inverse relations)
in ConceptNet such that (s, p′, o) would be in ConceptNet. To do so, we used a
classifier based on BERT [4] and trained it with a dataset created automatically
(see Section 4.1). Building this dataset by hand would be possible, but it would
take much time, and we would get problems getting enough examples for each
predicate. Besides, we will use the same training dataset with the translation
models.

5.3 Implementation

We implemented the baselines using Python3 (except for AMIE, written in Java).
For the generative LM, we used GPT-2-large given by Huggingface. We ran our
code on machines with NVIDIA Quadro RTX 8000 GPUs. Finetuning a lan-
guage model required a single machine for a maximum of two days. We used
three training epochs in our experiments. However, mapping an open KB to
ConceptNet was much longer and took up to 30 days on a single GPU. Never-
theless, the computations can easily be parallelized on several GPUs by splitting
the input data, which allows us to speed up the process. In our experiments, we
used Quasimodo and ASCENT++ as open KBs and mapped them to Concept-
Net commonsense relations. The code (github.com/Aunsiels/GenT) and data
(julienromero.fr/data/GenT) are available. .

6 Results and Discussion

6.1 Comparison With Baselines

Table 1 shows the results of the automated metrics for all baselines. The first
thing to notice is that the metrics seem “low”. We recall that they are in fact
relative to the open KB with the relations ignored, as mentioned in Section 5.1.
Therefore, they only have a relative interpretation. Even with the generous eval-
uation of the open KB, many metrics have a value of more than one, showing
a significant improvement, particularly for the recall. For precision, a value less
than one mainly comes with the growth of the KB size.

Our proposed approach clearly outperforms the various baselines. The basic
models are not flexible and do not tackle the challenges we mentioned earlier.
For manual mapping, the annotation process depends on humans and is not
trivial, as translating a predicate often depends on the context. The classifier
model performs better than the two other baselines when we look at the recall.
Still, we observe problems to generalize as Ra is low.

6.2 What is the best alignment method?

In Section 4.1, we presented two automatic alignment methods. The first is based
on a rule system, whereas the second aligns with the closest triples in a latent

https://github.com/Aunsiels/GenT
https://julienromero.fr/data/GenT
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KB Method Training data Ra Ra Pa Pa Pa@10k Pa@10k MRR MRR Size
ConceptNet KB itself - - - - - - - - - 232,532
Quasimodo KB itself - 2.54%∗ - 0.271%∗ - 4.79%∗ - 4.63e−6 ∗ - 5,930,628
Ascent++ KB itself - 1.63%∗ - 0.430%∗ - 3.13%∗ - 3.56e−6 ∗ - 1,967,126

KB Method Training data Ra,rel Ra,rel Pa,rel Pa,rel Pa,rel@10k Pa,rel@10k MRRrel MRRrel Size

Quasimodo

Manual Mapping [19] - 0.231 - 0.103 - 0.315 - 0.592 - 4,925,792
Rule Mining [29,30,6] Rule-based 0.161 0.006 0.509 0.020 0.365 0.004 1.259 0.002 689,146

Classifier [44] Rule-based 0.752 0.042 0.299 0.016 0.672 0.002 1.419 0.001 5,478,028
GenT@1 Rule-based 1.465 0.425 0.771 0.217 3.361 0.201 4.816 0.098 4,135,349
GenT@10 Rule-based 2.563 1.319 0.176 0.085 3.612 0.234 4.968 0.097 33,425,732
GenT@10 LM-based@10k 2.370 1.677 0.347 0.235 2.777 0.357 2.505 0.069 15,647,853
GenT@10 LM-based@10k-INV 2.787 1.933 0.241 0.162 1.939 0.660 1.333 0.216 25,798,594

T5-GenT@10 LM-based@10k-INV 1.843 1.020 0.123 0.065 1.094 0.236 0.670 0.070 33,874,204

Ascent++

Manual Mapping [19] - 0.287 - 0.205 - 0.415 - 0.351 - 1,228,001
Rule Mining [29,30,6] Rule-based 0.223 0.060 0.705 0.190 0.511 0.045 1.306 0.034 277,835

Classifier [44] Rule-based 0.663 0.180 0.340 0.105 0.649 0.026 0.784 0.016 1,722,441
GenT@1 Rule-based 1.706 0.785 1.147 0.523 2.722 0.396 2.949 0.278 1,277,065
GenT@10 Rule-based 3.055 1.933 0.260 0.160 3.073 0.454 3.989 0.500 10,193,040
GenT@10 LM-based@10k 3.497 2.546 0.444 0.319 3.450 1.096 4.494 0.216 7,000,135
GenT@10 LM-based@10k-INV 4.000 2.613 0.428 0.272 3.450 1.326 2.736 0.556 8,305,861

Table 1. Automatic (Relative) Recall And Precision (∗ ignores the predicates).

Dataset Sem. Rel. Open Correct Close Correct Both Correct
Rule-based 53.0% 85.3% 69.3% 64.8%
GenT@10k 45.7% 85.3% 75.7% 68.0%

GenT@10k-INV 55.3% 85.3% 77.3% 69.7%

KB Alignment Typicality
ConceptNet - 3.18
Quasimodo - 2.70
Quasimodo Rule-based 2.91
Quasimodo GenT@10k-INV 2.88
Ascent++ - 2.31
Ascent++ Rule-based 2.68
Ascent++ GenT@10k-INV 2.88

Table 2. Manual Alignment Evaluation On Quasimodo (left) and Typicality (right).
KB Method Dataset MRR R@1 R@5 R@10 P@1 P@5 P@10

Q
ua

si
m
od

o

Manual Manual 1.56e−2 1.51% - - 1.56% - -
Rule Mining Rule-based 5.96e−2 5.55% 17.8% 24.8% 5.68% 3.63% 2.52%
Classifier Rule-based 0.194 19.0% - - 19.4% - -
GenT@10 Rule-based 0.381 31.6% 46.7% 49.5% 31.1% 9.67% 5.12%
GenT@10 LM-based@10k 0.279 23.1% 34.5% 36.9% 23.1% 6.91% 3.69%
GenT@10 LM-based@100k 0.319 27.5% 38.0% 39.8% 27.5% 7.60% 3.98%
GenT@10 LM-based@1k-INV 0.211 15.4% 26.9% 34.6% 15.4% 5.38% 3.46%
GenT@10 LM-based@10k-INV 0.123 8.48% 17.1% 20.4% 8.77% 3.51% 2.09%

T5-GenT@10 LM-based@10k-INV 0.129 10.0% 16.6% 19.9% 10.1% 3.40% 2.05%
Table 3. Automatic Triple Alignment MRR, Recall And Precision (as usually defined).

First gen. At least one gen. All gens.
Alignment S O SO S O SO S O SO
Rule-based 36.8% 48.5% 26.6% 57.9% 76.2% 48.3% 25.0% 35.3% 12.4%

LM-based@1k 27.5% 21.0% 7.37% 45.3% 41.7% 17.9% 22.3% 12.3% 2.37%
LM-based@1k-INV 38.7% 53.6% 22.4% 55.2% 77.5% 42.0% 27.0% 31.9% 5.84%

Table 4. SO Conservation For Quasimodo.

space using embeddings. We refer to the first as Rule-based and the second as
LM-based@K(-INV) when we used top K statements of the complete dataset
obtained by aligning each open triple with a close triple (INV means we align
each close triple with an open triple).

Do they allow the model to generate accurate alignments? Table 3
gives the performance of the model on a test dataset derived from the complete
dataset. Therefore, it is not the same for all models and depends on the alignment
method. Still, it gives us some valuable insights. We can see that the Rule-based
alignment is the easiest to learn. This is due to the strong correlation created
by the rules between the open and the closed triples. According to the metrics,
the INV methods perform worse than non-INV ones. A reason might be that
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the INV alignment has more diversity: A triple from ConceptNet can appear
only once in the dataset (we align each close triple with a single open triple).
Therefore, it might be harder to learn.

Table 4 shows the conservation of the subject S and object O during the
generation phase. We want to observe if they remain the same for the first gen-
eration, for at least one generation, or for all generations. The rule-based system
encodes these constraints and should therefore outperform the other baselines.
However, interestingly, we observe that the INV methods have excellent conser-
vation, competing with the rule-based system (except for SO conservation), and
largely beating non-INV alignments. This is surprising as it contains no prior
constraint. It is a property that we expect from a good alignment method as we
do not want the generated close triples to diverge from the original triples.

All these evaluations are automatic and only approximate the model’s ca-
pabilities. We additionally performed manual annotations of the generations to
check if the generated close triples are correct alignments (according to seman-
tic relatedness, as discussed in Section 5.1). We sampled 300 triples from the
top 10k triples in Quasimodo and looked at the first generation for three mod-
els. The results are presented in Table 2. We observed that the rule-based and
INV alignments have similar performances for generating related close triples.
Only the non-INV model underperforms, which matches what we noticed for
SO conservation. Here, semantic relatedness is relatively low because it is quite
constraining. However, we observe that the generated triples share most of the
time part of the subject or object with the original triple.

What is the impact of the training dataset size? We sampled the top-
K samples with K ∈ {1k, 10k, 100k} in the training dataset and picked the
best size. We observed that the model performs best for 10k samples. Note that
finding the optimal size would take too much time as, with these metrics, we
need to generate the entire mapping. The testing dataset used in Table 3 gives
a faster heuristic for finding a good K.

6.3 What are the properties of our model?

In Section 1 and Section 3, we described properties we want our new system to
have, such as high recall and precision, flexibility thanks to the LM, and good
generalization. We will investigate these advantages here in more detail.

What are the advantages of using a generative translation model?
When we use traditional models like manual mapping, rule mining, or classifiers,
we encounter problems coming from their lack of flexibility: The subject and
object often remain unchanged, the mapping is often unique, mistakes are not
corrected, etc. With a generative translation model, we can tackle some of these
challenges. In Table 5, we present examples of nice and unique properties we
observed in the final results. This shows that using LMs with open KBs lets us
get the best of both worlds. LMs are more flexible and contain knowledge that
is not easily extractable [23]. The open KB helps guide the LM.

Can we improve the quality of an open KB with a generative transla-
tion model? To evaluate the evolution of the quality of an open KB, we asked



14 Romero and Razniewski

Property Open triple Generated closed triple
The mapping depends on
the context (elephant, has_property, decorated) (elephant, ReceivesAction, decorated)
Adapt the subject/object (elephant, be in, africa killed) (elephant, AtLocation, africa)

(doctor, write, prescription) (doctor, CapableOf, prescribe)
(doctor, be in, training) (doctor, AtLocation, medical school)

(doctor, keep, from getting sick) (doctor, CapableOf, keep patient healthy)
Inversion subject/object (elephant, have, tusks) (tusk, PartOf, elephant)
Correct the subject/object (elephant, have, ivory tusks answers) (elephant, HasA, ivory tusk)
Put the predicate in the object (doctor, wear, coat) (doctor, CapableOf, wear coat)
Good triples from nonsense (doctor, has_property, as a career) (doctor, HasProperty, well respected)
Generate related triples (doctor, wear, mask) (doctor, CapableOf, wear lab coat)
Turn s/o into standard form (apartment, be in, nyc) (apartment, AtLocation, new york city)

Table 5. Examples of Mappings from GenT.

humans to annotate the typicality of statements. We sampled 300 statements out
of the top 10k statements for each KB and then computed the mean typicality.
The results are reported in Table 2. As we can see, the generative translation
methods significantly improve the quality of the statements. The best-performing
alignment method seems to depend on the open KB. As expected, ConceptNet
still outperforms our approach as it was manually generated. However, it does
not have the same scaling capabilities.

Can GenT generalize across open KBs? Table 6 shows the results of models
trained on one open KB, Quasimodo or Ascent++, and used to generate a
closed KB from triples in another open KB. We chose the LM-based@10k-INV
alignment. In most cases, the original model trained with the same open KB
outperforms the foreign model. This is understandable as the data sources and
processing steps used to generate the open KBs differ, and therefore the style
of the open triples is different. So, the model might have difficulties adapting.
Still, the new results are close to the original ones, showing that we can have the
reusability of our models with entirely new data. Finally, some metrics seem less
impacted by the change of the original open KBs. From what we can see, the
ranking capabilities, expressed through Pa and MRR, vary but not necessary
for the worst. It shows that the generation and the scoring stage allow selecting
good close triples, whatever the new data is.

KB Method Ra,rel Ra,rel Pa,rel Pa,rel Pa,rel@10k Pa,rel@10k MRRrel MRRrel

Quasimodo GenT@1 1.35 0.81 0.77 0.46 0.73 0.76 4.28 0.98
Quasimodo GenT@10 2.44 1.77 0.18 0.13 2.92 0.84 4.41 0.96
Ascent++ GenT@1 1.95 0.77 1.28 0.50 3.17 0.38 4.69 0.08
Ascent++ GenT@10 3.62 1.96 0.30 0.16 3.87 0.44 5.37 0.10

Table 6. Performances when evaluating with a model trained for another KB.

Generalization To Sentences In Table 7, we took sentences or paragraphs
from several sources (Wikipedia, New York Times, GenericsKB [2]) and used our
model trained on Quasimodo with the LM-based@10k-INV alignment method.
Surprisingly, the model can correctly extract knowledge from sentences. This
could lead to several interesting future works: Information extraction directly
from sentences, aligning sentences rather than open triples, or commonsense
inference.
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Source First Generation
Elephants are the largest existing land animals. (elephants, DefinedAs, largest land animal)
A lawyer or attorney is a person who practices law. (lawyer, CapableOf, represent client)
Elon Musk Races to Secure Financing for Twitter Bid. (elon musk, CapableOf, bid for twitter)
South Africa’s Government Shifts to Rebuilding After (people, CapableOf, die from flooding)
Disastrous Flooding. Nearly 4,000 homes have been
destroyed and more than twice as many damaged in the
Durban area after a week of punishing rains and mudslides.
The death toll is now 448, with about four dozen people
unaccounted for.
Some air pollutants fall to earth in the form of acid rain. (air pollution, CapableOf, cause acid rain)

Table 7. Examples of Generations From Sentences.

6.4 How does GenT compare with direct LM generation methods?

As previous works like LAMA [23] suggested, a powerful language model could
serve as a knowledge base. Then, aligning this “knowledge base” with a target
knowledge base requires finetuning the language model. COMET [15] finetunes
GPT-2 [25] to generate triples in ConceptNet. Here, we consider two kinds of
input: A subject alone (denoted as COMET S) or a subject/predicate pair (desig-
nated as COMET SP). COMET initially accepted only subject/predicates pairs.
However, it makes the generation of relevant triples harder as it is not always
possible to associate all subjects to all predicates (for example, “elephant” and
“HasSubEvent”). Then, we generate ten candidate statements for each subject
or subject/predicate pair in ConceptNet. They all come with a generation score
that we use for an overall ranking. In addition to the raw COMET, we used
the translation models described above to generate a KB (GenT COMET). The
inputs are the same as COMET. We additionally parse the output to keep the
triple on the right of the [SEP] token.

It turns out that our translation model is a clever scheme in between tra-
ditional IE-based KB construction and a general COMET-style generation. It
overcomes the limitation of IE that requires a text as input (it can generate
more triples without requiring that each is seen in input text). It also tackles
some COMET challenges by providing more robust guidance on what to generate
based on the input triples.

In Table 8, we observe that GenT consistently outperforms COMET in all
metrics but Ra. This is easily understandable: As we do not require alignments,
we can get 5 to 10 times more training data than the translation models. These
data points are guaranteed to represent different ConceptNet triples (not neces-
sarily the case for the translation models). However, if we look at R̄a, the trans-
lation models generalize better. Besides, we have a ranking capability lacking
in the original COMET. This could be explained by the fact that the transla-
tion models first try to generate an open triple closer to natural language and
then map this triple to ConceptNet. Therefore, it can better leverage its prior
knowledge to focus on what is essential.

7 Conclusion
We studied the problem of mapping an open commonsense knowledge base to a
fixed schema. We proposed a generative translation approach that carries novel
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KB Method Dataset Ra Ra Pa Pa Pa@10k Pa@10k MRR MRR

Quasimodo GenT COMET S Rule-based 1.09% 0.222% 3.72% 0.137% 13.3% 1.66% 2.59e−5 2.96e−7

Quasimodo GenT COMET SP Rule-based 2.33% 0.803% 0.403% 0.782% 11.3% 1.24% 8.15e−6 2.66e−7

Quasimodo GenT COMET S LM-based@10-INV 0.657% 0.285% 2.20% 0.975% 7.14% 2.86% 9.59e−6 5.20e−6

Quasimodo GenT COMET SP LM-based@10-INV 1.71% 1.07% 0.261% 0.163% 6.46% 3.12% 7.16e−6 3.61e−7

Ascent++ GenT COMET S Rule-based 0.977% 0.358% 3.10% 1.15% 12.5% 3.90% 2.63e−5 2.68e−6

Ascent++ GenT COMET SP Rule-based 2.15% 1.11% 0.345% 0.177% 12.6% 4.14% 1.11e−5 6.77e−6

Ascent++ GenT COMET S LM-based@10-INV 0.825% 0.326% 2.74% 0.326% 8.94% 3.50% 6.44e−6 1.26e−6

Ascent++ GenT COMET SP LM-based@10-INV 2.09% 1.10% 0.340% 0.178% 10.7% 4.69% 8.74e−6 3.52e−6

- Comet S ConceptNet 1.11% 0.144% 2.96% 0.401% 7.65% 0.891% 6.30e−6 3.04e−7

- Comet SP ConceptNet 2.87% 0.504% 0.179% 0.504% 3.36% 0.510 1.43e−6 1.28e−7

Table 8. Direct Generation Comparison, non-relative metrics

properties such as flexibility and cleaning ability. In the process, we compared
different ways to create training data and analyzed their advantages and dis-
advantages. Finally, we experimentally verified the strengths of the proposed
approach both in automated and manual evaluation.

We provided the first solution for the mapping task, and there is still room
for improvement. For example, we could study how to adapt state-of-the-art
translation models. We could also check how the output of the generative model
can be constrained to provide closed triples that are not too far from the original
triples. Also, as we observed that LM-based models have cleaning capabilities,
we could include a negative sample in the training dataset to predict cases where
a triple has no translation (e.g. because it is incorrect).
Supplemental Material Statement: We provide mappings to ConceptNet of Quasi-
modo and Ascent++ as additional resources (julienromero.fr/data/GenT), in
addition to the code (github.com/Aunsiels/GenT) and input data. We hope
they will help improve tasks such as commonsense question answering that cur-
rently use ConceptNet, which can sometimes be problematic as some of these
datasets are constructed from ConceptNet (e.g., CommonsenseQA [32]).

Limitations Our work is based on the GPT-2 model, which is not considered
state-of-the-art when this paper is released. Using newer and bigger language
models raises additional challenges: Computation time (currently approx. one
month on a single GPU with a beam search), training complexity (bigger mod-
els have more weights, do not fit on a single GPU, and take more space during
training), or hyperparameters hard to finetune. In this paper, we laid the foun-
dations of a new task, and we believe more complex architectures can improve
upon our baselines.

In this article, we studied the case of commonsense knowledge bases that
generally contain uncanonicalized entities. Our study could be extended to other
kinds of knowledge base.
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