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Abstract. The task of Knowledge Graph Completion (KGC) entails
inferring missing relations and facts in a partially specified graph to
discover new knowledge. However, the discrepancy in the targets be-
tween the training and inference phases might lead to in-depth bias and
in-breadth bias during inference, potentially resulting in incorrect out-
comes. In this work, we conduct a comprehensive analysis of these bi-
ases to determine their extent of impact. To mitigate these biases, we
propose a novel debiasing framework called Causal Inference-based De-
biasing Framework for KGC (CIDF) by formulating a causal graph and
utilizing it for causal analysis of KGC tasks. The framework incorporates
In-Depth Bias Mitigation to diminish the bias on feature representations
by measuring the bias during inference, and In-Breadth Bias Mitiga-
tion to increase the distinguishability between feature representations
by introducing a novel loss function. We evaluate the effectiveness of
our proposed method on four benchmark datasets - WN18RR, FB15k-
237, Wikidata5M-Trans, and Wikidata5M-Ind, achieving improvements
of 2.5%, 0.9%, 3.2%, and 1.5% on Hit@1 respectively. Our results demon-
strate that CIDF leads to significant improvements on these datasets,
with more substantial gains observed in the biased settings on WN18RR
achieving a 3.4% improvement in Hit@1.

Keywords: Knowledge Graph Completion · Causal Inference · Link
Prediction.

1 Introduction

Knowledge Graphs (KGs) are structured representations of factual knowledge,
currently often represented by triples consisting of head entities, relations, and
tail entities, as well as their descriptions. They are widely applied in various
fields, such as question answering [10,49], dialogue systems [14,25], recommender
systems [39, 43], and so on. Some examples of available KGs include WordNet
[24], Freebase [1], and DBpedia [19]. Building high-quality KGs often relies on
human-curated structured or semi-structured data. Although many resources
have been expended to refine the KGs, they remain incomplete.

Knowledge Graph Completion (KGC) is a vital task for constructing and
enhancing KGs, as it involves inferring missing factual triples. Existing KGC
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methods generally consist of three steps: firstly, formulating a score function to
measure the plausibility of triples; secondly, learning representations of entities
and relations from established knowledge graphs by optimizing the scores of all
factual triples; finally, using the score function to measure the plausibility of
the missing triples (either a relation or entity is unknown) given the rest of the
information [46], such as TransE [2], RotatE [35], HAKE [50], and ConvE [8].
In addition, due to the powerful semantic acquisition capability of Pre-training
Language Models (PLMs) [9,12,32], some KGC approaches use PLMs as Knowl-
edge Bases to leverage the semantic information from the descriptions of entities
and relations such as KEPLER [40] and SimKGC [38].

However, since the training strategy for KGC tasks aims to obtain feature
representations of entities and relations that fit the original knowledge graph, the
process’s positive and negative selection depends solely on the original knowledge
graph’s structure, which can often increase the correlation among factual triples’
entities and relations while decreasing the correlation between those that are not
within factual triples. In other words, within the knowledge graph (KG), the ho-
mophily and structural equivalence of labeled nodes and edges cause feature
representations to be more sensitive to connection patterns among structurally
equivalent or homophilic nodes and edges during the training process [13]. This
often leads to spurious correlations in the features, creating a preference for cer-
tain connection patterns during the inference process. Additionally, the entities
associated with a large number of other entities may be more likely to receive
preferences in KG inference. In this study, we term the preference as Struc-
ture Preference, which results in the dissemination of correlation through two
distinct mechanisms: in-depth diffusion and in-breadth aggregation.
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Fig. 1. A simple example from dataset FB15k-237 [36] for in-depth bias. Diffusion
means the correlation diffusion along known links.

In the context of in-depth diffusion, the phenomenon may introduce a bias,
which arises from the diffusion of correlation along relations between distantly
connected entities. As shown in Fig. 1, there will be a relatively high correlation
between Michael Caine and Bruce Willis after training. As a result, the predic-
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tion for the triple (Michael Caine, FilmActorOf, ?) is inaccurately classified as
Lopper or Die Hard instead of the ground-truth prediction of Get Carter. We
refer to this phenomenon as in-depth bias.

In the context of in-breadth aggregation, the entities tend to aggregate in-
formation from the neighboring entities and their corresponding relations. As a
consequence of the training objective, the feature representations of entities will
display a higher degree of similarity if there are similar bipartite graph structures
between two head entities in a certain relation and a large overlap of tail entities
for this relation in the knowledge graph. This phenomenon, termed in-breadth
bias, results in prediction biases during inference. As shown in Fig. 2, Michael
Caine and Joseph Gordon-Levitt have similar topological structures, and if we
want to extend the FilmActorOf relation for these two entities, their outcomes
will exhibit a high degree of similarity, which could potentially lead to errors.
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Fig. 2. A simple example from dataset FB15k-237 [36] for in-breadth bias. Aggrega-
tion means the correlation aggregation through known links.

In this paper, inspired by causal inference [29], we formulate a causal graph
to model the KGC task and introduce corresponding causal methods to mitigate
in-depth bias and in-breadth bias, called Causal Inference-based Debiasing
Framework for KGC (CIDF). For in-depth bias, inspired by debiasing meth-
ods of counterfactual analysis [27,31,41], we leverage the trained representations
suffering from the bias to compute individual in-depth bias for each representa-
tion and global in-depth bias for all representations, using them to obtain the
debiased representations. We call this method In-Depth Bias Mitigation (DBM).
Additionally, for addressing in-breadth bias, we introduce a novel loss function
in the training phase to reduce the similarity among feature representations,
enhancing the distinguishability of different entities and relations. We call this
method In-Breadth Bias Mitigation (BBM).

We evaluate the effectiveness of our proposed CIDF on four commonly used
datasets, namely WN18RR, FB15k-237, Wikidata5M-Trans, and Wikidata5M-
Ind, through a series of experiments. By applying CIDF to SimKGC [38], we
observe improved performance across all evaluation metrics, including MRR,
Hit@1, Hit@3, and Hit@10, with improvements of 2.5%, 0.9%, 3.2%, and 1.5%,
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respectively, over the Hit@1 baseline on the aforementioned datasets. Notably,
our framework shows greater improvement in a biased setting.

2 Related Work

2.1 Knowledge Graph Completion

Knowledge graph completion (KGC) involves automatically inferring missing or
uncertain facts in a given knowledge graph. Different models have been proposed
to tackle this problem, such as translational models like TransE [2], TransH [42],
and RotatE [35], which interpret relations as translation or rotation operations,
and tensor decompositional models like RESCAL [28], DistMult [44], and Com-
plEx [15,18,37], which treat KGC as a tensor factorization problem. More recent
approaches, such as LP-BERT [20], KEPLER [40], and SimKGC [38], attempt
to exploit textual information. However, the majority of the above models fo-
cus on acquiring feature representations to fit original KGs and fail to consider
in-depth bias and in-breadth bias.

2.2 Bias in Knowledge Graph

Entity and relation representations in a knowledge graph are obtained by sta-
tistically fitting existing facts and summarizing their distributional character-
istics [17]. Consequently, the representation may be influenced by biases in-
troduced through the use of statistical methods. Several works have emerged
with a focus on mitigating biases in knowledge graphs. Some of these works in-
clude [21,34,51], which concentrate on mitigating the degree bias; [4,11], which
address gender bias reduction; [22, 33], which consider sensitive information in
KGs; and [16], which aims to detect biases automatically. In this work, we con-
centrate on in-depth bias and in-breadth bias, and propose a method to mitigate
them.

2.3 Causal Inference

Causal inference is a statistical technique that enables the identification of causal
relationships between variables in complex systems. This method has found ex-
tensive applications in various fields, including semantic segmentation [47], video
grounding [26], stable learning [48], text classification [31], medical Q&A [45],
and information extraction [27,41]. Recently, causal inference has also been em-
ployed in KGC, such as KGCF [5] which utilizes causal inference for data aug-
mentation on NBFNet [53] to achieve improvement. Additionally, GEAR [22]
and CFLP [52] have introduced counterfactual inference in KGC, demonstrat-
ing substantial enhancements in performance. In this work, we employ causal
inference to mitigate in-depth and in-breadth biases present in KGC tasks.
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3 Preliminaries

This section intends to offer a comprehensive overview of the notation employed,
the inference process of knowledge graph completion methods, and the specific
setting selected for this study.

3.1 Notation

We denote a Knowledge Graph as G = (E,R, T ), where E represents the set of
entities, R refers to the set of relations, and T is the set of triples that constitute
the knowledge graph. A triple consists of a head entity, a relation, and a tail
entity, (head entity, relation, tail entity), where the head entity is the initiator
of the relation and the tail entity is the recipient of the relation, in which the
order of the two entities cannot be reversed. To simplify the description, h, r,
and t are used to represent head entity, relation, and tail entity, respectively,
with (h, r, t) denoting a triple.

The evaluation protocol for entity ranking has gained widespread adoption
in the field of KGC, which aims to rank all entities based on their relevance
to a given entity and relation pair. Specifically, KGC tasks include tail entity
prediction, represented as (h, r, ?), and head entity prediction, represented as
(?, r, t). To reformulate (?, r, t) as (t, r−1, ?), where r−1 is the inverse relation of
r, we can focus solely on tail entity prediction task [23].

3.2 Inference Process of KGC Methods

KGC methods propose various scoring functions to optimize entity and relation
representations. These methods strive to learn representations that capture the
underlying semantic information in the knowledge graph, facilitating more ac-
curate predictions of missing factual triples. To offer a thorough understanding
of these methods, we present an overview of several KGC approaches below.

TransE [2] is a traditional translational method for representation learning in
knowledge representation, which considers relation as translational operations.
To achieve this, the optimization target in the training phase is the minimization
of the distance between the expected tail entity and the translated head entity
after applying the relation representation, expecting h+r = t established finally
if (h, r, t) is a missing factual triple. In RotatE [35], relations between entities
are modeled as rotation operations within complex space, with the primary goal
of satisfying the equation h ⊙ r = t where ⊙ denotes the Hadamard product.
SimKGC [38] employs the BERT [9] model to extract the fusion feature of the
head entity and relation, denoted as fhr, and the representation of the tail entity,
denoted as ft. The objective of SimKGC is to maximize the similarity between
fhr and ft. Table. 1 presents a comprehensive overview of the score functions
utilized by the KGC methods outlined above.

To guarantee a clear causal analysis and modeling process, we opt for the
SimKGC framework as the fundamental setting due to its simplicity and effec-
tiveness. Employing this framework as a foundation allows us to build upon it
for comprehensive analysis and modeling.
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Table 1. Score functions for KGC methods. Where cossim(·) means cosine similarity
function, and ↑ indicates that higher values are better.

Methods Score Function ↑
TransE [2] −||h+ r − t||l1/l2
RotatE [35] −||h⊙ r − t||
SimKGC [38] cossim(fhr, ft)

4 Methodology

4.1 Bias Analysis

The majority of KGC techniques rely on crafted scoring functions to act as opti-
mization targets for learning entity and relation representations. Typically, these
methods partition the data into two distinct groups: positive samples, which cor-
respond to triples that present in the knowledge graph, and negative samples,
which correspond to non-existent triples, and then they seek to maximize the
aggregate score of all positive samples while minimizing the aggregate score of
all negative samples, as shown in Eq. 1. This training process yields a learned
representation of entities and relations that can then be used to determine the
missing factual triples in the KG. By optimizing the scoring functions and learn-
ing robust entity and relation representations through machine learning, KGC
methods have achieved significant success in accurately and efficiently inferring
missing information to complement KGs.

argmax
RepE ,RepR

∑
(h,r,t)∈T

f(eh, er, et) −
∑

(h,r,t)/∈T

f(eh, er, et) (1)

Where f(·) denotes the score function, RepE and RepR represent representation
sets of E and R respectively; T denotes factual triples of the training set; eh, et ∈
RepE are the representations of entities h and t; er ∈ RepR is the representation
of relation r.

However, optimizing the aforementioned objective may cause issues in KGC
tasks. Specifically, the absent triples in the original knowledge graph are treated
as negative samples, leading to their scores being diminished in the training
process. This not only affects non-factual triples but also impacts missing factual
triples. Additionally, the entities will be correlated during training if there are
paths connecting them in the KG. Consequently, during the inference phase,
given a task (h, r, ?), the entities connected with h in the original KG will more
likely receive high scores, while ineligible entities will receive relatively lower
scores, resulting in an unfair issue as shown in Fig. 1. Although addressing this
bias may be hard for the KGC methods which solely rely on the structure of
KGs, such as TransE [2], it can be measured and mitigated in methods that
leverage descriptions of entities and relations as additional information.
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Furthermore, it’s noteworthy that the aforementioned phenomenon may also
present an additional issue when dealing with entities that exhibit similar topo-
logical structures within a KG. Consequently, given two tasks with the form
(h1, r, ?) and (h2, r, ?), where h1 is topologically similar to h2, it is reasonable to
expect that the outcomes of these tasks will exhibit significant similarity. Fig. 2
shows a simple example of this issue, we call it in-breadth bias in this paper.
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Fig. 3. The statistic of WN18RR where the x-axis represents relation names, noting
that the x-axis for (a) and (b) is the same. (a) Quantity statistics for each relation in
the dataset where the y-axis means the number of triples in train, validation, and test
sets respectively. The red y-axis corresponds to the value of Train. (b) Bias statistic
for each relation in the dataset where the y-axis means bias rate in different settings.

In order to assess the degree of bias presented in KGs, we conduct a statistical
analysis on datasets commonly used in KGC tasks. Specifically, we focus on
the WN18RR dataset, which has been widely employed in KGC research with
relatively few relations, as shown in Fig. 3. Firstly, we conduct an analysis of
the quantity statistics and discovered a significant long-tail distribution among
the relations in the dataset. In particular, as shown in Fig. 3(a), we observe
that while the hypernym relation appears in tens of thousands of triples in
the training set, the similar to relation appears only in tens of triples, and
the proportions of relation numbers are similar in the validation and test sets.
Moreover, to measure the degree of in-depth bias in KG datasets, we employ a
function to quantify the bias rate of each relation as follows:

BiasCounthopri =
∑

(h,r,t)∈Rest

I((h, r, t) /∈ FT ∧ C(h, t, hop) ∧ r = ri) (2)
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SampleCountri =
∑

(h,r,t)∈Rest

I((h, r, t) /∈ FT ∧ r = ri) (3)

BiasRatehopri = BiasCounthopri /SampleCountri (4)

Where hop ∈ {1, 3, 5} denotes whether two entities are {1, 3, 5}-hop neighbors;
C(h, r, k) denotes an indicator function that the value is 1 if h and t are k-hop
neighbors, 0 if not; I(·) represents indicator function that the value is 1 if the
condition holds, 0 if not; ri ∈ R denotes a specific relation; FT denotes the
factual triples of the testing set; Rest means the prediction results of the testing
set from SimKGC framework; r−1 is viewed as the same relation type as r. In a
nutshell, bias rate refers to the ratio of prediction tasks that may be impacted
by in-depth bias during inference.

As depicted in Fig. 3, a significant proportion of relations in the WN18RR
datasets may be affected by the issue of in-depth bias. This issue is especially
pronounced for specific relations, such as member meronym and has part in the
3-hop setting. In the 5-hop context, these bias rates exhibit a greater increase.

4.2 Causal Analysis

As a foundation of causal analysis, we select SimKGC’s framework [38], which has
a relatively simple structure in inference, referring to hr as a fuse representation
for h and r which is utilized to measure the rank of all entities. As shown in
Fig. 4, we formulate a causal graph [29,30] for KGC tasks. The causal graph is
denoted as a directed acyclic graph which consists of a variable set and a directed
edge set, which can provide a comprehensive visualization of causal relationships.

In the causal graph, we consider the dependencies of feature representations
of hr and t on both the training set (KG), which comprises the factual triples
(topological structures) of the original KG, and the textual descriptions (Shr

and St), which define as the semantic information of hr and t. Furthermore, the
score calculation (SC) of a given pair of hr and t is accomplished by utilizing
their feature representations (Fhr and Ft).

The causal graph demonstrates that feature representation learning is af-
fected not only by the structure of the knowledge but also by the semantic
information of entities and relations. The biases that arise from in-depth and in-
breadth both relate to the path Fhr ← KG→ Ft. Consequently, the mitigation
of the above biases can be achieved by exerting influence over the aforementioned
path.

4.3 In-Depth Bias Mitigation

The cause of in-depth bias in KGC tasks lies in the structural equivalence pref-
erence during training, where the correlation between entities and relations will
gradually diffuse along links of KGs. Consequently, entities that are distant from
each other may result in incorrect outcomes due to high correlations. This bias
can be reduced by modifying the feature representations of hr according to the
structure preference during inference.
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KG: Knowledge Graph Structure

Shr(St): Semantic Information of hr(t)

Fhr(Ft): Feature Representation of hr(t)

SC: Score of t for hr

Fhr

KG

Ft

SC

Shr St

Fig. 4. The causal graph of knowledge graph completion. KG can be seen as the
training set; Shr and St are the text description of corresponding entities and relations.
It should be noted that unobserved biases which can not be observed and interfered
with are ignored in this figure.

Inspired by Counterfactual Analysis [27,29,31,41], it incorporates a coun-
terfactual scenario into the debiasing process for a given task. The construction
of the scenario serves as a guiding factor in mitigating bias in the inference. To
this end, we construct a counterfactual inference scenario for the KGC task and
present a factual inference scenario, the original inference scenario of KGC tasks,
for comparison:

• Factual Inference: Given (h, r, ?), what will the missing entity be if seeing
the original KG?

• Counterfactual Inference: Given (h, r, ?), what will the missing entity be
if seeing the original KG and knowing that in-depth bias may cause incorrect
outcomes?

In order to enable the hr to effectively "recognize" the correlated tail enti-
ties (t) caused by the structure preference, we leverage the phenomenon that
the triples consisting of correlated entities and relations tend to exhibit rela-
tively high scores while other triples demonstrate relatively low scores. Through
leveraging the aforementioned phenomenon, it becomes possible to measure and
quantify the extent of in-depth bias that exists for hr and t during the infer-
ence process. Following this way, we introduce two measurable in-depth biases,
namely, individual in-depth bias and global in-depth bias, and their de-
scription are as follows:

• Individual In-Depth Bias (IDB): The bias caused by the path KG →
Fhr indicates the overall feature of the set of t that can be correlated with
hr during training. It is different for each hr.

• Global In-Depth Bias (GDB): The bias caused by path KG→ Ft indi-
cates the overall bias of the KG that the entities correlated with more other
entities are predisposed to attain higher scores. This bias has uniqueness for
each dataset.

To assess the individual in-depth bias, we employ hr to assign weights to
all entities, and then calculate the weighted average of these weights to serve as
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the bias feature:

Fhr
IDB = norm(σ(

t∑
E

whr
t ∗ Ft))

whr
t = exp(ŵhr

t )/
i∑
E

exp(ŵhr
i )

ŵhr
t = cossim(Fhr, Ft)

(5)

Where Fhr
IDB means the individual in-depth bias of hr; cossim(·) means cosine

similarity function; i and t means a entity in E; σ(·) means nonlinear activation
function tanh; norm(·) denotes the L2 normalization function.

In order to access the global in-depth bias, the bias feature is represented
by the average feature of all entities which represents the overall preference of
the dataset:

FGDB = 1
N

t∑
E

Ft (6)

Where FGDB means the global in-depth bias of the KG and N means the number
of entities.

Finally, Fhr
IDB and FGDB are used to compute the debiasing result of Fhr:

F db
hr = Fhr − λIDBF

hr
IDB − λGDBFGDB (7)

Where F db
hr is the debiasing feature of hr after in-depth bias mitigation; λIDB and

λGDB are hyperparameters. F db
hr , replacing Fhr, is used to predict the missing

entity.

4.4 In-Breadth Bias Mitigation

The in-breadth bias obtained during inference can be attributed to the training
strategy adopted. In a certain relation, there are similar bipartite graph struc-
tures and a large overlap of tail entities. Specifically, those hr or t with similar
topological structures are likely to acquire similar feature representations.

The bias results in the path Fhr ← KG → Ft, as illustrated by the causal
graph Fig. 4. The main cause of this bias lies in the fact that the training strat-
egy employed does not sufficiently account for the potential overlap in features
between hr or t that are structurally similar.

To reduce this bias, causal intervention [29] is used to block paths KG→
Fhr and KG → Ft by keeping Fhr and Ft as constants during training. But
it is impossible in KGC tasks due to the necessity of learning feature represen-
tations through the structure of KGs. Therefore, we reduce the restriction of
the aforementioned method and mitigate the impact from Fhr ← KG → Ft by
respectively lowering the similarities between representations of hr and between
those of t during training. In practice, we introduce a novel loss function that
quantifies the level of similarity among feature representations within a batch,
and minimize it to reduce in-breadth bias (BB) during the training phase as
follows:

LBB = 1
2N

i∑
N

j∑
N

(cossim(F i
hr, F

j
hr) + cossim(F i

t , F
j
t )) (8)
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Where N means the sample number of one batch during training; F i
hr and F i

t

mean the i − th Fhr and Ft respectively in the batch; cossim(·) means cosine
similarity function. LBB is used as an extra loss in the original training phase.

5 Experiment

5.1 Datasets

We conduct experiments to evaluate the performance of our method CIDF in-
cluding In-Depth Bias Mitigation (DBM) and In-Breadth Bias Mitiga-
tion (BBM) on three widely used KGC datasets: WN18RR [8], FB15k-237 [36],
and Wikidata5M1 [40]. The data statistics of each dataset are shown in Table. 2.
WN18RR and FB15k-237 are revised by WN18 and FB15k datasets [3], respec-
tively, which suffer from test set leakage. For the Wikidata5M dataset, there
exist two distinct settings available, namely transductive and inductive. In the
transductive setting, the set of entities is identical between the training and
inference phases, whereas, in the inductive setting, entities encountered during
training will not appear during inference.

Table 2. Statistics of datasets we use in experiments. Wikidata5M-Trans and
Wikidata5M-Ind denote the transductive and inductive settings of Wikidata dataset
respectively.

Dataset #Entity #Relation #Taining #Valid #Test
WN18RR 40,943 11 86,835 3,304 3,314
FB15k-237 14,541 237 272,115 17,535 20,466
Wikidata5M-Trans 4,594,485 822 20,614,279 5,163 5,163
Wikidata5M-Ind 4,579,609 822 20,496,514 6,699 6,894

5.2 Evaluation Metrics

Following previous KGC works, we evaluate the performance of our proposed
method with the entity ranking task. In practice, for each task (h, r, ?) during test
phase, it is required to predict the ranks of all entities as the result of t given h
and r, which is similar for task (t, r−1, ?). For evaluating the overall performance
of datasets, we use four evaluation metrics as follows: Mean Reciprocal Rank
(MMR), and Hit@k (k ∈ {1, 3, 10}), where MRR is determined by the average
reciprocal rank of all test triples and Hit@k is calculated from the proportion
of correct entities ranked among the top-k. Additionally, in main comparative
experiments, MRR and Hit@k are computed following the filtered setting [3]
which excludes the factual triples when ranking.
1 https://deepgraphlearning.github.io/project/wikidata5m

https://deepgraphlearning.github.io/project/wikidata5m
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5.3 Baselines

For comparison, we select a series of strong baselines as follows:

• KGC methods that integrate head entity and relation as a whole in score
computing, including SimKGC [38], Hitter [6], and LP-BERT [20].

• KGC methods that treat relations as operations in score computing, includ-
ing TransE [2], RotatE [35], DistMult [44], and KEPLER [40].

5.4 Hyperparameters

Given that our proposed method, CIDF, is primarily applied within the SimKGC
framework, we maintain the existing hyperparameters setting within SimKGC,
which aims to ensure that the comparison is consistent and fair. The two en-
coders for hr and t are both the pre-training language model called bert-base-
uncased [9]. The descriptions in both hr and t are restricted to a maximum
token number of 50. Any portion of the descriptions that exceeds this limit will
be truncated. Within the hyperparameters of CIDF, we conduct grid searches
on λIDB and λGDB with ranges [0.1, 1] at 0.1 intervals. The training epochs for
datasets WN18RR, FB15k-237, and Wikidata5M are 50, 10, and 1 respectively.
In the training phase, the models are run on 4 V100 GPU (32G) with batch size
1024.

Table 3. Main results for datasets WN18RR and FB15k-237. "CIDF" refers to our
proposed method Causal Inference based KGC Debiasing Framework;"-BB", "-GDB"
and "-IDB" refer to the result after mitigating In-Breadth Bias, Global In-Depth Bias,
and Individual In-Depth Bias respectively. SimKGC is the setting SimKGCIB+PB+SN

[38].

Method WN18RR FB15k-237
MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

TransE(2013) [2] 22.2 1.2 40.1 52.9 32.9 23.0 36.8 52.7
DisMult(2015) [44] 44.0 39.6 45.2 53.6 30.1 22.1 33.8 48.3
RotatE(2019) [35] 47.7 42.9 49.4 57.2 33.5 23.7 37.3 53.1
LP-BERT(2022) [20] 48.2 34.3 56.3 75.2 31.0 22.3 33.6 49.0
Hitter(2021) [6] 49.9 45.7 51.3 58.7 37.2 27.8 40.8 55.8
CIDF
SimKGC(2022) [38] 66.5 58.6 71.5 80.2 33.6 24.9 36.2 51.1
-BB 67.8 60.6 72.0 80.3 33.8 25.3 36.6 51.4
-BB-GDB 67.9 60.9 72.1 80.4 34.4 25.6 37.1 52.3
-BB-GDB-IDB 68.1 61.2 72.2 80.4 34.6 25.8 37.4 52.7

5.5 Main Results

The results of the KGC tasks conducted on WN18RR and FB15k-237 datasets
are presented in Table. 3. It indicates that the CIDF applied to the SimKGC
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framework enhances all evaluation metrics across both two datasets. In compar-
ison to SimKGCIB+PB+SN, applying CIDF for WN18RR shows improvements of
1.6%, 2.6%, 0.7%, and 0.2% in MRR, Hit@1, Hit@3, and Hit@10, correspond-
ingly. Similarly, for FB15k-237, applying CIDF offers enhancements of 1.0%,
0.9%, 1.2%, and 1.6% in MRR, Hit@1, Hit@3, and Hit@10, respectively.

Table 4. Main results for dataset Wikidata5M.

Method Wikidata5M-Trans Wikidata5M-Ind
MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

TransE(2013) [2] 25.3 17.0 31.1 39.2 - - - -
RotatE(2019) [35] 29.0 23.4 32.2 39.0 - - - -
KEPLER(2021) [40] 21.0 17.3 22.4 27.7 40.2 22.2 51.4 73.0
BLP-ComplEx(2021) [7] - - - - 48.9 26.2 66.4 87.7
BLP-SimplE(2021) [7] - - - - 49.3 28.9 63.9 86.6
CIDF
SimKGC(2022) [38] 35.8 31.3 37.6 44.1 71.4 60.9 78.5 91.7
-BB 36.8 32.2 38.2 44.7 72.6 62.4 79.8 91.7
-BB-GDB 37.4 32.9 39.0 45.5 - - - -
-BB-GDB-IDB 38.7 34.5 40.2 46.7 - - - -

Furthermore, we present the performance results of our proposed method
on the Wikidata5M dataset, presented in both the transductive and inductive
settings, as depicted in Table. 4. In the Wikidata5M-Trans setting, our method
displays a notable increase of 2.9%, 3.2%, 2.6%, and 2.6% improvements in MRR,
Hit@1, Hit@3, and Hit@10, respectively. On the other hand, in the Wikidata5M-
Ind setting, since the entities utilized during the training and inference phases
are mutually exclusive, we only conduct in-breadth bias mitigation (-BB) in this
setting and achieve enhancements in MRR, Hit@1, and Hit@3 by 1.2%, 1.5%,
and 1.3%, respectively.

In summary, the experimental results presented above indicate that our pro-
posed method, Causal Inference based KGC Debiasing Framework (CIDF), ef-
fectively enhances the performance of KGC tasks.

6 Analysis

In this section, we aim to further illuminate the effectiveness of our proposed
method by carrying out a series of analytical experiments from various perspec-
tives.

6.1 Fine-Grained Analysis

We conduct a series of fine-grained analytical experiments on WN18RR, a knowl-
edge graph with a relatively smaller number of relations with well-defined label
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descriptions. We calculate the performance metrics for each relation specifically,
using the mean reciprocal rank (MRR), as our primary evaluation metric.

Table 5. The fine-grained results of WN18RR basing SimKGC framework. "Bias
Rate" is computed by Eq. 4; "Prop." denotes the proportion for each relation in
the training set; "overall" denotes measuring the results for all samples while "k-
hop" (k ∈ {3, 5}) denotes measuring the results only for the samples with k-hop in-
depth bias; "w/o." and "w." denote the results without and with CIDF respectively;
"avg. Hit@1" denotes the average Hit@1 for all relations; ↑ (↓) means the result is
better when the value is higher (lower). Relation abbreviation: "derivational .. form"
= "derivationally related form", "synset .. of" = "synset domain topic of", "member ..
region" = "member of domain region", and "member .. usage" = "member of domain
usage". ♢♡♣♠ are the markers for facilitating locating the specific part of this table
in the paper.

Relation Prop.(%)
MRR ↑ Bias Rate ↓

overall♢ biased♡ 3-hop♣ 5-hop ♠

w/o. w. w/o. w. w/o. w. w/o. w.
hypernym 39.9 48.9 50.0 37.2 38.1 20.2 18.8 34.8 32.6
derivationally .. form 34.3 90.3 93.2 89.4 92.3 13.2 10.8 13.6 11.3
member meronym 8.1 58.9 62.8 52.0 56.2 41.9 38.7 52.2 48.6
has part 5.5 45.9 49.0 41.0 48.2 49.4 47.1 63.4 61.6
synset .. of 3.9 61.7 63.2 36.1 40.6 7.9 6.1 12.3 9.6
instance hypernym 3.6 66.8 71.4 55.9 63.2 13.1 9.0 17.2 12.3
also see 1.8 67.7 64.5 69.9 65.9 30.4 26.8 41.1 37.5
verb group 1.2 92.8 96.5 84.2 88.0 7.7 5.1 7.7 5.1
member .. region 0.8 46.6 48.7 17.6 22.4 34.6 30.8 80.8 76.9
member .. usage 0.8 53.2 60.7 32.4 35.6 37.5 33.3 62.5 62.5
similar to 0.1 100.0 100.0 100.0 100.0 0.0 0.0 0.0 0.0
avg. - 66.6 69.1 56.0 59.1 23.3 20.6 35.0 32.6
avg. Hit@1 - 60.0 63.4 47.7 52.1 - - - -

Conventional Results. In the filtered setting, our analysis, as presented in Ta-
ble. 5 ♢, demonstrates that after applying our proposed method CIDF, nearly all
of the relations exhibit performance improvements. More specifically, on average,
we observe an enhancement of 2.5% and 3.4% for MRR and Hit@1 respectively,
which underscores the effectiveness of CIDF. Furthermore, when considering the
symmetric relation also see, whereby (A, also see,B) and (B, also see,A) are
both factual triples when one of them holds, there is a notable decrease of 3.1%
in MRR that may be attributed to the effects of DBM. To further investigate
this performance drop, we conduct a supplementary experiment consisting of
solely using BBM of CIDF without DBM. As a result, we observe a significant
increase in the MRR of alse see relation, which improves from 64.5% to 67.8%
(+3.2%).
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Biased Results. In order to assess the efficacy of our proposed method in
tacking in-depth bias, we conduct performance measurements exclusively on the
samples which are potentially susceptible to this bias. Table. 5 ♡ shows the
results in the biased setting on the performance of relations. In the biased setting,
we only evaluate the hr that exists in both the training and inference phases. By
applying CIDF, there are improvements of 3.2% and 4.4% on average MRR and
Hit@1 respectively, which means CIDF is more effective in the biased setting.

Bias Rate Results. To assess the efficacy of CIDF in bias mitigation, bias rates
for individual relations in 3-hop and 5-hop settings are measured. The results,
presented in Table. 5 ♣ and ♠, demonstrate a reduction in bias rates for most
relations by applying CIDF. Specifically, the average bias rates decrease by 2.7%
and 2.4% in the respective hop settings.

Wikidata5M-TransFB15k-237WN18RR

-1

0

1

2

3

0 0.1 0.2 0.3 0.4

(a) MRR

-1

0

1

2

3
3.5

0 0.1 0.2 0.3 0.4

(b) Hit@1

Fig. 5. Detail results of MRR and Hit@1. The x-axis means the value of λIDB ; the
y-axis represents the difference in performance compared with λIDB = 0.

6.2 Effect of In-Depth Bias Mitigation

For the better adaptation of DBM to different datasets, we use two hyperparame-
ters to control the degree of bias mitigation (Eq. 5). Specifically, we conduct beam
searches for λIDB and λGDB to gain the optimal setting for different datasets
as depicted in Eq. 5. To effectively determine the optimal settings for various
datasets, we employ beam searches for λIDB and λGDB with ranges [0.1, 1] at
0.1 intervals. As shown in Fig. 5, the optimal λIDB is 0.1 for WN18RR and
FB15k-237 datasets and is 0.3 for Wikidata5M-Trans. For λGDB , the optimal
values of all datasets used in this paper are 1.0.

7 Conclusion and Future Work

In this paper, we present a bias analysis of Knowledge Graph Completion tasks
and identify two biases, in-depth and in-breadth, during the training phase that
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may lead to erroneous outcomes during inference. To mitigate these biases, we
conduct a causal analysis and formulate a causal graph for KGC tasks. Building
on this, we propose a novel debiasing framework, the Causal Inference-biased
KGC Debiasing Framework, which incorporates In-Depth Bias Mitigation and
In-Breadth Bias Mitigation. Applying CIDF results in significant improvements
on three benchmark datasets, namely WN18RR, FB15k-237, and Wikidata5M,
particularly in the biased setting. In the future, we intend to conduct a more
comprehensive analysis of KGC task biases and develop a general causal debi-
asing framework applicable to various KGC methods directly.

Supplemental Material Statement: Source code, datasets and results are available
at https://github.com/HomuraT/CIDF.
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