Compact Encoding of Reified Triples using HDTr

1,2[0000—0001—7015—7896
[I, Thomas

0000—0002—2683—827X]

Jose M. Gimenez-Garcia
2[0000—0002—6883—0348 ; 5 3
[I, Javier D. Fernandez?!
Miguel A. Martinez-Prieto?[0000—-0003—4418—-561X]

Gautrais , and

1 Group of Intelligent and Cooperative Systems, Univ. of Valladolid, Spain
2 Univ. de Lyon, CNRS, UMR 5516, Lab. Hubert-Curien, Saint-Etienne, France
3 Data Science Acceleration (DSX), F. Hoffman-La Roche, Basel, Switzerland
4 Department of Computer Science, Univ. of Valladolid, Spain
jm.gimenez.garcia@gsic.uva.es, thomas.gautraisQuniv-st-etienne.fr,
javier_d.fernandez@roche.com, miguelamp@uva.es

Abstract. Contextual information about a statement is usually repre-
sented in RDF knowledge graphs via reification: creating a fresh ‘anchor’
term that represents the statement and using it in the triples that de-
scribe it. Current approaches make the connection between the reified
statement and its anchor by either extending the RDF syntax, resulting
in non-compliant RDF, or via additional triples to connect the anchor
with the terms of the statement, at the cost of size and complexity.
This work tackles this challenge and presents HDTr, a binary serialization
format for reified triples that is model-agnostic, compact, and queryable.
HDTr is based on, and compatible with, the counterpart HDT format,
leveraging its underlying structure to connect the reified statements with
the terms that represent them. Our evaluation shows that HDTr im-
proves compression and retrieval time of reified statements w.r.t. several
triplestores and HDT serialization of different reification approaches.

Keywords: Knowledge Graphs - RDF - Reification - Contextual Data
- HDT - Compression - Compact Data Structures

1 Introduction

Knowledge Graphs (KG) are increasingly being used to build innovative data-
driven applications (semantic search, question answering, product recommen-
dation, etc.) thanks to their ability to store and communicate the semantics
of real-world knowledge. KGs represent information as a graph of entities and
relationships, typically modeled as a directed labelled graph due to its rela-
tive succinctness [22]. The Resource Data Framework (RDF) [7] has been used
extensively to model such KGs in terms of <subject>, <predicate>, <object>
statements, also called triples. Thus, each statement establishes the relationship
(labeled in the predicate) between the two resources declared in the subject and
object values. However, it does not natively allow information (such as validity
time, provenance, certainty...) about the triple itself to be expressed [28].

The most common solution to express this information is to reify the state-
ment; i.e., to introduce a new element that represents the statement, which we

2 J.M. Gimenez-Garcia et al.

call the anchor. Then, this anchor is used as subject and/or object in a set of
triples that describe the statement, which we refer to as the contertual annota-
tion. Existing approaches to represent reified statements fall in two categories.
The first approach can be seen as applying a reification function to the triple
and its contextual annotation, to obtain a new RDF graph where the origi-
nal statement is replaced by a set of triples connecting the anchor to both the
terms of the statement and the contextual annotation (e.g., RDF reification [4]).
However, the introduction of different sets of triples per reified statement can
degrade performance by increasing the size and complexity of the graph, and
introduce interoperability problems between the results of two or more contex-
tualization functions. A second alternative is to extend the syntax (and possibly
the semantics) of RDF to cover the reification needs, at the cost of obtaining
non-compliant RDF graphs (e.g., RDF-Star [17]).

The management of reified statements is therefore an emerging challenge with
increasingly large KGs, which account billions of triples that are subject to reifi-
cation; e.g. Wikidata contains more than 100 million different subjects and more
than 1.2 billion statements, from which at least 900 million are reified.® A sim-
ple but effective approach to deal with this complexity in regular KGs (without
reification) is knowledge graph compression, i.e., “encoding a KG using less bits
than its original representation” [25]. Managing compressed KGs leads to more
efficient storage and lower transmission costs due to space savings. In addition,
some compressors, such as HDT (Header-Dictionary-Triples) [11], allow efficient
access to triples without prior decompression due to their self-indexed internal
structures. Unfortunately, none of these solutions natively support reification. A
practical approach is to compress the graph produced by a reification function
at the cost of encoding potentially much larger datasets, with the consequent
impact that this has on space requirements and, in particular, the retrieval time
of a reified statement and its anchor.

This paper presents HDTr, an extension of HDT for compressing and query-
ing reified triples. This approach enhances HDT components to link statements
to their anchors, without adding new triples nor adapting to a new syntax. The
resulting HDTr compressed files comply with the HDT standard, allowing HDTr
to be used in applications that consume HDT (see Section 4 for some exam-
ples). Our evaluation comparing HDTr with an HDT-based deployment, and
with triplestores using named graphs to encode contextual annotations, shows
that HDTr outperforms both approaches in terms of space and performance.

The rest of the paper is organized as follows. Sections 2 and 3 provide a basic
background on reification and review practical solutions to manage reified KGs.
Section 4 explains the foundations of HDT, which is extended into HDTr in
Section 5. A comprehensive evaluation is provided in Section 6, and we conclude
and provide future work in Section 7.

® https://wikidata-todo.toolforge.org/stats.php

Compact Encoding of Reified Triples using HDTr 3

“Genoa”@en

ex:name

ex:name
“Christopher Columbus” @en

ex:name

“Catalonia”@en

ex:date
“1446 y
.ex:wikidata
“1451”Axsd:year

;
i
i @ ex:bornin ex:Genoa ex: colBorninGen1451
i
i
|

ex:date

f \
' ex:bornin) '
' ex:Catalonia ex: colBorninCat ' ex:colBorninCat
i i
i i

Fig. 2: Example of abstract reification

2 Reifying RDF statements

RDF can only represent binary relations between two entities, but does not
natively allow to express information about the relations themselves [28]. Figure
1 shows an RDF graph composed of five statements that describe Christopher
Columbus. Tt gives his name and two birthplaces (using the predicate ex:bornIn),
which correspond to those given by two information sources. So, what is his real
birthplace? We cannot answer this question with the information we have.

In order to state something about the context of a statement itself, it is
necessary to resort to reification. Reification stands for the mechanism by which
a new term (that we call the anchor) is used to represent the statement [18].
The anchor is used as subject and/or object in other triples to provide the
contextual annotation (e.g., the source of the information, a temporal or spatial
dimension, etc.). Figure 2 shows an abstract representation of the reification
of two of the triples in Figure 1, one of them associated with an anchor and
the other with two (left), and their contextual annotations (right). As can be
seen, the triple that says Columbus was born in Genoa is now qualified with two
different contextual annotations, each indicating a different date, and both using
Wikidata as their source. On the contrary, for the statement that Columbus was
born in Catalonia, there is actually no information in the contextual annotation
(the anchor ex:ccBornInCat is not connected to anything).

Current reification approaches can be categorized into two main families.
On the one hand, there are approaches that apply a reification function, i.e., a
function that maps a triple and a contextual annotation to a new graph, where
the original statement is replaced by a set of triples that connect the anchor
with both the terms of the statement and the contextual annotation. For exam-
ple, traditional RDF reification [4] replaces the statement (s,p,o) by the set of

4 J.M. Gimenez-Garcia et al.

Table 1: Triples introduced by each reification function

RDF Reification ‘ N-Ary Relations ‘ Singleton Properties ‘ NdFluents
(a,rdf:subject,s) (s,p1,a) (s,a,0) (Sa,nd:contextualPart0f,s)
(a,rdf:predicate,p) (a,p2,0) (a,rdf:singletonProperty0f,p) (0a ,nd:contextualPart0f,o)
(a,rdf:object,o0) (p,subjectProperty,ps) |(a,rdf :type,rdf:SingletonProperty) |(sa,nd:contextualExtent,a)
(a,rdf:type,rdf:Statement) | (p,objectProperty,p,) (0a,nd:contextualExtent,a)

(sa,rdf:type,nd:ContextualPart)
(0a,rdf :type,nd:ContextualPart)
(a,rdf:type,nd:ContextualExtent)

triples (a,rdf:subject,s), (a,rdf:predicate,p), and (a,rdf:object,o0), where a
is the anchor term that will be used to refer to the statement in the contextual
annotation. Other such approaches are n-ary relations [31], the singleton prop-
erty [30], the companion properties [13], NdFluents [16], and NdProperties [15].
Each approach generates a different number of triples to implement reification,
as shown in Table 1, which lists the triples added by RDF reification, n-ary
relations, singleton property, and NdFluents (evaluated in Section 6).° On the
other hand, other approaches extend the RDF syntax and/or semantics to link
the statements and their corresponding anchors. For example, RDF-Star [17]
extends the definition of term to allow for a triple itself to be used as subject or
object in other statements. Other such approaches are Notation 3 [2] or using
Named Graphs [6], with each named graph containing only a reified statement.
Finally, note that RDF-Star and N3 follow a “quoted triples” model, where
the triple (or a unique identifier thereof) can be used as a term in the subject
or object position of another statement. This means that a statement can have
at most one contextual annotation. On the other hand, reification functions and
Named Graphs follow a model of “contextualized statements”, allowing a triple to
be represented by different anchors, and therefore to have an indefinite number
of different contextual annotations for it, each one in a different context. Some
approaches, such as NdFluents, go even further, creating contextual versions of
individuals to allow inference for sets of statements within the same context.

3 Related Work on Efficient Reification Representation

Efficiently representing KGs containing reified statements remains an open chal-
lenge. Hernandez et al. [19, 20] compare the management of several reification
approaches by different triplestores, concluding that using named graphs is the
most efficient solution. Moreover, triplestores commonly support named graphs
natively, hence this is a relatively simple and practical approach, at the cost of
losing named graphs for other purposes (e.g., versioning). On the other hand,
there are some triplestores (such as AnzoGraph”, Blazegraph®, GraphDB?, or

6 Note that the triples that indicate the types of some individuals can be considered
as optional, since they can be inferred by the semantics of the vocabularies.

" https://cambridgesemantics.com/anzograph/

8 https://www.blazegraph.com/

9 http://graphdb.ontotext.com/

Compact Encoding of Reified Triples using HDTr 5

Stardog!?) which are able to manage the RDF-Star [17] extension, so they can
be used to store and query reified statements modeled in this way.

HDTQ [12] allows multiple named graphs to be managed and queried in
compressed form. Like our approach, HDTQ extends HDT, but in this case, it
proposes a Quad Information component that indexes whether a particular triple
appears in a particular graph, allowing quad pattern queries (triple patterns
augmented with graph information) to be performed efficiently in-memory.

TrieDF [32] also proposes an in-memory architecture to handle RDF data
augmented with any type of metadata. For this purpose, it regards tuples of
arbitrary length: <subject>, <predicate>, <object>, <a;> ... <a,>, where <a;>
are annotations, and models them using tries [3]. The resulting representation
is able to compress shared prefixes (of any length) between tuples, and supports
fast prefix-based retrieval. TrieDF shows competitive performance for managing
statements with 1 and 2 annotations, consolidating a first step toward managing
arbitrary levels of metadata in an application-agnostic manner.

Finally note that all of the approaches mentioned in this section follow the
“contertualized statements” model, except for triplestores that support RDF-
Star, which implements the “quoted triples” model.

4 HDT

HDT (Header-Dictionary-Triples) is a framework originally designed to opti-
mize the storage and transmission of RDF data [11], and then enhanced to
support efficient querying of triple patterns [23]. This versatility has allowed
HDT to be adopted as backend for many tools in the Semantic Web community,
such as Triple Pattern Fragments for client-based triple pattern querying over
the Web [34], in natural language query answering systems such as WDAqua-
corel [8], or in SPARQL endpoints in commodity hardware [36]. It has also been
used for data archiving [1, 35|, encoding one of the largest datasets from the
LOD cloud (with more than 28 billion triples) [10], and for efficiently computing
the PageRank summarization of datasets [9], among other applications.

HDT transforms the RDF graph into two main elements, illustrated in Figure
3, which are then independently encoded to remove their respective redundan-
cies: (i) the dictionary, which maps each RDF term used in the dataset (i.e., its
vocabulary) to a unique integer ID, and (ii) the ID-graph, which replaces the
original terms in the RDF graph by their corresponding IDs in the dictionary.
That is, each triple is transformed into a tuple of 3-integer IDs (ID-triples):
<ids,idp,id,>; where idg, id,, and id, are the IDs of the subject, predicate, and
object in the dictionary, respectively.

HDT Dictionary. HDT proposes a practical dictionary implementation, called
Four Section Dictionary, where each section SO, S, O, and P is independently
sorted and compressed using Front Coding [24]. In this way, each section has its
own mapping to exclusively identify its terms:

10 https://www.stardog. com/

6 J.M. Gimenez-Garcia et al.

. string 1 sunjects: DD @

@@ O B[1101
: I I /\ Predicates:
1 J1 0 \1, __ ..~ S | 2212 I
3 “Catalonia” @en o P € Y P\ N i N P el
a | Christopher columbus'@en © |10 S SE K S 8 1_1_0_1_1
A | j: L A\ tﬁ L EETEEN
; ex:bornin (o) 9 (5 X 1) (4] S, 35124

ex:name
Underlying Representation
Bltmap Trlples

ex:Catalonia
ex:Genoa

D ictionary

Fig.3: HDT Dictionary and Triples components

— The section SO maps shared subjects-objects (i.e., terms that play both
subject and object roles) to [1,]SO|], where |SO| is the number of RDF
terms that appear as subject and object in the set of triples.

— The section S maps single subjects (not appearing as objects) to [|SO| +
1,]S0|+|S|], where | S| is the number of RDF terms that act only as subjects.

— The section O maps single objects (not appearing as subjects) to [|SO| +
1,]50|+]0]], where |O| is the number of RDF terms that act only as objects.

— The section P maps predicate to [1,|P|], where |P| is the number of RDF
terms that appear as predicate in the triples.

The number of RDF terms in each section and how they are serialized are stored
in the HDT Header, together with other HDT metadata. Figure 3 (left) shows the
resulting Dictionary for the example given in Figure 1. Note that the mapping
ID-term is implicitly encoded by the position of the term in its section.

The Dictionary is encoded using compact data structures [29], which self-
index each section and efficiently resolve two main operations:

— locate(term, role) returns the unique ID for the given term and role (subject,
predicate, or object), if their combination exists in the dictionary.

— extract(id, role) returns the term for the given ID and role, if their combi-
nation exists in the dictionary.

HDT Triples. They provide an interface for accessing the ID-graph using
SPARQL triple patterns [33]. A practical implementation, called Bitmap Triples,
transforms the ID-graph into a forest of three-level trees, where each tree is
rooted by a subject ID with its adjacency list of predicates in the second level
and, for each of them, the adjacency list of related objects in the third (leaf)
level. Figure 3 (middle) illustrates this organization.

In practice, the entire SPO forest is then encoded using compact data struc-
tures [29] to ensure efficient data retrieval in minimal space. On the one hand,
two integer sequences are used to encode each level of the forest: S, for predi-
cate IDs and S, for object IDs. On the other hand, two bitsequences are used to
encode the shape of each tree: B, encodes the number of branches hanging from
each subject, and B, encodes the number of leaves in each branch. This is easily
done by simply marking the last children of the parent node (in the previous
level) with 1 bits and the rest with 0 bits. This is illustrated in Figure 3 (right).

Compact Encoding of Reified Triples using HDTr 7

Note that this representation allows each triple to be identified by the position
of its object in .S,, a fundamental feature for building HDTr, as described in the
next section.

All structures used in Bitmap Triples support positional access to their val-
ues, and bitsequences provide two additional operations, which are essential for
traversing the SPO forest:

— ranky (B, i) counts the number of occurrences of a € {0,1} in BJ[1, 4], for any
1 < i < n; rankq(B,0) = 0.

— selecty(B,j) returns the position of the 5" occurrence of a € {0,1} in B,
for any 1 < j < n; select,(B,0) = 0 and select,(B,j) = n+ 1, if 5 >
rankq(B,n).

Bitmap Triples is able to resolve the four SPARQL triple patterns binding the
subject!!: (s,p,0), (s,p,?0), (s,7p,0), and (s,?p,?0). First, it translates the
bound terms in the triple pattern to their corresponding IDs: <id,,idp,id,>,
using the Dictionary locate(term,role) method, and then traverses the id,*"
tree, as follows:

1. Predicates related to the subject id, are located at Sp[ps, pyl, pe = selecti (B,
ids—1)+1 and p, = select(Bp, ids). If the predicate is bound, id,, is binary
searched in S, [ps, py], returning pos,, if there is any triple connecting idy and
idy (px < posp < py).

2. Objects related to a pair <id,,id,> are located at S, [0, 0], 05 = selecty(Bo,
pos, — 1) + 1 and oy = select;(B,,posy). If the object is also bound, id, is
binary searched in S, [0, 0,], returning pos, if the triple <id,,idp,id,> exists
in the graph (o, < pos, < o).

Finally, the original terms in the returned triples are retrieved using the existing
extract(id, role) method in the Dictionary.

Note that the pattern (?s,?p,?70), which returns all existing triples, can also
be resolved by traversing all trees sequentially and retrieving the original terms
from the Dictionary. To resolve the remaining triple patterns with unbound sub-
ject (i.e., (?s,p,0), (?s,p,70), and (?s,?p,0)), HDT-FoQ (HDT Focused on
Querying) [23] extends Bitmap Triples with additional structures, which ensure
efficient predicate- and object-based retrieval while keeping the Triples compo-
nent in compressed form.

5 Extending HDT for reified triples: HDTr

In this section we present HDTr, a binary serialization for reified statements.
HDTr takes advantage of the structure of the Triples component in HDT, where
an RDF statement is implicitly identified by the position of its object in S,,
to connect reified statements with their anchors in the Dictionary. HDTr files
are backward compatible with HDT, so HDTr can be easily adopted by existing
HDT-based applications that need to manage reified triples.

11 2 i used to indicate variables in the triple pattern.

8 J.M. Gimenez-Garcia et al.

Table 2: Five Section Dictionary configuration

Section IDs
SO =SOruUS0O4 [1,]50]], where SO = |SOr| + [SO4|
S =SruUusSa [|SO +11,]SO + S|], where |S| = |S7|+ [Sa|
O =07rU04 [|SO + 11,]SO + O|], where |O| = |Or| + |0 4|
P = Pr, (1,]P], where |P| = | Pr|
A =50,U85,U04UU4 [1,|A|], where |A‘=|SOA|+‘SA‘+|OA‘+|UAH

5.1 The HDTr Dictionary

Reified statements include terms used as anchors, which can then be used in
the subject and/or object position in contextual annotation triples. The HDTr
Dictionary extends the logical model of the Four Section Dictionary into a Five
Section Dictionary, adding a new section for the anchors, referred to as A, while
preserving SO, S, O and P, which now encode the terms used in regular and
contextual triples, according to their respective roles.

The Five Section Dictionary is implemented in practice as two subdictionar-
ies. On the one hand, the Triples Dictionary rearranges all terms that do not
play as anchors in a Four Section Dictionary: SOt, St, O, and Py.'2. This
component is essential to ensure HDT and HDTr compatibility. On the other
hand, the Anchors Dictionary manages only anchor terms, so they are organized
in sections for shared subject-objects, subjects and objects: SOa, Sa, and Ojy,
as well as U for “unused” anchors (i.e., not used as terms in any triple).'3. At
the physical level, each section of both subdictionaries is also compressed using
Front Coding [24], as in HDT, so it is lexicographically sorted before encod-
ing it. This decision also ensures that locate(element, role) and extract(id, role)
operations are performed efficiently in all dictionary sections.

Figure 4 (left) shows the resulting Five Section Dictionary and its correspond-
ing implementation as two subdictionaries for our example. Note that all anchor
terms (shown in Figure 2) are organized in the section corresponding to their
role in the contextual annotation triples, while the Triples subdictionary con-
tains the same terms as the HDT Dictionary had for the non-reified statements
(Figure 3) plus the additional terms appearing in the contextual annotation.

5.2 The HDTr Triples

The Triples component must handle the need of compactly connecting reified
statements to their anchors. This can be done by identifying each triple by the
position of its object in S,; i.e., the object of the it" triple is encoded at S,[i].
This HDT feature allows reification to be efficiently implemented in the Triples
component by adding two compact data structures: (i) a bitsequence B,, that
marks with 1 bits the positions corresponding to reified triples (B,[i] = 1, iff
the i triple is reified); and (ii) a sequence P, that encodes anchor IDs (in the

12 The subscript T is added to the names of the sections to indicate that they belong
to the Triples Dictionary
13 The subscript A refers to the Anchors Dictionary

Compact Encoding of Reified Triples using HDTr 9

st DQAD ® ©
B[11110101
DB @ 5 6 Predicates:
‘ L‘ /\ s[33221344
11 1 A\t o\t e
P R B [1111001111
T’ | objects:
RN IS P PR s,[7956122834
Triples Dictionary 00006006 000 ;
- s c‘i 1?100 5 s, | 2[00 0011000
o :
000 3
Underlying Representation
Bitmap Tripies
Dlemmry

Anchor Dictionary

Fig. 4: HDTr Dictionary and Triples components

Dictionary) for all reified triples. At the physical level, B, is implemented as B,
and B, in BitmapTriples, while P, is implemented as a compact permutation [27]
that provides two basic methods:

— m(P,, j): returns the value at P,[j]; it allows to efficiently retrieve the anchor
ID for the reified statement j**.

— 7 Y(P,, k): returns the position at where value k is stored in P,; it allows
to efficiently find the (reified) statement connected to the anchor with ID k.

It is worth noting the particular case where a triple <idy,id,,id,> is annotated
with two or more different anchors. In this situation, each pair (triple, anchor)
is considered as a different statement, and id, is encoded in S, as many times
as anchors are related to the triple.

Figure 4 (right) illustrates the HDTr Triples configuration that encodes the
statements from the running example. The “Underlying Representation” shows
how (the 3"¢, the 4! and the 6'") statements are logically connected to their
anchors, while the Anchors level (at the “Bitmap Triples” representation) illus-
trates its physical encoding; note that B,[3] = By[4] = B,[6] =1 and Pa[l] =3
because the first reified triple is connected to anchor 3, Pa[2] = 2 because the
second reified triple is connected to anchor 2, and so on. For example, the high-
lighted statement states that Christopher Columbus (subject 5) was born in
(predicate 1) Genoa (object 2), and it is identified with ex:ccBornInGen1446 (an-
chor 1) and ccBornInGen1451 (anchor 2).

5.3 Querying HDTr

HDT files can be loaded as HDTr files, so that all SPARQL triple patterns can be
resolved efficiently. However, the HDT retrieval methods needs to be extended
to query reified statements, i.e., a query containing a triple pattern (¢p) and an
anchor (a), where any component of ¢p and a can be a variable. Algorithm 1
describes the proposed method for querying reified statements'4, with two main
flows depending on whether the anchor is provided (Line 1-5) or not (Lines 6-18).

14 For the sake of simplicity, we assume that ¢tp and a have previously mapped to IDs
and, conversely, the returned resultset is then mapped to their corresponding terms.

10 J.M. Gimenez-Garcia et al.

Algorithm 1 query(tp, a)

1: if bound(a) then 10: posq < ranki(Ba, post)
2 POSa — 7r71(Pa, a) 11: idq 7(Pa, posa)

3 pos; < select1(Baq, posa) 12: r.add(t,idq)

4 t + check(pos,tp) 13: else

5: return(t, a) 14: r.add(t)

6: else 15: end if

7 T + search(tp) 16: end for

8 fort €T do 17: return r

9 if (Ba[pos:] = 1) then 18: end if

Let us suppose that we search a statement with the subject ex:Columbus
and identified by the anchor ex:ccBornInGeni1451 (tp =< 5,7p,70 >,a = 2).
Intuitively, we need to navigate the tree in Figure 4 (right) from bottom (once
we locate the anchor) to top (the subject). In line 2, the anchor ID is used to find
its single occurrence in P,: pos, < 7 (P,,2) = 3 and then, in line 3, its reified
statement is obtained from B,: pos; < selecti(B,,3) = 7. The pos; is then used
to traverse up the tree encoding the triple (as in HDT [23]), checking that the
variables are satisfied (line 4); all variables in ¢p are bound to their corresponding
IDs (?p = 1,70 = 2) and the result is returned (line 5), as (< 5,1,2 >;2).

In the second case, let us suppose that we search the birth place of Christopher
Columbus and all related annotations (tp =< 5,1, 70 >, a =7a). In this situation,
we proceed top to bottom in Figure 4 (right), so ¢p is first searched (line 7) using
the original HDT methods [23]. Note that, in HDT, for each matching triple ¢
(line 8), its position, pos;, is immediately known, e.g., <5,1,1> has position
5. Thus, the algorithm iterates over each matching triple and checks if it is
reified (line 9); otherwise the triple is returned with no anchor value (line 14).
In our example, three statements are annotated: B,[5] = B,[6] = B,[7] = 1. In
line 10, the anchor of the triple is identified in B, (for the first triple, pos, +
ranky (B, 5) = 1) and its ID is retrieved from P, in line 11 (id, < 7(P,,1) = 3).
Finally, the matching triple and anchor are added to the resultset, in our example
(<3,1,1>;3),(<3,1,2 >;1),(< 3,1,2 >; 2).

6 Evaluation

HDTr extends the theoretical specification of HDT to incorporate reified triples,
including a dictionary interface separate from the implementation, and retrieval
algorithms. The implementation itself makes several design choices: using two
subdictionaries, leveraging the structure of Bitmap Triples by using the object
positions to reference triples, using a permutation as a bidirectional link between
anchors and triples, and adapted serialization and query algorithms. In this
section, we analyze the performance of HDTr'® and we evaluate the impact of

15 We use a HDTr prototype implemented in C++. See the supplemental material
statement at the end of the document.

Compact Encoding of Reified Triples using HDTr 11

Table 3: Summary of NELL2RDF datasets

(in # millions of statements, GB, and percentage)

Full Data Half Data Quarter Data
File # Size Prop. # Size Prop. # Size Prop.

Reif Teifca || 1,069.6 239.2 8.00% | 551.7 123.1 8.16% | 284.2 63.3 8.23%

reify 113.7 21.5 75.26% | 59.7 11.3 75.37% | 31.0 5.8 75.42%
N-Ary T€ifca || 10127 2201 2.84% | 521.8 117.8 2.91% | 268.7 60.5 2.93
reify 56.8 11.4 50.52% | 29.9 6.0 50.75% | 155 3.1 50.85

qp reifca || 1,041.1 2344 5.49% | 536.7 1206 5.61% | 276.4 620 5.65%

reify 85.3 16.7 67.01% | 44.8 87 67.16% | 23.2 4.5 67.23%

NdF TeifCA 1173.3 254.0 16.14% | 600.7 130.0 15.65% | 308.3 66.6 15.40%

reify 217.5 36.3 87.07% | 108.7 18.1 86.47% 55.1 9.2 86.17%

Quads TeifCA 984.0 224.6 2.18% | 506.6 115.4 2.90% | 260.8 59.3 2.92%

reifp 28.1 6.9 100% | 14.7 3.6 2.90% 76 1.8 2.92%

these decisions against a selected state-of-the-art baseline. For that, we use data
from NELL [5, 26], a system that learns categories and relations from the Web,
keeping track of their provenance. Specifically, we use NELL2RDF [14], which
extracts the beliefs of NELL and their provenance contextual information into
RDF. In order to test the impact of the proportion of reified triples, we create
two evaluation scenarios: (i) we keep in the dataset all triples extracted from
NELL, including their contextual annotations, to ensure a low proportion of
refied statements w.r.t. the total number or triples (reifca scenario); and (ii)
we remove the contextual annotations, leaving only the reified triples, to achieve
a high proportion of reified statements (reify scenario). All KGs are generated
using the reification functions provided by NELL2RDF: RDF reification (Reif),
n-ary relations (N-Ary), singleton properties (SP), and NdFluents (NdF'), as well
as n-quads. Finally, we use three randomized slices of NELL’s beliefs: the full
dataset, half of the statements, and a quarter of the statements, with the goal
of testing the scalability of our design choices. The resulting KGs are described
in Table 3, showing the number of statements per dataset, its size, and either
the proportion of triples that are generated by the reification function or the
proportion of quads in the dataset.

We first assess the performance of HDTr with respect to encoding with
HDT!6 the KG resulting from the application of any reification function. This
is an important comparison because HDTr files can directly replace HDT files
in applications that use reified KGs.

16 We use the HDT C++ library. Please find the concrete forked version and additional
details in the supplemental material statement specified at the end of this document.

12 J.M. Gimenez-Garcia et al.

We then measure space-time tradeoffs of HDTr against some well-known
triplestores. Arguably, HDT and HDTr are not directly comparable with triple-
stores, since they are production systems that include additional overheads to
fully conform to SPARQL (including datatype filter expressions). However, this
evaluation allows us to show in a quantitative way how an index such as HDTr
compares with those used in such triplestores, as well as to position HDTr in the
context of similar HDT comparisons. The triplestore experiments were made
loading and querying quads, using named graphs to store the anchor, since
this is reportedly the most efficient approach for triplestores to manage reified
triples [19, 20].

HDTQ and TrieDF were also included in the planned evaluation, but HDTQ
failed in all the experiments performed due to memory limitations,!” while the
published code of TrieDF does not allow to serialize files different to those pro-
vided for their experiments.

All experiments were performed in a cluster in which the same resources
are always reserved: 2 cores and 320 GB of RAM. The same installation and
configuration is used for HDT, HDTr, and all triplestores, which received basic
optimizations to use the reserved resources according to the instructions by
their publishers. To avoid as much skew as possible, we report the average of 10
independent executions.

6.1 HDTr vs. HDT

We first compare HDTr with its counterpart HDT in terms of space requirements
and retrieval performance.

Space Requirements. Figure 5 compares the space requirements of HDTr with
those of HDT for all reification functions in the two reifca and reify scenarios:
Figures 5 a-b compare the size of the serialized KG, whereas Figures 5 c-d report
the size of the indexes required for efficient triple pattern resolution [23].

HDTr clearly outperforms HDT in the reify scenario, because it represents
the same information with fewer triples and encodes them more compactly. We
can observe that the size of the HDTr files is smaller than the HDT files with any
contextualization approach, ranging 6% for n-ary relations to 237% for NdFlu-
ents. The difference for the indexes is even more pronounced, going from 263% to
1461% for the same approaches. However, if we look at reifc4 scenario, we see
that the HDTr and the HDT files for RDF reification and n-ary relations have
similar size, and the space savings for the singleton property and NdFluents have
been reduced. Index sizes are also lower for HDTr, although to a lesser extent
than in the reify case. This shows that the HDTr savings, due to its additional
structures to identify reified statements by its position and connect them with
their anchor in the dictionary, are proportional to the number of statements that
are reified and the number of triples introduced by each reification function.

17 Our hypothesis is that HDTQ was designed to encode named graphs, making as-
sumptions (e.g., the proportion of named graphs to triples or the use of named
graphs as terms in statements) that have a negative impact in its ability to encode
reified statements.

Compact Encoding of Reified Triples using HDTr 13

B Full = Half = Quarter ® Full ® Half = Quarter
25,000.0 2,500.0
20,000.0 2,000.0
15,000.0 1,500.0
10,000.0 1,000.0
5,000.0 500.0
0.0 0.0
Reif N-ary SP NdF HDTr Reif N-ary SP NdF HDTr
(a) HDT/HDTr sizes (reifca) (b) HDT/HDTr sizes (reify)
W Full ® Half = Quarter ® Full ® Half = Quarter
10,000.0 1,500.0
7,500.0
1,000.0
5,000.0
500.0
2,500.0
0.0 0.0
Reif N-ary SP NdF HDTr Reif N-ary SP NdF HDTr
(c) Index Sizes (reifca) (d) Index Sizes (reifp)

Fig. 5: Size of HDT and HDTr files and their indexes (in MB)

Retrieval Performance. HDTr is able to identify reified triples and connect them
with their anchor in the dictionary thanks to the additional bitsequence and per-
mutation. This allows to efficiently obtain a triple and its anchor with a single
quad pattern. However, HDT needs to translate them into a set of triple pat-
terns, depending on the reification approach that they encode. Table 4 lists the
set of triple patterns that must be resolved to answer the equivalent quad pat-
tern for each reification function; for example, to resolve the pattern (s,?,7,7),
which asks for all statements related to subject s and their anchors, HDT+Reif
resolves (7,rdf:subject,s) to get the anchors of the statement (corresponding
to the pattern type (7,p,o) in the table) and then (a,rdf:predicate, ?) and
(a,rdf:object,?) for each anchor (corresponding to the pattern type (s,p,?)
twice). To estimate a lower bound for HDT, we compute, for each triple, the
average retrieval time for each triple pattern, and sum together the times for all
of them, ignoring the cost of the joint operations. Note that this is an optimistic
estimate in favor of HDT. We then average this time and compare it to the

average retrieval time of a quad pattern type for the same set of statements in
HDTr.

We extract 10,000 different triple patterns of each type and report the aver-
age execution per pattern type in Figure 7 for resolving query patterns in the
rei fy scenario (similar results are obtained in the reifc 4 scenario). HDTr clearly
dominates the comparison, outperforming HDT (with any reification function)
in five out of eight cases and being comparable to the best alternative in the

14 J.M. Gimenez-Garcia et al.

Table 4: Types of patterns needed to obtain a triple and its anchor
Quad |(s,?,?7,?) (7,p,7,7) (?,7,0,7) (s,p,7,?) (s,7,0,7) (7,p,0,7?) (s,p,0,?) (7,7,7,a)

(?,p,0) (7,p,0) (7,p,0) (7,p,0) (7,p,0) (7,p,0) (7,p,0) (s,p,?)
(s,p,?) (s,p,?”) (s,p,?) (s,p,0) (s,p,?) (s,p,0) (s,p,0) (s,p,?)
(s,p,?) (s,p,?) (s,p,?) (s,p,?) (s,p,?) (s,p,?) (s,p,0) (s,p,?)
(s,?7,7) (s,p,?) (7,7,0) (s,p,?) (s,7,7) (s,p,?) (s,p,?) (7,7,0)
N-Ary| (7,p,0) (s,p,?) (7,p,0) (s,p,?) (s,7,?) (s,p,?) (s,p,?) (7,p,0)
(s,p,?) (?,p,?) (s,p,?) (s,p,?) (s,p,?) (?,p,0) (s,p,?) (s,p,?)
(s,p,?) (s,p,?) (?,p,0) (s,p,?) (s,p,?) (?,p,0) (s,p,0) (s,p,?)
gp | (.77 (7,p,0) (7,7,0) (s,p,?) (s,7,00 (?,p,0) (?,p,0) (7,p,7)
(s,p,?) (?,p,?) (?,p,0) (7,p,0) (s,p,?) (?,p,0) (s,p,0) (s,p,?)
(?,p,0) (7,p,?) (s,p,?) (7,p,0) (7,p,0) (s,p,0) (7,p,0) (7,p,0)
NdF | (s,?,7) (s,p,?) (?,7,0) (s,p,?) (?,p,0) (7,p,0) (s,p,?) (s,7,0)
(s,p,?) (s,p,?) (s,p,?) (s,p,?) (s,?7,0) (s,p,?) (s,p,0)

(s,p,?) (s,p,?) (s,p,?) (s,p,?) (s,p,?) (s,p,?)

Reif

other three: (s,7,0,7), (s,p,0), and (?,7,7,a). The comparison is similar for
the three slices (Full, Half, and Quarter), demonstrating that HDTr retains the
scalability features of HDT.

6.2 HDTr vs. Triplestores

We now compare HDTr against a representative baseline of four well-known
triplestores: Virtuoso 7.2.6, Blazegraph 11.0.19, GraphDB 8.8.1, and Fuseki 3.10,
using the quads datasets for all of them. Comparison is also performed in terms
of space requirements and retrieval performance.

Space Requirements. Figure 6 compares the space requirements of HDTr (in-
cluding data and indexes) with respect to the evaluated triplestores. HDTr dom-
inates the comparison in both scenarios. HDTr exploits its compressibility and
uses more than 3 times less space than Virtuoso (for the Full slice) but up to 13
times less space than Blazegraph or Fuseki. These numbers demonstrate HDTr’s
ability to save disk space, which in turn enable scalable and efficient in-memory
data management.

B Full ® Half = Quarter ® Full = Half = Quarter
200.0 15.0
150.0
10.0
100.0
5.0
50.0
0.0 0.0
Virtuoso Blazegraph ~ GraphDB Jena HDTr Virtuoso Blazegraph GraphDB Jena HDTr
(a) Data reifca (b) Data reifg

Fig. 6: Size of HDTr files and triplestores data (in GB)

15

Compact Encoding of Reified Triples using HDTr

(s ur) oy [eAdIOI penb so109so[dIny SA ILAH ‘8 81 (*s7l ur) oy eadLIOI poyetIse T(TH SA ILAH L S1q

€ .6 .6 . . € 3 <
(222 () (:¢0¢d*s) () (@6 %) () Awnonm.mv Amv
ILaH mesny gqudels ydeiBezeig osonuiA . 1LaH pesny gaudesp ydesBezelg osonuin . aH . as ron Jou J1aH N Jou
| b || °
s
004 00}
000} 0001 o
00004 00004 sl
000001 00000} oz
Jopeny © JeH m N4 m Jeyenp n jeH m N4 m JOUEND = JeH m (N4 m JopenD w JeH m (N4 m
. € 3 €
(2f0dg) (§) (&0:°s) (9) (2¢0¢d<s) (3) CACIPALINC)!
JLaH pesng gaudesp ydeisbezelg osonuIA L J1aH asng gaudeso ydesbezelg osonpIp L J1aH 4PN ds Aiy-N JIEN 11aH 4PN ds AN Joy
- 0
- oL - oL -
s
0oL 00}
o
0001 0001
00004 00004 s
000001 00000} o0z
1oeNnD = JeH m N4 | JOLEND = JEH | INd | 18LEND = JEH ® N4 ® JoLEND W JEH m INd W
. € . € 3 + 6 . € [. € € .6 .
(:¢:4ds) (p) (20¢68) (9) (:¢:.¢ds) (p) (CALIPAPS] on
JLaH pesny gaudes ydesbezelg osonuIA L J1aH asng gaudeso ydesbezelg osonpIp L J1aH 4PN ds AN 18y J1aH yey
| | ’
i -} e _ |
00L 004
o
0001 000L
0000} 00004 sk
000001 00000} oz
JoyenD = JeH | Ind | JOEND = JEH | Ind | JOLEND w JEH | Ind m JoLEND W JEH | INd W
.6 . € € . L6 .6 .6 s € . € [+ €6 .6 . €
(&6e4d ey (q) (2°03°s) (e) (&:d<i) (q) (CAPAPAS)] Adv
1aH nesn4 gaudess ydesBezelg osonuIA JLaH nesng gqudesn ydeibezelg osonuIA J1aH 4PN ds Kry-N oy o J1aH ey
3 - L | | -
o ——- oL s _
0oL 004
o
0001 000L
0000} 00004 st
000004 00000k JOLEND JEH | Ind m 0 10LEND W JEH | INd W

JOLEND = JeH m (N4 m JOUEND = JEH B N4 |

16 J.M. Gimenez-Garcia et al.

Retrieval performance. Figure 8 reports query times for HDTr and the triple-
stores in the reify scenario, using a testbed containing 10,000 randomly gener-
ated quad patterns, as explained earlier. HDTr’s performance is clearly superior
for seven out of eight patterns, with reported query times between 2 and 4 orders
of magnitude faster, depending on the pattern and the triplestore. HDTr shows
slower performance only with the pattern (?,p,?,7), which is a known weakness
of HDT [21]. The same conclusions can be drawn for the rei f 4 scenario, and are
consistent with the previous results comparing HDT and triplestores [23], con-
firming that HDTr is able to compete with the most prominent state-of-the-art
solutions with guarantees.

7 Conclusions and Future Work

This work presents HDTr, an extension of HDT to serialize reified statements in
a model-agnostic binary representation that is compact and queryable. Our pro-
posal is HDT compatible and leverages its current compact structures to make
a connection between the reified statements and the anchors to their contex-
tual annotations. Our evaluation against four triplestores, Virtuso, Blazegraph,
GraphDB, and Jena Fuseki, shows that HDTr is between two and four orders
of magnitude faster than all triplestores when querying for reified triples for all
patterns patterns but one, keeping the compelling compression (at least 350%
gains) and loading results of HDT.

As future work, we plan to leverage, even more, the existing redundancies in
the data. First, we aim at exploring the possibility of splitting the reified and
non-reified statements in the HDT components. Then, we plan to extend HDTr
with the option of not storing anchors terms that are merely a placeholder. This
would be specially useful for reification approaches where this is given (such as
RDF-star). Extensions for full SPARQL resolution and using HDTr as a support
to convert between different reification approaches are also considered.

Supplemental Material Statement: Source code is available at https://github.
com/jm-gimenez-garcia/hdtr-cpp. The HDT source code at fork time is
available at https://github.com/jm-gimenez-garcia/hdtr-cpp/tree/base.
Data and instructions to replicate the evaluation, as well as additional exper-
imental results on loading times, are available at https://doi.org/10.6084/
m9.figshare.22787495

Acknowledgments

This work has been partially funded by the Spanish Ministry of Science
and Innovation through LOD.For.Trees (TED2021-130667B-100), EXTRACom-
pact (PID2020-114635RB-100), and PLAGEMIS-UDC (TED2021-129245B-C21)
projects, and from the EU H2020 research and innovation program under the
Marie Sktodowska-Curie grant No 642795.

Compact Encoding of Reified Triples using HDTr 17

References

[1] Beek, W., Rietveld, L., Bazoobandi, H.R., Wielemaker, J., Schlobach, S.: LOD
Laundromat: A Uniform Way of Publishing Other People’s Dirty Data. ISWC
(2014).

[2] Berners-Lee, T., Connolly, D.: Notation3 (N3): A readable RDF syntax. W3C
(2011).

[3] Briandais, R.D.L.: File searching using variable length keys. IRE-AIEE-ACM
(1959).

[4] Brickley, D., Guha, R.V.: RDF Vocabulary Description Language 1.0: RDF Schema.
W3C (2004).

[5] Carlson, A., Betteridge, J., Hruschka, E.R., Mitchell, T.M.: Coupling Semi-supervised
Learning of Categories and Relations. SSLNLP (2009).

[6] Carroll, J.J., Bizer, C., Hayes, P.J., Stickler, P.: Named graphs. JWS 3(4), 247267
(2005).

[7] Cyganiak, R., Wood, D., Lanthaler, M.: RDF 1.1 Concepts and Abstract Syntax.
W3C (2014).

[8] Diefenbach, D., Both, A., Singh, K., Maret, P.: Towards a question answering
system over the Semantic Web. Semantic Web 11(3), 421-439 (2020).

[9] Diefenbach, D., Thalhammer, A.: PageRank and Generic Entity Summarization
for RDF Knowledge Bases. ESWC (2018).

[10] Fernandez, J.D., Beek, W., Martinez-Prieto, M.A., Arias, M.: LOD-a-lot: A queryable
dump of the LOD cloud. ISWC (2017).

[11] Fernandez, J.D., Martinez-Prieto, M.A., Gutiérrez, C., Polleres, A., Arias, M.:
Binary RDF representation for publication and exchange (HDT). JWS 19, 22-41
(2013).

[12] Fernandez, J.D., Martinez-Prieto, M.A., Polleres, A., Reindorf, J.: HDTQ: Man-
aging RDF Datasets in Compressed Space. ESWC (2018).

[13] Frey, J., Miiller, K., Hellmann, S., Rahm, E., Vidal, M.-E.: Evaluation of metadata
representations in RDF stores. SWJ 10(2), 205-229 (2017).

[14] Giménez-Garcia, J.M., Duarte, M., Zimmermann, A., Gravier, C., Hruschka Jr.,
E.R., Maret, P.:. NELL2RDF: Reading the web, tracking the provenance, and
publishing it as linked data. CKG (2018).

[15] Giménez-Garcia, J.M., Zimmermann, A.: NdProperties: Encoding contexts in RDF
predicates with inference preservation. CKG (2018).

[16] Giménez-Garcia, J.M., Zimmermann, A., Maret, P.: NdFluents: An Ontology for
Annotated Statements with Inference Preservation. ESWC (2017).

[17] Hartig, O., Champin, P.-A., Kellogg, G., Seaborne, A., Arndt, D., Broekstra,
J., DuCharme, B., Lassila, O., Patel-Schneider, P.F., Prud’hommeaux, E., Thi-
bodeau, T., Thompson, B.: RDF-star and SPARQL-star. W3C (2021).

[18] Hayes, P.J., Patel-Schneider, P.F.: RDF 1.1 Semantics. W3C (2014).

[19] Hernandez, D., Hogan, A., Krotzsch, M.: Reifying RDF: What Works Well With
Wikidata? SSWS (2015).

[20] Hernandez, D., Hogan, A., Riveros, C., Rojas, C., Zerega, E.: Querying Wikidata:
Comparing SPARQL, Relational and Graph Databases. ISWC (2016).

[21] Hernandez-Illera, A., Martinez-Prieto, M.A., Fernandez, J.D., Farina, A.: iHDT++:
improving HDT for SPARQL triple pattern resolution. JIFS 39(2), 2249-2261
(2020).

[22] Hogan, A., Blomqvist, E., Cochez, M., d’Amato, C., deMelo, G., Gutiérrez, C.,
Kirrane, S., Labra Gayo, J.E., Navigli, R., Neumaier, S., Ngonga Ngomo, A.-C.,

18 J.M. Gimenez-Garcia et al.

Polleres, A., Rashid, S.M., Rula, A., Schmelzeisen, L., Sequeda, J.F., Staab, S.,
Zimmermann, A.: Knowledge Graphs. Springer (2021).

[23] Martinez-Prieto, M., Arias, M., Fernandez, J.: Exchange and Consumption of Huge
RDF Data. ESWC (2012).

[24] Martinez-Prieto, M.A., Brisaboa, N.R., Canovas, R., Claude, F., Navarro, G.:
Practical compressed string dictionaries. IS 56, 73-108 (2016).

[25] Martinez-Prieto, M.A., Fernandez, J.D., Hernandez-Illera, A., Gutierrez, C.: Knowl-
edge graph compression for big semantic data. Encyclopedia of big data technolo-
gies (2022).

[26] Mitchell, T.M., Cohen, W.W., Hruschka, E.R., Talukdar, P.P., Betteridge, J.,
Carlson, A., Mishra, B.D., Gardner, M., Kisiel, B., Krishnamurthy, J., Lao, N.,
Mazaitis, K., Mohamed, T., Nakashole, N., Platanios, E.A., Ritter, A., Samadi,
M., Settles, B., Wang, R.C., Wijaya, D.T., Gupta, A., Chen, X., Saparov, A.,
Greaves, M., Welling, J.: Never-Ending Learning. AAAT (2015).

[27] Munro, J.I., Raman, R., Raman, V., Rao, S.S.: Succinct representations of per-
mutations and functions. TCS 438, 74-88 (2012).

[28] Nardi, D., Brachman, R.J.: An Introduction to Description Logics. The Descrip-
tion Logic Handbook: Theory, Implementation, and Applications (2003).

[29] Navarro, G.: Compact data structures — a practical approach. Cambridge Univer-
sity Press (2016).

[30] Nguyen, V., Bodenreider, O., Sheth, A.: Don’t like RDF Reification?: Making
Statements about Statements Using Singleton Property. WWW (2014).

[31] Noy, N., Rector, A., Hayes, P., Welty, C.: Defining N-Ary Relations on the Seman-
tic Web. W3C (2006).

[32] Pelgrin, O.P., Hose, K., Galarraga, L.: TrieDF: Efficient in-memory indexing for
metadata-augmented RDF. MEPDaW (2021).

[33] Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF (2008).

[34] Verborgh, R., Vander Sande, M., Hartig, O., Van Herwegen, J., De Vocht, L., De
Meester, B., Haesendonck, G., Colpaert, P.: Triple Pattern Fragments: A low-cost
knowledge graph interface for the Web. JWS 37-38, 184-206 (2016).

[35] Verborgh, R., Vander Sande, M., Shankar, H., Balakireva, L., Van de Sompel, H.:
Devising affordable and functional linked data archives. TCDL 13(1) (2017).

[36] Willerval, A., Diefenbach, D., Bonifati, A.: gEndpoint: A Wikidata SPARQL end-
point on commodity hardware. WWW _Demo (2023).

