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Abstract. Knowledge Graph Embedding (KGE) is a powerful technique
for mining knowledge from knowledge graphs. Negative sampling plays a
critical role in KGE training and significantly impacts the performance
of KGE models. Negative sampling methods typically preserve a pair
of Entity-Relation (ER) in each positive triple and replace the other
entity with negative entities selected randomly from the entity set to
create a consistent number of negative samples. However, the distribu-
tion of ER pairs is often long-tailed, making it problematic to assign the
same number of negative samples to each ER pair, which is overlooked
in most related works. This paper investigates the impact of assigning
the same number of negative samples to ER pairs during training and
demonstrates that this approach impedes the training from reaching the
optimal solution in the negative sampling loss function and undermines
the objective of the trained model. To address this issue, we propose a
novel ER distribution-aware negative sampling method that can adap-
tively assign a varying number of negative samples to each ER pair based
on its distribution characteristics. Furthermore, our proposed method
also mitigates the issue of introducing false negative samples commonly
found in many negative sampling methods. Our approach is founded on
theoretical analysis and practical considerations and can be applied to
most KGE models. We validate the effectiveness of our proposed method
by testing it on conventional KGE and Neural Network-based KGE mod-
els. Our experimental results outperform most state-of-the-art negative
sampling methods.

Keywords: Knowledge Graph Embedding · Negative Sampling · Knowl-
edge Graph.
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1 Introduction

A Knowledge Graph (KG) is a graph composed of entities as nodes and relations
as edges that connect entities [27,25]. It is typically represented in the form of
triples, denoted as (h, r, t) ∈ F , where F is a set of facts, h and t are head and
tail entities from an entity set E , and r is drawn from a relation set R. Knowledge
Graph Embedding (KGE) represents entities and relations as vectors or matrices,
which can be used to perform downstream tasks such as KG completion, relation
extraction, and question answering [27,32,33]. KGE has shown promising results
in various KG-related applications.

In KGE training, the scoring function, loss function, and negative sampling
are crucial components. The scoring function models entity relation interactions
and evaluate the likelihood of a triple’s truth. The loss function processes positive
and negative triple embeddings during training, assigning higher scores (from the
scoring function) to positive triples and lower scores to negative ones. Simple neg-
ative sampling methods like uniform sampling [2] generate negative samples by
randomly substituting t or h in each positive triple (h, r, t). The preserved Entity-
Relation pair, denoted as (e, r), can represent both Head-Relation (HR) and
Tail-Relation (TR) pairs, which are denoted as (h, r) and (t, r). The replaced
entity is denoted as q, and the generated negative entities in negative samples
are denoted as q̄.

(a) FB15K237 (b) WN18RR (c) YAGO3-10

Fig. 1. The long-tailed distribution of ER pairs in FB15K237, WN18RR, and YAGO3-
10 datasets. The y-axis represents the frequency #(e, r) of each (e, r) pair, and the
x-axis shows the sorted ER ID.

Current negative sampling approaches, such as works [3,26,34], create quality
negative samples that KGE models can hardly differentiate from positive triples,
while others, like those mentioned in [21,1,10], demand a substantial number of
negative samples for training. However, these methods typically generate the
same number of negative samples for all triples, ignoring that the distribution
of ER pairs is long-tailed in most datasets (Fig. 1), with a large proportion
of ER pairs appearing less frequently in triples, while a few ER pairs have a
higher frequency of occurrence. Recent studies have shown that imbalanced data
distribution, also known as long-tailed distribution, poses a challenge to accurate
model learning [32,4]. The imbalanced distribution also challenges the generation
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of negative samples in KGE models. Intuitively, it is unreasonable to generate
the same number of negative entities q̄ for the triple (messi, profession, q) with
infrequent HR pair (messi, profession) and the triple (q, profession, footballer)
with frequent and common TR pair (footballer, profession). A small number
may not be sufficient for the former due to its rarity, while a large number
may introduce false negative samples (i.e., true but non-observed triples) for the
latter. We discover that this hinders KGE models from reaching their optimal
solution, subsequently affecting their performances on downstream tasks. The
main contributions of this work are as follows:

• We investigated the problem of assigning the same number of negative
samples N to ER pairs for KGE training given a long-tailed distribution in KGs
from a theoretical standpoint.

• We proposed an ER distribution-aware negative sampling method that is
effective for a broad range of KGE models, including both conventional and
Neural Network-based models.

• We conducted comprehensive experiments on six different KGE models and
three benchmark KGs to validate our proposed method. The results show that
our method outperforms state-of-the-art negative sampling methods.

2 Related Work

This section begins with an overview of KGE models, followed by a discussion
of negative sampling methods.

2.1 Knowledge Graph Embedding Models

KGE models can be classified into two categories: conventional and Neural Net-
work (NN)-based models. In KGE models, the scoring function calculates the
plausibility score for a triple. Conventional models can be further subcategorized
according to their scoring functions into the translational distance (TD) and
semantic matching (SM) models. Examples of TD models include TransE [2],
TransD [8], TransR [15], and RotatE [21], while popular SM models include
DistMult [30], ComplEx [23], and SimplE [11]. NN-based KGE models can be
broadly categorized into Convolutional NN-based (CNN) and Graph NN-based
(GNN) models. Examples of CNN-based models are ConvKB [18], ConvE [5],
and InteractE [24], while CompGCN [5] is a generalized version of several ex-
isting GNN methods [19,20]. GNN models usually use scoring functions from
conventional KGE models as decoders for the link prediction task.

2.2 Negative Sampling Methods

The uniform sampling method selects negative entities q̄ for (e, r) with equal
probability. To avoid zero gradients in the effective training process, several neg-
ative sampling methods prioritize selecting a smaller set of quality negative sam-
ples with higher scores [3,26,34], or assigning greater weights to high score sam-
ples within multiple negative samples [21,1], which share a similar idea to train
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word embeddings by choosing negative words based on ranking scores in natu-
ral language processing (NLP) [7]. KBGAN [3], IGAN [26], and NSCaching [34]
create a negative candidate set C(e,r) for (e, r) in each positive triple and em-
ploy their specific distribution functions pϕ(q̄i|(e, r)) to choose negative samples.
Despite minor differences in their distribution functions, their negative sampling
distribution pn

(
q̄i|(e, r)

)
could be collectively represented as:

pn
(
q̄i|(e, r)

)
= pϕ

(
q̄i|(e, r)

)
=

exp
(
αf

(
q̄i, (e, r)

))
∑(

q̄i,(e,r)
)
∈C(e,r)

exp
(
αf

(
q̄i, (e, r)

)) , (q̄i, (e, r)) /∈ F ,

(1)
where f(·) is the scoring function of KGE models and α is the sampling temper-
ature. Likewise, the distribution function serves as weights assigned to negative
samples in the loss function in Self-Adv [21] and SANS [1]. However, these ap-
proaches primarily stem from experimental observations and frequently face false
negative samples. Distinguishing between quality and false negative samples is
difficult, as both exhibit high scores. Also, multiple negative samples can inad-
vertently introduce false negative samples.

Other works have analyzed the impact of the number of negative samples on
the performance of KGEs. For instance, Bernoulli sampling [29] assigns different
probabilities to replace the head or tail entity in a triple to construct negative
samples, reducing the number of false negative samples. Trouillon et al. [23]
find that increasing the number of negative samples within a certain range can
improve the KGE performance. More recently, a Subsampling work [10] explores
the hyperparameter tuning for the negative sampling (NS) loss function, and a
Non-Sampling work [14] adds all of the negative instances in the KG for model
learning.

Previous studies have not investigated the effect of assigning the same number
N of negative samples to ER pairs with an imbalanced distribution, nor have they
tackled the challenge of producing quality negative samples while minimizing
false negative samples. To our knowledge, this study is the first to analyze the
effect and attempt to resolve this issue while simultaneously mitigating false
negative samples.

3 Theoretical Analysis

This section introduces the NS loss function and its optimal solution, discusses
the problem of allocating an equal number of negative samples to all ER pairs,
and presents our proposed solution.

3.1 Optimal Solution for the Negative Sampling Loss Function

The NS loss function was initially introduced for word-representation learn-
ing [17] and has been widely adopted in training SM models [23] for its ef-
fectiveness. Recently, the work [21] adapted it for TD models by introducing a
margin term κ. The variant of the NS loss function is defined as follows:
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L = − 1

|F|
∑(

q,(e,r)
)
∈F

[
log σ

(
g
(
q, (e, r)

))
+w

N∑
q̄i∼pn

(
q̄i|(e,r)

) log σ
(
−g

(
q̄i, (e, r)

))]
, (2)

where N represents the number of negative samples for each positive triple, σ(·)
denotes the sigmoid activation function, and g

(
q, (e, r)

)
= f

(
q, (e, r)

)
+κ. In TD

models, the value of κ is greater than 0, whereas it is set to 0 for SM models.
When w = pϕ(q̄|(e, r)) (Eq. (1)), it aligns with the loss function employed in
the Self-Adv method [21]. The original NS loss function corresponds to the case
with w = 1. Recent studies [13,31,9,10] suggest that within the NS loss function
(w = 1), the optimal embedding, denoted by (q, (e, r))∗ for each triple, satisfies
the following condition:

f
(
q, (e, r)

)∗
= log

pd
(
q|(e, r)

)
N exp(κ)pn

(
q|(e, r)

) , (3)

where pd(q, (e, r)) is the true distribution of all observed triples (q, (e, r)) in F .
Moreover, while (q, (e, r))∗ denotes the optimal embedding for a given triple,
f(q, (e, r))∗ stands for its corresponding optimal solution in KGE models. The
optimal solution guarantees the monotonicity property (objective) of the trained
model. In the context of uniform sampling, where pn(q|(e, r)) = 1

|E| ,
5 and |E|

is the size of the entity set, given any ER pair (e, r) and two distinct triples
(qm, (e, r)) and (qn, (e, r)), if it is established that pd(qm|(e, r)) > pd(qn|(e, r)),
then f(qm, (e, r))∗> f(qn, (e, r))

∗ can be inferred.

3.2 Inaccessible Optimal Solution

During the KGE training, negative sampling methods typically generate negative
samples for each triple by randomly retaining either the TR or the HR pair with
an even chance. This process can be carried out simultaneously or alternately.
Consequently, the optimal solution for each triple should align with Eq. (3) from
both the TR and HR perspectives. Yet, for a given triple (h, r, t) and referencing
Eq. (3), the optimal solution would yield two distinct values if pd(h|(t, r)) is
not the same as pd(t|(h, r)). Nonetheless, it is impractical for a single triple
to possess dual scores simultaneously, making attaining the optimal solution
infeasible. Moreover, a model optimized in this manner loses its monotonicity
trait, leading to a decline in the performance of KGE in downstream tasks.

Indeed, the distributions of pd(h|(t, r)) and pd(t|(h, r)) could differ signifi-
cantly in most triples. Even though obtaining the explicit values of pd(h|(t, r))
and pd(t|(h, r)) is not feasible due to incomplete knowledge graphs, their distri-
butions can be implicitly inferred from the dataset. For a simplified explanation,

5 In the implementation, observed positive entities are filtered out. However, since the
total number of entities |E| is significantly larger than the frequency #(e, r) of ER
pairs, for the sake of simplification in theoretical analysis, we set pn(q|(e, r)) = 1

|E| .
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we use the frequency of ER pairs #(e, r) as a proxy for the distribution, as-
suming that for (q, (e, r)) ∈ F , pd(q|(e, r)) = 1

#(e,r) , and for (q, (e, r)) /∈ F ,
pd(q|(e, r)) = 0. As shown in Fig. 1, ER pairs follow an imbalanced distribu-
tion, so pd(h|(t, r)) and pd(t|(h, r)) can differ significantly in most triples. This
problem has been ignored in most research.

3.3 Assigning Varying N(e,r) to Entity-Relation Pair (e, r)

In pursuit of ensuring f(h, (t, r))∗ = f(t, (h, r))∗ as per Eq. (3), a straightforward
adjustment is modifying N to N(e,r) and assigning N(e,r) to each input (e, r) in
proportion to pd

(
q|(e, r)

)
, when exp(κ) and pn are constant. Nevertheless, one

prerequisite to consider is the persistence of Eq. (3) when N(e,r) is no longer
a uniform, constant number N in Eq. (2). We find modifying N to N(e,r) will
not disrupt Yang’s proof process [31] for Eq. (3), so the subsequent proposition
remains valid.

Proposition 1. Within the NS loss where N(e,r) represents the number of neg-
ative samples for each ER pair (e, r), the optimal solution can still be formulated
as follows:

f
(
q, (e, r)

)∗
= log

pd
(
q|(e, r)

)
N(e,r)exp(κ)pn

(
q|(e, r)

) . (4)

The complete proof is available in the supplementary material. This optimal solu-
tion still guarantees the monotonicity property of the trained model. Moreover,
practical realization is attainable by adhering to the proposition below, which
outlines the suitable number of negative samples for the TR and HR pairs:

Proposition 2. To guarantee f(h, (t, r))∗ = f(t, (h, r))∗, the number of nega-
tive samples N(h,r) and N(t,r) should conform to the following equation when
utilizing the frequency of ER pairs #(e, r) as a proxy for the distribution.

N(t,r)

N(h,r)

=
pd(h|(t, r))
pd(t|(h, r))

≈ #(h, r)

#(t, r)
⇒ N(t,r)#(t, r) = N(h,r)#(h, r). (5)

For instance, considering the triple (messi, profession, footballer), the number of
corresponding negative samples should adhere to N(messi,profession)#(messi,
profession) = N(footballer,profession)#(footballer, profession). Here, we refer to the
collection of all observed HR pairs sharing the same TR pair as the Share
Tail-Relation (STR) for (t, r), represented by S(t,r). Similarly, the Share Head-
Relation (SHR) for (h, r) is denoted as S(h,r). By using the transitive property
of equality, we present the following proposition:

Proposition 3. For any HR pairs (hm, r), (hn, r) ∈ S(t,r), the numbers of neg-
ative samples N(hm,r) and N(hn,r) should satisfy:

N(hm,r)#(hm, r) = N(t,r)#(t, r) = N(hn,r)#(hn, r). (6)

Similar conclusions can be reached for TR pairs in S(h,r).
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Considering HR pairs (messi, profession) and (maradona, profession) that share
TR (footballer, profession), the numbers of their negative samples also conform
to N(messi,profession)#(messi, profession) =N(maradona,profession)#(maradona,
profession). Eq. (5) and (6) provide guidelines for assigning numbers of negative
sampling within a triple as well as within S(t,r) (or S(h,r)). However, designing
batches within each Share Entity-Relation (SER) during training can be chal-
lenging and may introduce bias, so we propose a global ER distribution-aware
negative sampling method that considers ER pairs’ distribution across the entire
dataset rather than just within a single triple or SER.

4 Entity-Relation Distribution-aware Negative Sampling
Method (ERDNS)

In this section, we apply the theoretical result to practical implementation, dis-
cuss the challenges faced during method development, and present the proposed
method’s details.

4.1 From Theory to Practice: Two-Step Expansion

Among ER pairs Share the Same Relation r. Through the mechanism of
the transitive property of equality, the association between N(e,r) and the fre-
quency #(e, r) can be generalized across all HR and TR pairs that have the same
r. For example, while the HR pairs (messi, profession) and (parreira, profession)
do not have a shared TR pair, they are each in STR sets S(footballer,profession)

and S(coach,profession), both of which intersect at the HR pair (maradona, profes-
sion). Through the transitive property of equality, N(messi,profession)#(messi,
profession) =N(parreira,profession)#(parreira, profession) holds. On a broader
scale, this inference is plausible for most relationships in the dataset.
Among All ER pairs. Assigning negative samples to ER pairs with the same
r is still inefficient, so we propose extending Eq. (5) and (6) to apply among all
ER pairs, as shown below:

N(em,rm)#(em, rm) = N(en,rn)#(en, rn), (7)

where (em, rm) and (en, rn) represent any ER pairs in the dataset. Expanding
the scope of Eq. (5) and (6) only extends the relationship without affecting its
maintenance within a triple and within S(t,r) (or S(h,r)). It is worth noting that
the practical expansion does not affect the attainment of the optimal solution for
the NS loss, nor does it compromise the monotonicity property of the trained
model.

The concept introduced in Eq. (7) reflects that ER pairs that occur more
frequently in the dataset should be given fewer negative samples during train-
ing, and those that occur less frequently should be given more negative samples.
As noted earlier, in the case of research [3,26,34,21,1], a potential issue is the
introduction of false negative samples. This drawback can negatively impact the
convergence rate of the model, increase computational expenses, and ultimately
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reduce the overall performance. Our method also effectively reduces the likeli-
hood of generating false negative samples. While Bernoulli sampling can also
reduce false negative samples, our method has a broader scope and stronger
theoretical support. Instead of emphasizing the average frequency of heads per
tail hpt or tails per head tph for each r in Bernoulli sampling, we focus on the
frequency of ER pairs. The average frequency hpt or tph can be distinctively
different from #(e, r) in the dataset. Moreover, we assign different N(e,r) values
to each (e, r) in the dataset, unlike Bernoulli sampling, which only considers ER
pairs within a single triple. In the following subsection, we provide details about
our proposed method ERDNS.

4.2 The Proposed Method

Previous negative sampling methods commonly assign N negative samples to
each positive triple in a training mini-batch Fbatch, resulting in a total of Na =
N × |Fbatch| negative samples for triples in a mini-batch. Eq. (7) demonstrates
that the number of negative samples N(ei,ri) for each triple (qi, (ei, ri)) ∈ Fbatch,
i ∈ [1, |Fbatch|], is inversely proportional to #(ei, ri). We propose a new alloca-
tion strategy to address this issue. Instead of dividing the Na samples according
to the ratio of 1

#(ei,ri)
, we treat the Na negative samples as Na independent

statistical experiments, denoted as xj , where j ∈ [1, Na]. For each of these exper-
iments, there are |Fbatch| possible outcomes labeled as i. We then assign N(ei,ri)

based on how frequently outcome i appears in the Na experiments. The resulting
allocation can be modeled using a multinomial distribution shown below.

p(xj = i) = p(ei, ri) =

1
#(ei,ri)∑|Fbatch|

i=1
1

#(ei,ri)

,
∑|Fbatch|

i=1
p(ei, ri) = 1,

N(ei,ri) =
∑|Fbatch|

j=1
I(xj = i),

(8)

where I(·) is the indicator function.
0 Negative Sample Problem. During the pre-processing of the dataset, we
compute the frequency #(e, r) for both (h, r) and (t, r) pairs by traversing the
dataset and indexing them by the respective (e, r). However, the frequency dis-
tribution of these pairs is often highly skewed, with the maximum value being
significantly larger than the minimum value. This can cause some ER pairs to
struggle to receive even a single negative sample, which in turn can severely
impact the performance of KGE models. Thus, it is crucial to devise a reliable
and effective ER distribution-aware negative sampling method that satisfies two
key requirements: 1) generating a varying N(e,r) for each (e, r) by using Eq.
(8); 2) ensuring fewer ER pairs (e, r) obtain zero negative samples. To meet the
two requirements, we introduce a hyperparameter α ∈ (0, 1]:

p(ei, ri) =

1
#(ei,ri)

α∑|Fbatch|
i=1

1
#(ei,ri)

α

. (9)

A smaller value of α can help meet the second requirement, ensuring that fewer
pairs get zero negative samples. Our proposed strategy enhances the adaptability
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and robustness of the model, especially in handling the long-tailed distribution
of ER pairs. We use Algorithm 1 to train KGE models based on the distribution-
aware negative sampling method. Our proposed method centers around the gen-
eration of varying numbers of negative samples N(ei,ri) according to the prob-
ability of p(ei, ri) (Step 5). The probability is dynamically calculated based on
the inclusion of (ei, ri) in Fbatch using Eq. (9). Once N(ei, ri) are determined
for each (ei, ri) in the triple, negative entities q̄i are randomly chosen from the
entity set. The remaining training processes adhere to standard KGE training
steps. Our method follows unbiased uniform sampling and allocates fewer neg-
ative samples to high-frequency ER pairs to reduce the likelihood of generating
false negative samples. Instead of assessing the scores of negative samples for
each individual triple, our method evaluates the quality of all negative samples
from a data augmentation perspective. While our method does not guarantee
that every generated negative sample has a high score, the proposed allocation
strategy can effectively address the issue caused by the long-tail nature, which is
prevalent for many datasets, and improves the overall quality of negative sam-
ples.

Algorithm 1 Entity-Relation Distribution-aware Negative Sampling Method
(ERDNS).
Input: Training set F = {

(
q, (e, r)

)
}, embeddings of entities and relations, scoring

function f
(
q, (e, r)

)
, and frequency #(e, r). Hyperparameters: α, average number

of negative samples N , dimension d, mini-batch size b, and training step Q.
Output: Trained embeddings.
1: Initialize the embeddings.
2: for step = 1, . . . , Q do
3: Sample a mini-batch Fbatch ∈ F .
4: Calculate the probability p(ei, ri) for each triple

(
qi, (ei, ri, )

)
in Fbatch.

5: Calculate the negative samples N(ei,ri) based on p(ei, ri) in Eq. (9).
6: Randomly sample N(ei,ri) negative entities q̄i for each triple.
7: Feed positive triples

(
qi, (ei, ri, )

)
into the NS loss function (w = 1).

8: Feed negative samples
(
q̄i, (ei, ri)

)
with size N(ei,ri) into the NS loss function.

9: Update embeddings.
10: end for

Computational Cost. We examine computational space to store intermedi-
ate computation results and computational time of ERDNS using the DistMult
model as a reference. The scoring function of this model is f(q, (e, r)) = ⟨e, r, q⟩,
where ⟨·⟩ is the inner product. The computational space and time of ERDNS
and other state-of-the-art methods in each mini-batch are detailed in Table 1.
The notation “1” indicates the space required to store the embedding of ⟨e, r⟩,
and “N ” represents the space for the embeddings of negative samples qs. In
the computational process, ERDNS needs to expand the embedding of ⟨e, r⟩ to
align with the size of embeddings of qs. This results in a manageable doubling
of the standard cache space. The computation time of ERDNS is the same as
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others with the same average “N ” negative samples. The computation cost of
ERDNS is comparable to the existing negative sampling methods. Additionally,
by applying ERDNS, there is an opportunity to reduce the number of negative
samples, potentially lowering its computational cost compared to other methods.
Therefore, ERDNS proves to be scalable for large-scale knowledge graphs.

Table 1. Comparison of the proposed method with the state-of-the-art regarding com-
putational space and time in each mini-batch. N1 and N2 are the cache size and ran-
domly sampled negative triples in NSCaching.

Method NSCaching KBGAN unif Bernoulli Self-Adv Subsampling ERDNS
Space O(b(N1 + N2 + 1)d) O(b(N + 1)d) O(b(2N)d)
Time O(b(N1 + N2)d) O(bNd)

5 Experiments

In this section, we detail our experimental setup, present our method’s outcomes,
analyze the findings, and assess our approach’s impact through ablation and
extension studies.

5.1 Experimental Setting

Table 2. Statistics of the datasets.

Dataset Entity Relation Train Valid Test
FB15K237 14,541 237 272,115 17,535 20,466
WN18RR 40,943 11 86,835 3,034 3,134
YAGO3-10 123,182 37 1,079,040 5,000 5,000

Datasets. We evaluate our proposed method on three commonly used knowl-
edge graphs: FB15K237 [22], WN18RR [28], and YAGO3-10 [16]. The statistics
for these KGs are presented in Table 2, and their ER distributions are illustrated
in Fig. 1.
Models. To evaluate the efficacy of our proposed method ERDNS, we integrate
it into six different models: four conventional KGE models and two NN-based
models. These models are as follows: TD models (TransE and RotatE), SM
models (DistMult and ComplEx), a CNN model (ConvE), and a GNN model
(CompGCN). CompGCN has used TransE, DistMult, and ConvE as decoders.
Compared Methods. We compare our proposed method ERDNS with two
categories of negative sampling methods.
With Single Negative Sample: These methods only generate one negative sample
per positive triple.
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• KBGAN [3] computes a probability distribution over candidate negative triples
for each positive triple and selects a single negative sample by sampling from
the distribution.
• NSCaching [34] uses caches to store and update quality negative samples for
each ER during training and selects a negative sample from the cache.
With Multiple Negative Samples: These methods generate more than one nega-
tive sample per positive triple.
• Uniform Sampling [2] randomly selects a set of entities to serve as negative
samples with an equal probability assigned to all entities in the KG.
• Bernoulli Sampling [29] generates negative samples for a positive triple (h, r, t)
by replacing the head and tail according to the probabilities tph

tph+hpt and hpt
tph+hpt .

• Self-Adv [21] generates multiple negative samples per positive triple and assigns
higher weights to high score negative samples during training.
• Subsampling [10] is specialized for the NS loss and studied theoretically. It
incorporates Self-Adv in its implementation.
Hyperparameter Settings. We utilized the Adam optimizer [12] to optimize
the KGE models. To establish baseline hyperparameters for conventional models,
we adopt settings from prior research [21,10]. These settings consist of the em-
bedding dimension d, batch size b, learning rate lr, number of negative samples
N , margin λ (for TD models), and regularization factor µ (for SM models). The
results for uniform Sampling, Bernoulli Sampling, Self-Adv and Subsampling are
obtained using the inherited hyperparameters. For KBGAN and NSCaching, we
directly take the results from their works because the best settings were not
provided. The hyperparameters for NSCaching (RotatE) were optimized based
on the settings provided in its original paper. ConvE and CompGCN initially
used a complete entity set for training, so we only used negative sampling meth-
ods with multiple samples in comparison. We also inherited the hyperparameters
from their prior works. We identified two critical hyperparameters in our method:
the average number of negative samples N per positive triple and α. We per-
formed a grid search to evaluate the range of values, with N having options
of {50, 128, 256, 512, 1024} (Conventional models) and {1024, 2048, 4096, 8192}
(NN-based models), and α having options of {0.25, 0.5, 0.75, 1}.
Evaluation Setting. We evaluate the proposed negative sampling method using
the link prediction task designed to predict the missing entity in a positive triple
(h, r, t). To assess the performance of the method, we employ standard evaluation
metrics, including Mean Reciprocal Rank (MRR), and Hits@N (N=1, 3, 10). The
evaluation is performed with the filtered setting.

5.2 Main Results

Conventional Models. Table 3 displays the results of compared methods with
conventional KGE models. ERDNS consistently outperforms other models on
all three KGs, achieving the average highest MRR and Hits@N across different
ranks. Negative sampling methods employing multiple samples generally per-
form better than those using single samples. Even though the latter often utilize
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Table 3. Performance comparison on DistMult, ComplEx, TransE and RotatE.

Dataset KGE model DistMult ComplEx
Method MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

FB15K237

KBGAN 26.7 - - 45.3 28.2 - - 45.4
NSCaching 28.3 - - 45.6 30.2 - - 48.1

unif 21.9 13.1 23.4 41.1 22.7 13.7 24.5 42.1
Bernoulli 25.9 17.4 28.3 43.3 31.0 21.2 34.3 51.3
Self-Adv 30.9 22.1 33.6 48.4 32.2 23.0 35.1 51.0

Subsampling 29.9 21.2 32.7 47.5 32.8 23.6 36.1 51.2
ERDNS 35.0 25.7 38.3 53.7 35.7 26.2 39.3 54.7

WN18RR

KBGAN 38.5 - - 44.3 42.9 - - 47.0
NSCaching 41.3 - - 45.5 44.6 - - 50.9

unif 42.7 39.0 43.7 50.7 44.8 41.5 46.4 51.7
Bernoulli 40.0 37.3 40.7 45.2 46.0 42.4 47.8 53.0
Self-Adv 43.9 39.4 45.2 53.8 47.1 42.8 48.9 55.7

Subsampling 44.6 40.0 45.9 54.4 47.6 43.3 49.3 56.3
ERDNS 45.5 41.1 46.7 54.6 48.4 44.3 50.0 56.4

YAGO3-10

NSCaching 40.3 - - 56.6 40.5 - - 57.8
unif 45.4 35.7 51.0 64.5 46.4 36.6 51.9 64.8

Bernoulli 49.0 39.4 54.2 67.2 50.3 40.9 55.5 68.0
Self-Adv 44.8 34.7 50.4 64.3 47.3 37.4 53.2 66.1

Subsampling 45.9 34.6 52.7 66.2 49.1 38.1 56.0 68.5
ERDNS 52.6 43.7 57.8 69.4 54.6 45.9 59.8 70.3

Dataset KGE model TransE RotatE
Method MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

FB15K237

KBGAN 29.4 - - 46.7 - - - -
NSCaching 30.0 - - 47.4 30.9 22.1 34.1 48.6

unif 31.4 21.5 35.2 51.5 31.9 22.3 35.3 51.7
Bernoulli 33.4 23.9 37.0 52.6 33.6 24.1 37.1 52.7
Self-Adv 32.9 23.0 36.8 52.7 33.6 23.9 37.4 53.0

Subsampling 33.6 24.0 37.3 52.9 34.0 24.5 37.6 53.2
ERDNS 34.2 24.8 37.9 53.0 34.5 25.2 37.9 53.7

WN18RR

KBGAN 18.6 - - 45.4 - - - -
NSCaching 20.0 - - 47.8 47.1 42.9 48.9 55.3

unif 22.4 1.5 40.1 51.9 47.1 42.8 48.6 55.5
Bernoulli 23.2 2.2 41.4 52.2 47.5 43.1 49.1 56.0
Self-Adv 22.3 1.3 40.1 52.8 47.6 43.1 49.5 57.3

Subsampling 23.0 1.9 40.7 53.7 47.8 42.9 49.8 57.4
ERDNS 23.8 3.0 41.8 52.8 47.9 43.5 49.4 56.5

YAGO3-10

NSCaching 30.7 - - 50.7 42.3 33.8 47.1 59.7
unif 48.2 37.4 55.1 67.3 49.8 40.2 55.2 67.7

Bernoulli 50.3 40.6 56.3 67.9 50.2 40.8 55.8 67.9
Self-Adv 51.2 41.5 57.6 68.3 50.8 41.8 56.5 67.6

Subsampling 51.3 41.9 57.2 68.1 51.0 41.9 56.5 67.8
ERDNS 51.7 42.2 57.6 68.7 51.8 42.7 57.0 68.8

quality negative samples, their performance may still be inferior to uniform sam-
pling with multiple samples. Regarding negative sampling methods with multi-
ple samples, Bernoulli sampling demonstrates superior performance over uniform
sampling in reducing the number of false negative samples, particularly in the
case of SM models rather than TD models. This indicates that false negative
samples have a more substantial impact on SM models. The Subsampling model
integrates Self-Adv in implementation, its enhancement through the subsam-
pling technique is less effective than our method when compared to Self-Adv,
even though our approach does not use Self-Adv.

The effectiveness of ERDNS is more pronounced on the FB15K237 and
YAGO3-10 datasets compared to WN18RR, primarily due to the broader range
of frequency values in the former datasets and the relatively lower percentage of
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(e, r) pairs with a frequency of 1. Both of these factors contribute to increased
diversity in all #(e, r), making the optimal solution more challenging to obtain.
Consequently, ERDNS demonstrates greater improvement on these datasets. De-
spite relying solely on dynamic allocation, our method surpasses more com-
plex sampling methods, such as candidate selection in KBGAN, caching in
NSCaching, Subsampling, and Self-Adv.
Neural Network-based Models. Table 4 presents the performance of negative
sampling methods with NN-based KGE models. For CompGCN, Bernoulli sam-
pling is not applicable due to incompatibility with the framework. Interestingly,
unlike conventional KGE models, Self-Adv does not consistently outperform the
uniform sampling method, which might be attributed to incorporating false neg-
ative samples, adversely affecting the learning of global features in NN-based
models. Nevertheless, ERDNS continues to outperform the uniform sampling
method in most conditions, highlighting its effectiveness and universality. Incor-
porating global trainable feature matrices might diminish the impact of nega-
tive samples during training, resulting in a modest performance enhancement of
ERDNS on NN-based models.

Table 4. Performance comparison on ConvE and CompGCN.

KGE model Dataset FB15K237 WN18RR
Method MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

ConvE

unif 31.5 22.6 34.4 49.8 41.0 36.9 42.4 49.0
Bernoulli 29.8 21.4 32.5 46.9 39.7 35.9 41.0 47.9
Self-Adv 31.9 22.7 34.8 50.4 40.3 37.0 41.4 47.0
ERDNS 32.3 23.4 35.4 50.2 41.3 38.0 42.6 48.4

CompGCN (TransE)
unif 32.9 24.1 36.1 50.1 18.9 5.6 25.6 47.5

Self-Adv 28.5 20.0 31.2 45.7 20.4 5.3 29.6 49.3
ERDNS 33.6 24.2 36.2 50.9 24.5 4.9 39.0 53.1

CompGCN (DistMult)
unif 33.3 24.4 36.4 51.2 42.0 37.3 43.3 52.1

Self-Adv 29.2 21.0 31.8 45.9 43.0 39.2 43.1 51.8
ERDNS 34.2 25.2 37.4 52.3 43.4 39.2 44.3 52.5

CompGCN (ConvE)
unif 35.2 26.2 38.5 53.1 46.6 43.4 47.7 53.0

Self-Adv 30.3 22.6 32.9 46.2 43.7 40.7 44.7 49.4
ERDNS 35.3 26.3 38.9 53.6 46.8 43.8 47.8 53.1

5.3 Ablation Study

Investigating the Impact of α and N . As mentioned in Section 4, the pa-
rameter α is crucial in meeting the two requirements of the proposed method. A
large value of α prioritizes sampling according to the distribution of ER pairs,
while a small value prevents the allocation of 0 negative samples to ER pairs
with high frequency. We find that N impacts the optimal value of α. When N is
relatively low, setting α = 1 may not yield the best MRR, despite being consis-
tent with the principle, as higher values of α can lead to the “0 negative sample
problem”. The MRR results on RotatE (R) and ComplEx (C) for all values of
α exhibit a similar trend as N increases in Fig. 2. Initially, the MRR gradually
improves until it reaches its peak when N attains a sufficiently large value, de-
noted as N∗

α, because the “0 negative sample problem” gradually diminishes as
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N increases. The sufficiently large value of N∗
α for different values of α follows

the trend N∗
0.25 < N∗

0.5 < N∗
0.75 < N∗

1 . The exact value of N∗
α varies depending

on the model and dataset.

(a) FB15K237 (b) WN18RR

Fig. 2. MRR of ERDNS on RotatE (R) and ComplEx (C) with different α.

Entity-Relation Pairs with Different Frequencies. We conduct experi-
ments to examine the impact of our method on the number of negative samples
N(e,r) for ER pairs with different frequencies during training and its effect on the
performance of ER pairs with different frequencies during testing. We categorize
ER pairs in the training set into three groups based on their frequencies: G1

t

contains ER pairs with the highest frequency, where #(e, r) > 50; G3
t contains

ER pairs with the lowest frequency, where #(e, r) = 1; and G2
t contains ER

pairs with moderate frequency, where #(e, r) ∈ (1, 50]. Additionally, we group
ER pairs in the testing set into three categories, G1

te, G2
te, and G3

te, to observe
the performance of ER pairs with different frequencies. G1

te and G2
te are subsets

of G1
t and G2

t respectively, while G3
te consists of ER pairs that do not appear in

the training set.
Fig. 3(a) presents the average number of negative samples N(e,r) for Gt with

and without ERDNS (w/ and w/o N), and the average link prediction results
of Gte with and without ERDNS (w/ or w/o MRR), and Self-Adv (S MRR).
With ComplEx, dynamic allocation significantly reduces the average N(e,r) for
G1

t from 256 to 17, and for G3
t , it increases from 256 to 600. The change of N(e,r)

is slightly different for RotatE because its best result is achieved when α = 0.5,
and ComplEx performs best when α = 1. This demonstrates that the allocation
strategy significantly impacts the average N(e,r) in different groups. We observe
that MRR of G1

te, G2
te, and G3

te improve with dynamic allocation, which is also
better than Self-Adv, indicating that obtaining the optimal solution resulted
in the overall performance improvements across ER pairs with all frequency
ranges since with our method the optimal solution of all triples in the NS loss
is attainable. Surprisingly, MRR of G1

te improves despite the substantial drop in
average N(e,r) for (e, r) ∈ G1

te ⊂ G1
t , suggesting that excessive negative samples

may introduce false negative samples, negatively impacting the performance.
False Negative Sample. We discussed the average MRR of G1

te increases with
ERDNS even though only a few negative samples are given because of introduc-
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(a) Average N(e,r) and MRR (b) Average FNs in G1
t

Fig. 3. Average N(e,r) and MRR of three groups on different models and average num-
bers of false negative samples.

ing false negative samples. To demonstrate this, we present the average number
of false negative samples in G1

t during training using various negative sampling
methods such as NSCaching, uniform sampling, Bernoulli sampling, Self-Adv,
and ERDNS in Fig. 3(b). It is worth noting that for NSCaching, the average
number increases during training because false negative samples with high-value
scores can become trapped in the caches. In the case of uniform sampling and
Self-Adv (U&S), negative samples are randomly chosen from the entity set, re-
sulting in the same average number, which is higher than that of Bernoulli sam-
pling when N equals 256. Additionally, ERDNS shows significantly fewer false
negative samples on average, almost one-hundredth of the number of uniform
sampling and Self-Adv, and even much lower than them with N = 50.

Statistical Analysis. We conduct a paired t-test on the results obtained from
10-fold cross-validation [6] of KGE models, namely ComplEx, RotatE, and ConvE,
using the FB15K237 and WN18RR datasets. Table 5 displays the average evalua-
tion metrics from this 10-fold cross-validation and the associated paired t-test p-
values. We observe that varying the train-test split percentage affects KGE model
performance. Specifically, performance on the FB15K237 dataset improves, while
it declines for WN18RR. However, consistent comparative results are achieved.
ERDNS still exhibits the best results for SM models on FB15K237, as explained
in Section 5.2. It is worth noting that the p-values consistently remain under
the 0.05 threshold, which is the conventional threshold for denoting statistical
significance, and frequently drop to values less than 0.0001. This suggests that
even minor performance improvements exhibit statistical differences. Apart from
two exceptions, our method’s average results surpass those of other methods, in-
dicating the overall ERDNS performances are better than others.
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Table 5. Mean results of 10-fold cross-validation and its paired t-test p-values.

KGE model Dataset FB15K237 WN18RR
Method MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

ComplEx
Subsampling(Mean) 37.6 26.0 43.4 60.4 41.0 37.2 42.5 48.6

ERDNS(Mean) 41.8 30.4 47.8 64.0 41.3 37.9 42.7 47.8
p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

RotatE Subsampling(Mean) 40.1 28.3 46.8 63.0 41.7 37.5 43.1 50.2
ERDNS(Mean) 40.3 28.4 47.2 63.3 41.9 37.6 43.3 50.4

p-value 0.00 0.03 0.00 0.00 0.00 0.03 0.01 0.00

ConvE Self-Adv(Mean) 38.3 26.9 43.7 61.1 33.9 31.5 34.8 38.8
ERDNS(Mean) 38.7 27.9 43.9 59.8 34.7 31.7 35.9 40.6

p-value 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00

6 Conclusion

In conclusion, our study reveals that the current negative sampling method ig-
nores the problem that the optimal solution in the NS loss is not attainable when
the same number of negative samples are assigned to ERs with an imbalanced
distribution. To address this issue, we present an ER distribution-aware nega-
tive sampling method that generates varying numbers N(e,r) of negative samples
for each (e, r) based on their distribution in the dataset. The method also can
effectively alleviate the problem of introducing false negative samples in many
negative sampling methods. The proposed method takes into account both the-
oretical and practical aspects and is applicable to a wide range of KGE models.
Experimental results on the link prediction task demonstrate the effectiveness
of the proposed method on both conventional and NN-based KGE models.

The results of NN-based models indicate that incorporating global trainable
features may impact the effectiveness of negative samples in the KGE training
process. In future research, we aim to investigate this issue and explore methods
further to enhance the effectiveness of our approach to NN-based models.

Supplemental Material Statement: Detailed proofs, source code, scoring func-
tions of KGE models, best hyperparameter settings, and full 10-fold cross-validation
results are all available at https://github.com/for4ever44/ERDNS.
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