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Abstract. Aligning schemas and entities of community-created geogra-
phic data sources with ontologies and knowledge graphs is a promising
research direction for making this data widely accessible and reusable
for semantic applications. However, such alignment is challenging due
to the substantial differences in entity representations and sparse inter-
linking across sources, as well as high heterogeneity of schema elements
and sparse entity annotations in community-created geographic data.
To address these challenges, we propose a novel cross-attention-based
iterative alignment approach called IGEA in this paper. IGEA adopts
cross-attention to align heterogeneous context representations across geo-
graphic data sources and knowledge graphs. Moreover, IGEA employs
an iterative approach for schema and entity alignment to overcome anno-
tation and interlinking sparsity. Experiments on real-world datasets from
several countries demonstrate that our proposed approach increases en-
tity alignment performance compared to baseline methods by up to 18
percentage points in F1-score. IGEA increases the performance of the
entity and tag-to-class alignment by 7 and 8 percentage points in terms
of F1-score, respectively, by employing the iterative method.

Keywords: Geographic Knowledge Graph, Iterative Neural Entity Alignment

1 Introduction

Knowledge graphs provide a backbone for emerging semantic applications in
the geographic domain, including geographic question answering and point of
interest recommendations. However, general-purpose knowledge graphs such as
Wikidata [23], DBpedia [14], and YAGO [19] contain only a limited number of
popular geographic entities, restricting their usefulness in this context. In con-
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trast, OpenStreetMap (OSM)34 is a community-created world-scale geographic
data source containing millions of geographic entities. However, the community-
driven nature of OSM leads to highly heterogeneous and sparse annotations at
both the schema and instance levels, which lack machine-interpretable seman-
tics and limit the accessibility and reusability of OSM data. Knowledge graphs
extracted from OSM and dedicated to geographic entities such as LinkedGeo-
Data [1] and WorldKG [7] focus on a selection of well-annotated geographic
classes and entities and do not take full advantage of OSM data. Tighter inter-
linking of geographic data sources with knowledge graphs can open up the rich
community-created geographic data sources to various semantic applications.

Interlinking geographic data sources with knowledge graphs is challenging
due to the heterogeneity of their schema and entity representations, along with
the sparsity of entity annotations and links between sources. Knowledge graphs
such as Wikidata adopt ontologies to specify the semantics of entities through
classes and properties. Taking the entity Berlin as an example, Table 1a and
1b illustrate its representation in OSM and Wikidata. The property wdt:P31
(instance of) in Wikidata specifies the entity type. In contrast, OSM annotates
geographic entities using key-value pairs called tags, often without clear seman-
tics. The distinction of whether a key-value pair represents an entity type or
an attribute is not provided. For instance, in Table 1, the key capital in OSM
corresponds to a binary value specifying whether the location is the capital of a
country. In contrast, the Wikidata property wdt:P1376 (capital of ) is an object
property linked to an entity of type country. Moreover, user-defined key-value
pairs in OSM lead to highly heterogeneous and sparse annotations, where many
entities do not have comprehensive annotations and many key-value pairs are
rarely reused. Finally, sparse and often inaccurate interlinking makes training su-
pervised alignment algorithms difficult. As illustrated in the example, the values,
such as the geo-coordinates of the same real-world entity Berlin, differ between
sources. Such differences in representation, coupled with the heterogeneity and
sparsity of OSM annotations and the lack of links, make schema and entity
alignment across sources extremely challenging.

Recently, several approaches have been proposed to interlink knowledge graphs
to OSM at the entity and schema level, to lift the OSM data into a semantic
representation, and to create geographic knowledge graphs [1,6,13,21]. For exam-
ple, LinkedGeoData [1] relies on manual schema mappings and provides high-
precision entity alignment using labels and geographic distance for a limited
number of well-annotated classes. OSM2KG [21] – a linking method for geogra-
phic entities, embeds the tags of geographic entities for entity representation and
interlinking. The NCA tag-to-class alignment [6] enables accurate matching of
frequent tags to classes, but does not support the alignment of rare tags. The
recently proposed WorldKG knowledge graph [7] incorporates the information

3 https://www.openstreetmap.org/
4 OpenStreetMap, OSM and the OpenStreetMap magnifying glass logo are trademarks
of the OpenStreetMap Foundation, and are used with their permission. We are not
endorsed by or affiliated with the OpenStreetMap Foundation.

https://www.openstreetmap.org/
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Table 1: An excerpt of the Berlin representation in OSM and Wikidata.

(a) OSM tags.

Key Value

name Berlin
place city
population 3769962
way POINT(52.5183

13.4179)
capital yes

(b) Wikidata triples. wd:Q64 identifies Berlin.

Subject Predicate Object

wd:Q64 rdfs:label (label) Berlin
wd:Q64 wdt:P31 (instance of ) wd:Q515 (city)
wd:Q64 wdt:P1082 (population) 3677472
wd:Q64 wdt:P625 52°31’N, 13°23’E

(coordinate location)
wd:Q64 wdt:P1376 (capital of ) wd:Q183 (Germany)

extracted by NCA and OSM2KG, but is currently limited to the well-annotated
geographic classes and entities. Overall, whereas several approaches for linking
geographic entities and schema elements exist, they are limited to well-annotated
classes and entities, they rely on a few properties and do not sufficiently address
the representation heterogeneity and annotation sparsity.

In this paper, we propose IGEA – a novel iterative geographic entity align-
ment approach. IGEA relies on a cross-attention mechanism to align hetero-
geneous context representations across community-created geographic data and
knowledge graphs. This model learns the representations of the entities through
the tags and properties and reduces the dependency on specific tags and la-
bels. Furthermore, to overcome the annotation and interlinking sparsity prob-
lem, IGEA employs an iterative approach for tag-to-class and entity alignment
that starts from existing links and enriches the links with alignment results from
previous iterations. We evaluate our approach on real-world OSM, Wikidata, and
DBpedia datasets. The results demonstrate that, compared to state-of-the-art
baselines, the proposed approach can improve the performance of entity align-
ment by up to 18 percentage points, in terms of F1-score. By employing the
iterative method, IGEA increases the performance of the entity and tag-to-class
alignment by 7 and 8 percentage points in terms of F1-score, respectively.

In summary, our contributions are as follows:

– We propose IGEA – a novel iterative cross-attention-based approach to in-
terlink geographic entities, bridging the representation differences in community-
created geographic data and knowledge graphs.

– To overcome the sparsity of annotations and links, IGEA employs an itera-
tive method for tag-to-class and entity alignment, with integrated candidate
blocking mechanisms for efficiency and noise reduction.

– We demonstrate that IGEA substantially outperforms the baselines in F1-
score through experiments on several real-world datasets.
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2 Problem Statement

In this section, we introduce the relevant concepts and formalize the problem
addressed in this paper.

Definition 1 (Knowledge Graph). A knowledge graph KG = (E,C, P, L, F )
consists of a set of entities E, a set of classes C ⊂ E, a set of properties P , a
set of literals L and a set of relations F ⊆ E × P × (E ∪ L).

Entities of knowledge graph KG with geo-coordinates Lgeo are referred to as
geographic entities Egeo.

Definition 2 (Geographic Entity Alignment). Given an entity n from a
geographic data source G (n ∈ G), and a set of geographic entities Egeo from
a knowledge graph KG, Egeo ⊆ KG, determine the entity e ∈ Egeo such that
sameAs(n, e) holds.

In the example in Table 1, as a result of the geographic entity alignment,
Berlin from OSM will be linked to Berlin from Wikidata with a sameAs link.

Definition 3 (Geographic Class Alignment). Given a geographic data source
G and a knowledge graph KG, find a set of pairs of class elements of both sources,
such that elements in each pair (si, sj), si ∈ G and sj ∈ KG, describe the same
real-world concept.

In the example illustrated in Table 1, the tag place=city from OSM will be
linked to the city (wd:Q515) class of Wikidata.

In this paper, we address the task of geographic entity alignment through
iterative learning of class and entity alignment.

3 The IGEA Approach

In this section, we introduce the proposed IGEA approach. Fig. 1 provides an
approach overview. In the first step, IGEA conducts geographic class alignment
based on known linked entities between OSM and KG with the NCA approach
[6]. The resulting tag-to-class alignment is further adopted for blocking in the
candidate generation step. Then IGEA applies the cross-attention-based entity
alignment module to the candidate set to obtain new links. IGEA repeats this
process iteratively with the resulting high-confidence links for several iterations.
In the following, we present the proposed IGEA approach in more detail.

3.1 Geographic Class Alignment

We adopt the NCA alignment approach introduced in [6] to conduct tag-to-
class alignment. The NCA approach aligns OSM tags with the KG classes. NCA
relies on the linked entities from both sources, OSM and a KG, and trains a
neural model to learn the representations of the tags and classes. The NCA
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Fig. 1: Overview of the proposed IGEA approach.

model creates the shared latent space while classifying the OSM entities into
the knowledge graph classes. NCA then probes the resulting classification model
to obtain the tag-to-class alignments. NCA selects all matches above a certain
threshold value. After applying NCA, we obtain a set of tag-to-class alignments,
i.e., (si, sj), si ∈ G, and sj ∈ KG.

3.2 Candidate Generation

OSM contains numerous geographic entities for which we often do not have
a match in the KGs. IGEA applies candidate blocking to reduce the search
space to make the algorithm more time and complexity efficient. In our task,
the objective of the blocking module is to generate a set of candidate entity
pairs that potentially match. We built the candidate blocking module based on
two strategies, namely entity-type-based and distance-based candidate selection.
Entities with a sameAs link should belong to the same class. Therefore, we use
the tag-to-class alignments produced by the NCA module to select the entities
of the same class from both sources to form candidate pairs. Secondly, since we
consider only geographic entities, we use spatial distance to reduce the candidate
set further and only consider the entities within a threshold distance. Past works
observed that a threshold value of around 2000 to 2500 meters can work well
for most classes [1,13,21]. We choose the threshold of 2500 meters as mentioned
in [21]. The candidate pairs generated after the candidate blocking step are
passed to the cross-attention-based entity alignment module.

3.3 Cross-Attention-Based Entity Alignment

We build a cross-attention-based classification model for entity alignment by
classifying a pair of entities into a match or a non-match. Fig. 2 illustrates the
overall architecture of the entity alignment model. The components of the model
are described in detail below.
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Fig. 2: Cross-attention-based entity alignment model.

Entity Representation Module: In this module, we prepare entity repre-
sentations to serve as the model input. For a given OSM node, we select all tags
and create a sentence by concatenating the tags. For a given KG entity, we select
all predicates and objects of the entity and concatenate all pairs of predicates
and objects to form a sentence. We set the maximum length of a sentence to
be input to the model to Nw, where Nw is calculated as the average number of
words of all entities in the current candidate set. We pass these sentences to the
representation layer for each pair of OSM node n and KG entity e.

In the representation layer, the model creates embeddings for the given sen-
tence. We adopt pre-trained fastText word embeddings [3] for the embedding
layer. For any word not present in the pre-trained embeddings, we assign a zero
vector of size d, where d is the embeddings dimension. In this step, we obtain
an array of size Nw ∗ d for each entity.

Cross-Attention Module: We initiate our cross-attention module with
a Bi-directional LSTM (BI-LSTM) layer. BI-LSTM models have been demon-
strated to perform well on sequential data tasks such as named entity recognition
and speech recognition [4, 10]. We adopt BI-LSTM since we want the model to
learn to answer what comes after a particular key or a property to help the cross-
attention layer. We incorporate BI-LSTM layers after the embedding layers for
each of the inputs. As an output, the BI-LSTM layer can return the final hidden
state or the full sequence of hidden states for all input words. We select the full
sequence of hidden states hln, hle since we are interested in the sequence and
not a single output. These sequences of hidden states hln, hle are then passed to
the cross-attention layer.

Cross-Attention Layer: This layer implements the cross-attention mechanism
[22] that helps understand the important properties and tags for aligning the
entities. As explained in [22], attention scores are built using keys, values, and
queries along with their dimensions. For OSM, we adopt the output of the BI-
LSTM layer hle as key k and query q and hln becomes the value v. For KGs,
we adopt the output of the BI-LSTM layer hln as key k and query q and hle
becomes the value v. We initialize the weight vectors wq, wk, wv using the Xavier
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uniform initializer [9]. We then compute the cross-attention weights for OSM as:

Q = hle ∗ wq,K = hle ∗ wk, V = hln ∗ wv,

att = Q ·K, attw = softmax(att), attc = attw · V,

where attw is the attention weights and attc is the context.
Similarly, we compute the attention weights for KGs by interchanging the

values of hln and hle. We then pass the concatenated attw and attc as can and
cae to the self-attention model.

Self-Attention Layer: Adopting both cross-attention and self-attention layers
can improve the performance of the models in multi-modal learning [15]. In our
case, the intuition behind adopting the self-attention layer is that the model can
learn the important tags and properties of a given entity. The formulation of self-
attention is similar to that of cross-attention. Instead of using a combination of
outputs from the OSM and KG cross-attention layers can and cae, we use only
one input, either can and cae that is the same across k, q, v. We then pass the
self-attention output, i.e., concatenated attw, attc, through the final layer of Bi-
directional LSTM.

Once we have both inputs parsed through all layers, we concatenate the
outputs of the Bi-directional LSTM layers along with the distance input that
defines the haversine distance between the input entities.

Classification Module: We utilize the linked entities as the supervision
for the classification. Each true pair is labeled one, and the remaining pairs
generated by the candidate blocking step are labeled zero. The classification
layer predicts whether the given pair is a match or not. We pass the concatenated
output through a fully connected layer, which is then passed through another
fully connected layer with one neuron to predict the final score. We use a sigmoid
activation function with binary cross-entropy loss to generate the score for the
final match.

3.4 Iterative Geographic Entity Alignment Approach

We create an end-to-end iterative pipeline for aligning KG and OSM entities and
schema elements to alleviate the annotation and interlinking sparsity. We apply
the IGEA approach at the country level. For a selected country, we collect all
entities having geo-coordinates from the KG. In the first iteration, the already
linked entities are used as supervision to link unseen entities that are not yet
linked. After selecting candidate pairs and classifying them into match and non-
match classes, we use a threshold tha to only select high confidence pairs from
the matched class. In the subsequent iterations, we add these high-confidence
matched pairs to the linked entities and then run the pipeline starting from NCA-
based class alignment again. By doing so, we aim to enhance the performance of
entity alignment with tag-to-class alignment-based candidate blocking and tag-
to-class alignment with additional newly linked entities. Algorithm 1 provides
details of the IGEA approach.
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Algorithm 1 The IGEA Algorithm

Input: n, e OSM and KG linked Entities
tha Alignment threshold
itr number of iterations
con Country
kg KG

Output: align Final entity alignment

1: align ⇐ ∅
2: load(n, e, con)
3: KGe ⇐ getCountryEntities(con, kg)
4: GT ⇐getSeedAlignment(con,kg)
5: while i < itr do
6: tag-to-class ⇐ NCA(con,kg,GT )
7: view ⇐ createView(tag-to-class)
8: for all ent ∈ KGe do
9: candidates ⇐ generateCandidates(ent, view, 2500)

10: if candidates ∩GT ̸= ∅ then
11: SeenEnt ⇐ candidates
12: else
13: UnseenEnt ⇐ candidates
14: end if
15: end for
16: model ⇐ classificationModel(seenEnt)
17: prediction ⇐ model(UnseenEnt)
18: for all pair ∈ prediction do
19: if pairconfidence > tha then
20: align ⇐ align ∪ {pair}
21: GT ⇐ GT ∪ {pair}
22: end if
23: end for
24: i = i+ 1
25: end while
26: return align

4 Evaluation Setup

This section describes the experimental setup, including datasets, ground truth
generation, baselines, and evaluation metrics. All experiments were conducted
on an AMD EPYC 7402 24-Core Processor with 1 TB of memory. We implement
the framework in Python 3.8. For data storage, we use the PostgreSQL database
(version 15.2). We use TensorFlow 2.12.0 and Keras 2.12.0 for neural model
building.

4.1 Datasets

For our experiments, we consider OSM, Wikidata, and DBpedia datasets across
various countries, including Germany, France, Italy, USA, India, Netherlands,
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Table 2: Ground truth size for Wikidata and DBpedia.
France Germany India Italy Netherlands Spain USA

Wikidata 19082 21165 7001 16584 4427 14145 73115
DBpedia 10921 165 1870 2621 110 4319 14017

and Spain. All datasets were collected in April 2023. For OSM data, we use
OSM2pgsql5 to load the nodes of OSM into the PostgreSQL database. The
OSM datasets are collected from GeoFabrik download server6. For Wikidata7

and DBpedia8, we rely on the SPARQL endpoints. Given a country, we select
all entities that are part of the country with property P17 for Wikidata and
dbo:country for DBpedia along with geo-coordinates (P625 for Wikidata and
geo:geometry for DBpedia).

4.2 Ground Truth

We select the existing links between geographic entities in OSM and KGs as
ground truth. Since we consider geographic entities from the already linked en-
tities identified through “wikidata” and “wikipedia” tags, we select entities with
geo-coordinates. Table 2 displays the number of ground truth entities for Wiki-
data and DBpedia knowledge graphs. We consider only those datasets where the
number of links in the ground truth data exceeds 1500 to have sufficient data to
train the model. For tag-to-class alignment, we use the same ground truth as in
the NCA [6] approach.

4.3 Baselines

This section introduces the baselines to which we compare our work, including
similarity-based and deep learning-based approaches.
GeoDistance: In this baseline, we select the OSM node for each KG geographic
entity so that the distance between the KG entity and the OSM node is the least
compared to all other OSM nodes. We consider the distance calculated using the
st distance function of PostgreSQL that calculates the minimum geodesic dis-
tance as the distance metric.
LGD [1]: LinkedGeoData approach utilizes geographic and linguistic distance
to match the entities in OSM and KG. Given a pair of geographic entities e1 and
e2, LinkedGeoData considers 2

3ss(e1, e2)+
1
3gd(e1, e2) > 0.95 as a match, where

ss is the Jaro-Winkler distance and gd is the logistic geographical distance.
Yago2Geo: Yago2Geo [13] considers both string and geographic distance while
matching entities by having two filters, one based on Jaro-Winkler similarity

5 https://osm2pgsql.org/
6 https://download.geofabrik.de/
7 https://query.wikidata.org/
8 https://dbpedia.org/sparql

https://osm2pgsql.org/
https://download.geofabrik.de/
https://query.wikidata.org/
https://dbpedia.org/sparql
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(s) between the labels and the second filter based on the Euclidean distance
(ed) between the geo-coordinates of the two entities. Given entities e1 and e2, if
s(e1, e2) > 0.82 and ed(e1, e2) < 2000 meters, the two entities are matched.
DeepMatcher: DeepMatcher [17] links two entities from different data sources
having similar schema. The model learns the similarity between two entities by
summarizing and comparing their attribute embeddings. Since our data sources
do not follow the same schema, we select the values of keys name, addressCoun-
try, address, and population for OSM. For KGs, we select the values of the
equivalent properties label, country, location, and population.
HierMatcher: This baseline [8] aligns entities by jointly matching at token,
attribute, and entity levels. At the token level, the model performs the cross-
attribute token alignment. At the attribute level, the attention mechanism is
applied to select contextually important information for each attribute. Finally,
the results from the attribute level are aggregated and passed through fully con-
nected layers that predict the probability of two entities being a match.
OSM2KG: OSM2KG [21] implements a machine learning-based model for the
entity alignment between OSM and KGs. The model generated key-value em-
beddings using the occurrences of the tags and created a feature vector including
entity type and popularity of KG entities. We use the default thdist 2500 meters
and the random forest classification model adopted in the original paper.
OSM2KG-FT: This baseline is a variation of the OSM2KG model where we
replace the key-value embeddings of OSM entities with fastText embeddings.

4.4 Evaluation Metrics

The standard evaluation metrics for entity and tag-to-class alignment are preci-
sion, recall, and F1-score computed against a reference alignment (i.e., ground
truth). We calculate precision as the ratio of all correctly identified pairs to
all identified pairs. We calculate recall as the fraction of all correctly identi-
fied pairs to all pairs in the ground truth alignment. F1-score is the harmonic
mean of recall and precision. The F1-score is most relevant for our analysis since
it considers both precision and recall. We use macro averages for the metrics
because we have imbalanced datasets in terms of classes.

5 Evaluation

In this section, we discuss the performance of the IGEA model. First, we eval-
uate the performance of the approach for entity alignment against baselines.
Furthermore, we assess the impact of the number of iterations and thresholds.
Finally, we demonstrate the approach effectiveness on unseen entities through a
manual assessment. To facilitate the evaluation, we split our data into 70:10:20
for training, validation, and test data with a random seed of 42.
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Table 3: Entity alignment performance on the OSM to Wikidata linking.

Name
France Germany India Italy Netherlands Spain USA

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

GeoDist 0.65 0.65 0.65 0.56 0.56 0.56 0.75 0.75 0.75 0.68 0.68 0.68 0.67 0.67 0.67 0.71 0.71 0.71 0.88 0.88 0.88
LGD 0.63 0.61 0.62 0.83 0.81 0.82 0.87 0.68 0.72 0.90 0.68 0.77 0.81 0.79 0.80 0.82 0.40 0.82 0.87 0.84 0.85
Yago2Geo 0.5 0.51 0.50 0.53 0.51 0.50 0.61 0.60 0.60 0.52 0.51 0.50 0.50 0.88 0.64 0.63 0.70 0.65 0.88 0.69 0.73
DeepMatcher 0.62 0.58 0.60 0.74 0.67 0.71 0.77 0.79 0.78 0.89 0.55 0.68 0.83 0.78 0.80 0.87 0.75 0.80 0.93 0.91 0.91
HierarMatch 0.51 0.71 0.59 0.64 0.79 0.70 0.71 0.88 0.79 0.62 0.83 0.71 0.8 0.83 0.81 0.80 0.77 0.78 0.92 0.93 0.92
OSM2KG 0.81 0.79 0.80 0.83 0.82 0.82 0.87 0.81 0.84 0.87 0.79 0.83 0.82 0.69 0.75 0.83 0.82 0.82 0.92 0.81 0.86
OSM2KG-FT 0.83 0.81 0.81 0.89 0.82 0.85 0.91 0.75 0.82 0.89 0.85 0.87 0.89 0.71 0.77 0.88 0.82 0.85 0.95 0.87 0.91

IGEA-1 0.95 0.91 0.94 0.93 0.95 0.94 0.88 0.87 0.87 0.93 0.97 0.94 0.94 0.86 0.90 0.89 0.91 0.90 0.93 0.95 0.94
IGEA-3 0.98 0.99 0.99 0.93 0.96 0.95 0.96 0.90 0.93 0.99 0.97 0.98 0.94 0.94 0.94 0.98 0.93 0.95 0.97 0.97 0.97

5.1 Entity Alignment Performance

Tables 3 and 4 present the performance of the IGEA approach and the base-
lines in terms of precision, recall, and F1-score on the various country datasets
for Wikidata and DBpedia knowledge graphs, respectively. IGEA-1 and IGEA-
3 indicate the results obtained with the 1st and 3rd iterations of the IGEA
approach, respectively. The results demonstrate that the proposed IGEA ap-
proach outperforms all the baselines in terms of the F1-score. We achieve up
to 18 percentage points F1-score improvement on Wikidata and up to 14 per-
centage points improvement over DBpedia KGs. IGEA also achieves the best
recall and precision on several datasets. Regarding the baselines, as expected,
GeoDist performs poorly since the geo-coordinates of the same entity are pre-
sented with different precision in OSM and in KGs and are not always in closer
proximity to each other. OSM2KG-FT performs the best among the baselines
for both KGs. We notice that using the tags with fastText embeddings slightly
improves the performance of the OSM2KG over using the occurrence-based key-
value embeddings. The deep-learning-based baselines perform on par with the
other baselines. The absence of the features such as name and country limits the
performance of these deep-learning-based baselines that rely on specific proper-
ties. The performance of the name-based baselines such as Yago2Geo and LGD
is inconsistent across datasets; a potential reason is the absence of labels in the
same language.

Regarding the datasets, the IGEA approach achieved the highest perfor-
mance improvement on the France and Spain datasets for Wikidata and DB-
pedia KGs, respectively. The smallest performance improvement over the best-
performing baselines is produced on the USA dataset. Data in the USA dataset
is mostly in English; furthermore, the USA dataset has the highest percentage of
name tags among given countries, which makes string similarity-based baseline
approaches more effective. We notice that India achieves the lowest performance
across datasets and KGs. The number of overall properties and tags for entities
in India are lower than in other datasets, making IGEA less beneficial. DBpe-
dia results demonstrate better model performance compared to Wikidata. Since
DBpedia contains more descriptive properties, it benefits more from employing
the cross-attention-based mechanism.
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Table 4: Entity alignment performance on the OSM to DBpedia linking.

Name
France India Italy Spain USA

P R F1 P R F1 P R F1 P R F1 P R F1

GeoDist 0.39 0.39 0.39 0.35 0.35 0.35 0.58 0.58 0.58 0.40 0.40 0.40 0.64 0.64 0.64
LGD 0.84 0.76 0.79 0.83 0.63 0.72 0.87 0.69 0.76 0.91 0.72 0.78 0.70 0.61 0.64
Yago2Geo 0.70 0.63 0.66 0.67 0.65 0.65 0.73 0.69 0.71 0.73 0.76 0.74 0.54 0.54 0.54
DeepMatcher 0.79 0.85 0.82 0.78 0.85 0.81 0.83 0.73 0.77 0.81 0.73 0.77 0.85 0.86 0.85
HierarMatch 0.69 0.84 0.76 0.73 0.85 0.79 0.66 0.90 0.76 0.55 0.87 0.67 0.81 0.90 0.85
OSM2KG 0.80 0.82 0.80 0.84 0.79 0.81 0.80 0.84 0.81 0.82 0.77 0.79 0.87 0.82 0.84
OSM2KG-FT 0.82 0.87 0.84 0.84 0.82 0.83 0.81 0.89 0.85 0.82 0.82 0.82 0.90 0.91 0.90

IGEA-1 0.92 0.91 0.91 0.89 0.91 0.90 0.95 0.89 0.92 0.96 0.97 0.96 0.97 0.95 0.96
IGEA-3 0.95 0.99 0.97 0.96 0.97 0.97 0.95 0.98 0.96 0.96 0.95 0.95 0.99 0.97 0.98

Table 5: Ablation study results for the DBpedia datasets.

Name
France India Italy Spain USA

P R F1 P R F1 P R F1 P R F1 P R F1

w/o Cross-Attention 0.86 0.81 0.83 0.83 0.82 0.82 0.86 0.77 0.81 0.82 0.81 0.81 0.83 0.84 0.83
w/o Distance 0.85 0.89 0.86 0.81 0.87 0.82 0.81 0.83 0.82 0.79 0.86 0.82 0.82 0.87 0.84
w/o Class-Blocking 0.81 0.93 0.87 0.73 0.94 0.82 0.78 0.93 0.85 0.75 0.92 0.83 0.79 0.96 0.86

IGEA-3 0.95 0.99 0.97 0.96 0.97 0.97 0.95 0.98 0.96 0.96 0.95 0.95 0.99 0.97 0.98

5.2 Ablation Study

Table 5 displays the results of an ablation study to better understand the im-
pact of individual components. We observe that removing the cross-attention
layer significantly reduces the performance of the model. The class-based block-
ing improves the recall but has a sharp decrease in precision, as it creates many
noisy matches. Removing geographic distance also results in worse performance
compared to the IGEA. The results of the ablation study confirm that the com-
ponents introduced in the IGEA approach help to achieve the best performance.

5.3 Impact of the Number of Iterations

In this section, we evaluate the impact of the number of iterations on the IGEA
performance. Fig. 3 displays the F1-scores for the entity alignment after each
iteration. We observe that the scores increase in all configurations with the in-
creased number of iterations; after the 3rd iteration, the trend is not continuing.
We notice the performance drops for a few countries. After manually checking
such drops, we found that the model removes the wrong matches that are part
of the ground truth data, which leads to a drop in the evaluation metrics. By
adopting an iterative approach, we obtain a maximum improvement of 6 and 7
percentage points in F1-score over Wikidata and DBpedia, respectively. Fig. 4
displays the F1-scores for tag-to-class alignment after each iteration. We obtain
a maximum increase of 4 and 8 percentage points in the F1-score over Wikidata
and DBpedia, respectively. We observe a similar trend as the entity alignment,
such that the model performance increases up to the 3rd or 4th iteration. The
increased number of aligned tag-class pairs provides more evidence for entity
alignment.
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Fig. 3: Entity alignment performance: F1-scores for 1–5 iterations.
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Fig. 4: Tag-to-class alignment performance: F1-scores for 1–5 iterations.

5.4 Alignment Threshold Tuning

We assess the importance of the alignment threshold tha regarding the F1-score
to select the appropriate value of tha. Fig. 5 depicts the F1-scores obtained after
the third iteration for threshold values ranging between 0.50 and 0.90 with a
gap of 0.1. Overall, the model performs well for all threshold values. Comparing
the performance of different tha values, the highest F1-score is achieved with a
tha = 0.60 for both KGs across all datasets. Therefore, in the experiments in
other parts of this paper, we set tha to 0.6.

5.5 Manual Assessment of New Links

We manually assess the quality of the links obtained on unseen data. We cre-
ate the unseen dataset by considering the entities of Wikidata that are tagged
with the country Germany and have a geo-coordinate, but are not present in
the ground truth links. We randomly select 100 entities from all iterations and
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Fig. 5: Entity alignment performance in terms of F1-Score with different thresh-
old values.

manually verify the correctness of the links. Out of 100 matches, we obtained
89 correct matches. We observe that 6 of the wrong matches are mostly located
closer to each other or contained in one another. These entities contain similar
property and tag values, making it difficult for the model to understand the dif-
ference. For example, Wikidata entity Q1774543 (Klingermühle) is contained in
OSM node 114219911 (Bessenbach). The lack of an English label also hinders the
performance. Meanwhile, we observed that IGEA discovers new links between
entities and corrects the previously wrong-linked entities. OSM node 1579461216
(Beuel-Ost) has a Wikidata tag as Q850834 (Beuel-Mitte) but using IGEA, the
correct Wikidata entity Q850829 (Beuel-Ost) has been linked to the OSM node.
The performance of the unseen entities demonstrates the effectiveness of the
proposed IGEA approach.

6 Related Work

This section discusses related work in geographic entity alignment, ontology
alignment, and iterative learning.

Geographic entity alignment aims to align geographic entities across dif-
ferent geographic sources that refer to the same real-world object. In the past,
approaches often relied on geographic distance and linguistic similarity between
the labels of the entities [1, 13]. LIMES [20] relies on rules to rate the simila-
rity between entities and uses these rules in a supervised model to predict the
links. Tempelmeier et al. [21] proposed the OSM2KG algorithm – a machine-
learning model to learn a latent representation of OSM nodes and align them
with knowledge graphs. OSM2KG also uses KG features such as name, popula-
rity, and entity type to produce more precise links. Recently, deep learning-based
models have gained popularity for the task of entity alignment on tabular data.
DeepMatcher [8] and HierMatcher [17] use an embedding-based deep learning
approach for predicting the matches for tabular datasets. Peeters et al. [18] use
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contrastive learning with supervision to match entities in small tabular product
datasets. In contrast, IGEA adopts the entire entity description, including KG
properties and OSM tags, to enhance the linking performance.

Ontology and schema alignment refer to aligning elements such as classes,
properties, and relations between ontologies and schemas. Such alignment can
be performed at the element and structural levels. Many approaches have been
proposed for tabular and relational data schema alignment and rely on the struc-
tural and linguistic similarity between elements [5,12,16,26]. Lately, deep learn-
ing methods have also gained popularity for the task of schema alignment [2].
Due to the OSM schema heterogeneity and flatness, applying these methods to
OSM data is difficult. Recently, Dsouza et al. [6] proposed the NCA model for
OSM schema alignment with knowledge graphs using adversarial learning. We
adopt NCA as part of the proposed IGEA approach.

Iterative learning utilizes the results of previous iterations in the following
iterations to improve the performance of the overall task. In knowledge graphs,
iterative learning is mainly adopted in reasoning and completion tasks. Many
approaches exploit rule-based knowledge to generate knowledge graph embed-
dings iteratively. These embeddings are then used for tasks such as link predic-
tion [11,27]. Zhu et al. [28] developed a method for entity alignment across know-
ledge graphs by iteratively learning the joint low-dimensional semantic space to
encode entities and relations. Wang et al. [24] proposed an embedding model for
continual entity alignment in knowledge graphs based on latent entity represen-
tations and neighbors. In cross-lingual entity alignment, Xie et al. [25] created
a graph attention-based model. The model iteratively and dynamically updates
the attention score to obtain cross-KG knowledge. Unlike knowledge graphs,
OSM does not have connectivity between entities. Therefore, the aforementioned
methods are not applicable to OSM. In IGEA, we employ class and entity align-
ment iteratively to alleviate the data heterogeneity as well as annotation and
interlinking sparsity to improve the results of the geographic entity and schema
alignment.

7 Conclusion

In this paper, we presented IGEA – a novel iterative approach for geographic
entity alignment based on cross-attention. IGEA overcomes the differences in
entity representations between community-created geographic data sources and
knowledge graphs by using a cross-attention-based model to align heterogeneous
context information and predict identity links between geographic entities. By
iterating schema and entity alignment, the IGEA approach alleviates the anno-
tation and interlinking sparsity of geographic entities. Our evaluation results on
real-world datasets demonstrate that IGEA is highly effective and outperforms
the baselines by up to 18 percentage points F1-score in terms of entity alignment.
Moreover, we observe improvement in the results of tag-to-class alignment. We
make our code publicly available to facilitate further research9.
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Supplemental Material Statement: Section 4 provides details for baselines and
datasets. Source code, instructions on data collection, and for repeating all ex-
periments are available from GitHub 9.
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