
How is your Knowledge Graph Used:
Content-Centric Analysis of SPARQL Query

Logs⋆

Luigi Asprino1[0000−0003−1907−0677] and Miguel Ceriani2,3[0000−0002−5074−2112]

1 University of Bologna, Via Zamboni 33, Bologna, Italy
2 University of Bari Aldo Moro, Via Orabona 4, Bari, Italy

3 ISTC-CNR, Via S. Martino della Battaglia 44, Roma, Italy
luigi.asprino@unibo.it
miguel.ceriani@uniba.it

Abstract. Knowledge graphs (KGs) are used to integrate and persist
information useful to organisations, communities, or the general public.
It is essential to understand how KGs are used so as to evaluate the
strengths and shortcomings of semantic web standards, data modelling
choices formalised in ontologies, deployment settings of triple stores etc.
One source of information on the usage of the KGs is the query logs, but
making sense of hundreds of thousands of log entries is not trivial. Pre-
vious works that studied available logs from public SPARQL endpoints
mainly focused on the general syntactic properties of the queries disre-
garding the semantics and their intent. We introduce a novel, content-
centric, approach that we call query log summarisation, in which we
group the queries that can be derived from some common pattern. The
type of patterns considered in this work is query templates, i.e. common
blueprints from which multiple queries can be generated by the replace-
ment of parameters with constants. Moreover, we present an algorithm
able to summarise a query log as a list of templates whose time and space
complexity is linear with respect to the size of the input (number and
dimension of queries). We experimented with the algorithm on the query
logs of the Linked SPARQL Queries dataset showing promising results.

Keywords: SPARQL · Query log summarisation · Linked SPARQL
queries.

1 Introduction

Knowledge Graphs (KGs) are pervasive assets used by organisations and com-
munities to share information with other stakeholders. For knowledge engineers,
it is essential to understand how KGs are used so as to assess their strengths and
shortcomings, but, neither established methodologies nor tools are available. We
observe that it is customary to make KGs accessible via SPARQL endpoints,
⋆ An extended version of this paper (pre-print) is available at https://doi.org/10.
6084/m9.figshare.23751243

https://doi.org/10.6084/m9.figshare.23751243
https://doi.org/10.6084/m9.figshare.23751243

2 L. Asprino and M. Ceriani

therefore their query logs, i.e. the list of queries evaluated by the endpoint, are
a valuable source from which the use of the KGs can be pictured. Compared to
logs of “traditional” (centralised) databases (both relational and NoSQL), logs
of public SPARQL endpoints bear much more information because they show
usage of a dataset by multiple agents (human or robotic), for multiple applica-
tions, in different ways, and even in the context of multiple domains (especially
if the dataset is generic).

Several works had already analysed the available SPARQL
logs [29,2,32,16,37,11,10,38,9]. Most of them centred the analysis on the
general structure of the queries (usage of specific SPARQL clauses, the shape
of the basic graph patterns). The output of the analyses is mostly quantitative,
possibly coupled by some examples. Relatively less focus has been so far given
to aspects that go beyond the general query syntactic structure and relate to the
actual content, such as aspects ranging from the usage of specific RDF terms
(both classes, properties, and individuals), to specific (sub)query patterns, to
inference of template usage and query evolution. Analysis of the actual content
of queries can lead to further quantitative results, but most importantly can be
used as a tool for qualitative analysis of one or multiple query logs: different
levels of abstractions on the queries enable a meaningful exploration of the
given data set.

The potential usage contexts for such analysis are manifold. For example,
maintainers of SPARQL endpoints could optimise the execution of common
queries by caching results or indexing predicates; designers of ontologies could
assess what predicates are actually used thus allowing reshaping the model with
shortcuts or removing unused predicates; designers of semantic web standards
could introduce new constructs and operators in order to address common query
patterns; and, researchers of the field could design benchmark to assess the per-
formance of SPARQL endpoints.

The present work introduces a novel general approach to analyse query logs
with a focus on query content and qualitative information. Specifically, we frame
the query log summarisation as the problem of finding a list of templates mod-
elling a query log. We introduce an algorithm able to solve the problem whose
time and space complexity is linear in the size of the input. Finally, we experi-
ment with the algorithm on the logs available in the LSQ dataset [37] to evaluate
its usefulness. The analysis of the results shows that the method is able to pro-
vide more concise representations of the logs and novel insights on the usage of
28 public SPARQL endpoints.

The rest of the paper is organised as follows. Section 2 gives an overview of the
existing work on query logs analysis. Section 3 lays the theoretical foundation of
the work and introduces the problem of query log summarisation. The proposed
algorithm to address the problem is presented in Section 4. Section 5 describes
the experimental evaluation and its results, discussing strengths and opportu-
nities enabled by the proposed approach. Section 6 concludes and outlines the
ongoing and future work.

How is your Knowledge Graph Used 3

2 Related Work

Query logs are insightful sources for profiling the access to datasets. Although
there are no approaches that aim to summarise SPARQL query logs as a list of
query templates, an overview of the main approaches to analysing query logs is
worthwhile. We classify the approaches according to the target query language.

Approaches targeting SQL query logs. Even if not directly applicable to assess
the usage of knowledge graphs, techniques analysing query logs of relational
databases may be adapted as SQL and SPARQL have syntactic similarities.
These techniques have been used for detecting anomalous access patterns [21],
preventing insider attacks [26] and optimising the workload of database man-
agement systems [14] thus becoming standard features for automatic indexing
in commercial relational databases [28,31]. All the approaches can be gener-
alised as feature extraction methods needed for clustering queries and profiling
user behaviour. In most cases, the features extracted are basic, such as the SQL
command used (e.g. SELECT, INSERT), the list of relations queried, and the
operators used. Nevertheless, similarly to our approach, query templates and
structural features are also used for computing query similarity [22,44], albeit
still in a clustering approach. Some issues of such feature-based clustering ap-
proaches are that finding a useful way to convey the meaning of the clusters is not
trivial, that scalability can be a problem as the worst-case cost is quadratic, and
that some aspects of the query are scraped since the beginning for performance
reasons, while they may be a relevant facet of a common pattern. Specifically,
some methods [22,44,43] replace all the constants in the query with placeholders
as a pre-processing step, which for SPARQL would hide the intent of most of the
queries. Our method also replaces the constants with placeholders in an initial
phase but, crucially, keeps the mapping with the original constants and puts
them back if they have always the same value in a group of queries.

Approaches targeting SPARQL query logs. Analyses of SPARQL query logs have
been performed since the early years of the Semantic Web. These studies fall
into a more general line of research adopting empirical methods for observing
typical characteristics of data [4,6], identifying common patterns in data [5],
assessing the usage and identifying shortcomings of data [24,3] and using the
obtained insights for developing better tools [20]. This kind of analysis has been
also promoted by international workshops, such as USEWOD4 which from 2011
to 2016 fostered research on mining the usage of the Web of Data [25]. Most
of the existing work focus on quantitative and syntactic characteristics, such
as the types of clients requesting semantic data [29] (including analyses of the
characteristics of queries issues by humans, called organic, and those sent by
artificial agents, robotic queries [9,36]), the user profile [19], the number of triple
patterns per query [29,2,32,41,16], the use of predicates [29,2,32], the use of
SPARQL operators [2,32,41,16] or a specific function (e.g. REGEX [1]), the

4 http://usewod.org/workshops.html

http://usewod.org/workshops.html

4 L. Asprino and M. Ceriani

structure of the Basic Graph Patterns (e.g. the out-degree of nodes, the number
of join vertices) [2,41], the monotonicity of the queries [16], the probabilistic
safeness [38], and the presence of non-conjunctive queries [32]. However, the
analysis is limited at the triple-pattern level by paying less attention to the
structural and semantic characteristics of the queries, thus making it difficult to
figure out what the prototypical queries submitted to the endpoints look like. A
noteworthy exception is [35], in which the author, while analysing queries at the
triple pattern level, attempts to extract generic query patterns.

Bonifati et al. [11] investigate the structural characteristics related to the
graph and hypergraph representation of queries by outlining the most common
shapes. Moreover, they analyse the evolution of queries over time, by introducing
the notion of the streak, i.e., a sequence of queries that appear as subsequent
modifications of a seed query. By grouping queries based on similarity, this aspect
of their work is akin to the approach presented in this work.

The existing studies are valuable for assessing the usage of SPARQL as a
standard query language or for benchmarking and optimising the query engines.
However, none of the existing approaches provides any insight into how KG is
actually queried in terms of KG patterns queried by the users, and, therefore
are of little help in designing the KGs. This paper investigates an alternative
approach aiming at extracting query templates from SPARQL logs that may
help designers to characterise the prototypical queries submitted by the users.

3 Preliminaries

This Section lays the theoretical foundation of this work.

RDF and SPARQL. For the sake of completeness, we introduce the basic notions
of RDF [13] and SPARQL [17] needed to understand the methods and analysis
described in this work. We defer the reader to the corresponding documentation
for a complete description of these standards. Formally, let I, B, and L be infinite
sets of IRIs, blank nodes, and literals. The sets are assumed to be pairwise
disjoint and we will collectively refer to them as RDF terms. A tuple (s, p, o) ∈
(I ∪ B) × (I) × (I ∪ B ∪ L) is called (RDF) triple and we say s is the subject
of the triple, p the predicate, and o the object. An RDF graph is a set of RDF
triples, whereas an RDF dataset is a collection of named RDF graphs, each one
identified by IRI, and a default RDF graph.

SPARQL is based on the idea of defining patterns to be matched against
an input RDF dataset. Formally, considering the set of variables V , disjoint
from the previously defined I, B, and L, a triple pattern is a tuple of the form
(s, p, o) ∈ (I∪B×V)×(I×V)×(I∪B∪L×V). A basic graph pattern (BGP) is a set
of triple patterns. A SPARQL query Q is composed of the following components:
(i) the query type (i.e. SELECT, ASK, DESCRIBE, CONSTRUCT); (ii) the
dataset clause; (iii) the graph pattern (recursively defined as being a BGP or the
result of the composition of one or more graph patterns through one of several
SPARQL operators that modify and combine the obtained results); (iv) the
solution modifiers (i.e. LIMIT, GROUP BY, OFFSET).

How is your Knowledge Graph Used 5

3.1 Query templates

Intuitively, a query template is a SPARQL query containing a set of placeholders
which are meant to be substituted with RDF terms. The placeholders are called
parameters of the query template and will be represented in queries using vari-
able names starting with “$_”5. For example, consider the following queries 1.1
and 1.26. The intent of both queries is to retrieve the types of a given entity.
Such intent can be expressed via the Template 1.1.

Query 1.1:
SELECT ?type WHERE {
dbr:Barack_Obama rdf:type ?type

}

Query 1.2:
SELECT ?type WHERE {
dbr:Interstellar_(film) rdf:type ?type

}

Template 1.1:
SELECT ?type WHERE {

$_1 rdf:type ?type
}

Query 1.3:
SELECT ?p WHERE {
?p rdf:type foaf:Person

}

Template 1.2:
SELECT ?type WHERE {
$_1 $_2 ?type

}

We say that a query template qt models a query q, indicated as qt ≺ q, if
there exists a partial bijective function mt, called mapping, that maps parameters
P t in qt onto RDF terms of q such that applying mt onto qt gives q, i.e. mt :
P t → (I ∪ L) and m(qt) = q. For example, the following mappings m1 and m2

transform the Template 1.1 into the queries 1.1 and 1.2 respectively: m1($_1)
:= dbr:Barack_Obama and m2($_1) := dbr:Interstellar_(film).

It is worth noticing that, to preserve the intent of the query, templates do not
substitute variables and blank nodes (as they are considered non-distinguished
variables) with parameters, reduce the number of triple patterns, or replace
SPARQL operators. As a result, a template for modelling a set of queries does
not always exist (e.g. a single template modelling queries 1.1, 1.2, and 1.3 can
not exist). Moreover, multiple templates may model the same set of queries.
For example, the Template 1.2 models the queries 1.1 and 1.2 (in this case
m1 and m2 must also map $_2 onto rdf:type, i.e. m1($_2) := rdf:type and
m2($_2) := rdf:type). In fact, the number of parameters of a template allows
us to formalise the intuition of more specific/generic template. We say that the
Template 1.2 is more generic (or, less specific) of Template 1.1 as it maps a
higher number of parameters. As a result, given a query q, the most generic
5 Using the initial underscore in the variable name to identify parameters matches

with existing practice [27], while using “$” visually helps distinguish the parameters
from query variables that often start with “?”

6 For brevity, the queries omit prefix declarations:

– dbr: <http://dbpedia.org/resource/>
– rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
– foaf: <http://xmlns.com/foaf/0.1/>
– dbo: <https://dbpedia.org/ontology/>

6 L. Asprino and M. Ceriani

template modelling q is the template in which all the IRIs and literals of q are
substituted by parameters. Therefore, it is easy to see that given a set of queries
(that can be modelled by a single template) it is always possible to derive the
most generic template by substituting all literals and IRIs by parameters.

We characterised templates as queries having placeholders that are to be
replaced by IRIs or literals. However, there are two extensions to this rule which
are needed to capture very common patterns for paginating the results and
injecting values into a query. One is the usage of placeholders in LIMIT and
OFFSET clauses, which are the solution modifiers used to get a specific slice of all
the results. Both clauses are always followed by an integer, specifying respectively
the number and initial position of the query solutions. By allowing this, integers
to be replaced by parameters, multiple versions of the same query in which only
one or both are changed (e.g., changing the OFFSET to perform pagination) can
be represented by the same template.

The second extension to the rule has been defined for another specific clause:
VALUES. This clause is used to bind one or more variables with a multiset of RDF
terms. It is thus a way to give constraints to a query with multi-valued data that
could come from previous computations, possibly also other queries7. In the case
of a VALUES clause, rather than replacing single RDF terms, a placeholder either
replace the whole corresponding multiset of terms or none.

Even if they are not explicitly mentioned, all the SPARQL clauses and oper-
ators (FILTERs, OPTIONALs, UNIONs etc.) can be part of a query template.
We only mentioned the VALUE, LIMIT, and OFFSET operators as they deserve
special treatment.

One of the main intuitions behind the usage of query templates to study a
log is that it can help to “reverse engineer” the methods and processes used to
generate the queries. In order to discuss this aspect, we define a query-source
as a specific and unique piece of code (which could nevertheless span multiple
software components in complex cases) that is responsible for the generation
(possibly based on parameters) and execution of a query. A template that models
many queries in a log may capture a common usage pattern that spans multiple
query sources or a broadly used single query source. Both cases can be of interest
in the analysis of a query log.

3.2 Query log summarisation problem

We formally describe a query log and frame its summarisation as a theoreti-
cal problem. A SPARQL Query Log l = [e1, e2, .., en] is a list of entries ei =
(q, t, s,m) each representing the execution at a certain time t of a query q by a
SPARQL endpoint s with associated metadata m. For the purpose of the algo-
rithm presented below, the information of the SPARQL endpoint executing the
query is only used to group together queries evaluated over the same KG, and
we do not consider time and metadata. Therefore, for brevity, SPARQL query
logs reduce to a sequence of queries l = [q1, q2, .., qn]. Note that queries can be

7 It is for example a recommended way to perform query federation [34].

How is your Knowledge Graph Used 7

repeated in a log, so for convenience, we define an operator Q to get them as a
set (hence without repetitions): Q(l) = {qi|qi ∈ l}.

Given a query log l = [q1, q2.., qn], the SPARQL log summarisation is the
problem of finding a set of query templates Qt = {qt1, qt2, .., qtm} (with m ≤ n),
called log model, such that for each query qi ∈ l, there exists a query template
qtj such that qtj ≺ qi. It is worth noticing that, since each query is the template
of itself (in this case the mapping from placeholders to RDF terms is empty), a
trivial solution to the problem is Qt = Q(l). Therefore, we have that the size of
log model Qt may range from 1, in the case that all the queries in the log are
modelled by a single template, to |Q(l)|, when a common template for any pair
of queries does not exist.

It is worth noticing that summarising a query log differs from evaluating the
containment/equivalence of a pair of queries [12,33]. In fact, given a query q and
its template qt (i.e. qt ≺ q), q and qt are (except for constants and parameters)
the exact same query. Whereas evaluating the query containment/equivalence
requires deciding if the result set of one query is always (i.e. for any dataset)
contained into/equivalent to the result set of a different query. Of course, the
two approaches, log summarisation and query containment/equivalence can be
potentially combined to derive more succinct log models, but this is outside the
scope of this paper.

Metrics. The aim of summarising a query log is to assist KG engineers in un-
derstanding how their KGs are queried. To do so, a KG engineer has ideally to
go through the list of all the queries. Obviously, the shorter the list of queries
to examine, the less effort from the KG engineer is required for the analysis.
Intuitively, the benefit of using a log model instead of a full query log is to
reduce the list of queries to examine. This benefit is proportional to the differ-
ence between the size of the log model and the size of the query log. However,
one must consider that not all the query templates have the same informational
value. In fact, we can consider that the more log entries a template models, the
more informative it is (in other words, it allows the KG engineer to have an
indication of a larger portion of the query log). Therefore, if the templates are
ordered according to their informational value, the KG engineer would be able
to analyse a large portion of the log by going only through the most informative
templates.

To measure the impact of this on the informational value of a model we
employ the concept of entropy. The entropy over a discrete random variable X,
taking values in the alphabet X and distributed according to p : X → [0, 1], is
defined as follows [39]:

H(X) := −
∑
x∈X

p(x) log p(x)

Given a query log l and a model Qt over it, we consider a random variable
T taking values over the “alphabet” Qt and distributed as the templates of Qt

are distributed over the log l. That is, with probability distribution pQt
defined

as follows:

8 L. Asprino and M. Ceriani

pQt
(qti) =

|{qj |qj ∈ l, qti ≺ qj}|
|l|

We can thus measure the entropy of this distribution, which depends both
on the log l and the model Qt. The entropy corresponds to the average number
of bits (considering base 2 for log) used to encode an item, which in our case is a
template, in an optimal encoding. For a uniform distribution over n values, the
entropy is log(n), which is the number of bits required for a simple encoding of
n values. If the values are not uniformly distributed a more efficient representa-
tion (as in a lossless compression) can be used, where more frequent values are
represented with shorter encodings.

Recalling that the set of queries Q(l) is already a model of l, the one created
by simply taking all the queries as they are, we can compute the entropy for
this model. The aim of another computed model Qt of l is to achieve a more
concise representation of the log and thus lower entropy. In the experiments with
a dataset of logs (cf. Section 5), we measure the entropy of Q(l) (indicated as
H(Q)) as opposed to that of a derived log model Qt (indicated as H(T)). The
difference between H(Q) and H(T) indicates how much less information needs
to be screened by the KG engineer to examine the log.

4 Approach

We describe the procedure for query log summarisation. Appendix A of the ex-
tended version of the paper contains the complete pseudo-code for the algorithm,
the sketch of the proof of soundness, the detailed complexity analysis, and other
formal considerations on the output of the algorithm. To convey the intuition, we
use the following log as a running example l =[Query 1.1, Query 1.2, Query 1.1,
Query 1.4, Query 1.2, Query 1.5] where Queries 1.1 and 1.2 are defined above
and Queries 1.4 and 1.5 follow.

Query 1.4:
SELECT ?director ?starring WHERE {

dbr:Pulp_Fiction dbo:director ?
director .

dbr:Pulp_Fiction dbo:starring ?
starring .

}

Query 1.5:
SELECT ?director ?starring WHERE {

dbr:Django_Unchained dbo:director
?director .

dbr:Django_Unchained dbo:starring
?starring .

}

Template 1.3:
SELECT ?director ?starring WHERE {

$_1 $_2 ?director .
$_3 $_4 ?starring .

}

Template 1.4:
SELECT ?director ?starring WHERE {

$_1 dbo:director ?director .
$_1 dbo:starring ?starring .

}

Intuitively, the algorithm performs two steps, called generalise() and
specialise(). The function generalise() creates a generic template for a

How is your Knowledge Graph Used 9

query, replacing each occurrence of IRIs and literals with a different new pa-
rameter. Therefore, the generated template is the most generic that mod-
els the query. At the same time a mapping is created, associating each
parameter with the RDF term that was replaced. For example, gener-
alise(Query 1.1) returns the Template 1.2 and the mapping m1 defined
as follows: m1($_1) := dbr:Barack_Obama, m1($_2) := rdf:type; gen-
eralise(Query 1.2) returns the Template 1.2 and the mapping m2 de-
fined as follows: m2($_1) := dbr:Interstellar_(film), m2($_2) :=
rdf:type; generalise(Query 1.4) returns the Template 1.3 and the map-
ping m4 defined as follows: m4($_1) := dbr:Pulp_Fiction, m4($_2) :=
dbo:director, m4($_3) := dbr:Pulp_Fiction, m4($_4) := dbo:starring;
generalise(Query 1.5) returns the Template 1.3 and the mapping m5 defined
as follows: m5($_1) := dbr:Django_Unchained, m5($_2) := dbo:director,
m5($_3) := dbr:Django_Unchained, m5($_4) := dbo:starring.

The function specialise() takes as input a template and an associated set
of mappings and, by just analysing the set of mappings, it establishes if the
number of parameters can be reduced. There are two interesting cases for this
purpose: (i) for a parameter, all the mappings in the set map it to the same
RDF term (it is thus a constant); (ii) for a pair of parameters of a template,
each mappings in the set maps them to a common RDF term (one parameter is
actually a duplicate of the other). For each instance of these cases, the template
and the mappings are updated accordingly: (i) in the first case (the parameter
is constant), the parameter in the template is replaced by the constant and
removed from the mappings; (ii) in the second case (two parameters mapped to
the same RDF terms), one parameter in the template is replaced by the other
and removed from the mappings. For example, both m1 and m2 map $_2 to
rdf:type which can be considered as a constant (i.e. m1($_2) = m2($_2) =
rdf:type), therefore the Template 1.2 can be specialised as Template 1.1 and
the parameter $_2 replaced with rdf:type. Concerning the Template 1.3 and
the mappings m4 and m5, the specialise function replaces $_2 and $_4 with
two constants (dbo:director and dbo:starring) and unifies $_1 and $_3 in
both mappings as they map to the same RDF term (dbr:Pulp_Fiction and
dbr:Django_Unchained respectively for m4 and m5). The function returns the
Template 1.4 and m4 and m5 updated.

The main function discoverTemplates(): (i) takes a set of queries; (ii) ex-
tracts a pair (template, mapping) for each query by invoking generalise;
(iii) accumulates the mappings associated with the same template into a dic-
tionary (the dictionary uses the templates as keys and mapping sets as values);
(iv) then, for each pair (template, mapping set), calls specialise() and, possibly,
replaces the pair with a specialised one.

Furthermore, along with the mappings, the algorithm maintains the original
query ids, which in turn allows to find the data of each corresponding execution
in the log. Keeping track of this relationship is crucial so that is later possible to
derive statistics based on their usage or explore the detail of specific executions.

10 L. Asprino and M. Ceriani

Properties of the extracted log model. It is worth noticing that, given a query
log, the algorithm first maximizes the number of queries a single template can
represent, by grouping each query under its most generic template. Then, the
algorithm minimizes the number of parameters of each template, by returning
the most specific template modelling that group of queries (in other words, it
keeps a minimal set of parameters needed to represent the set of queries). This
ensures that for any pair queries of the log, if a single template can model the
queries, then, the template is in the log model and the template is the most
specific one.

Moreover, since the algorithm does not perform any normalisation of the
input queries, syntactic differences affect the templates, e.g. two queries having
the same triple patterns in a different order result in two different templates.
This implies that the extracted templates generalise over fewer input queries
(hence the algorithm tends to extract more templates) in respect to what could
be if some normalisation was adopted, but the extracted templates are closer
to the queries sent by the clients (which is desirable for identifying queries sent
from the same process). Some form query normalisation can then be included as
a preliminary step for different perspectives, but this is left to future work.

Implementation of the algorithm. The algorithm has been implemented in
Javascript, relying on the SPARQL.js library8 for SPARQL parsing. Both the
LSQ dataset in input and the discovered templates are represented as RDF in a
local triple store, namely Apache Jena Fuseki9. The code is freely available on
GitHub10

5 Experimentation

The LSQ dataset, already briefly introduced in Section 2, is the de-facto state-
of-the-art collection of SPARQL query logs. We tested our method by using it to
analyse all the logs available in the latest version of the LSQ dataset. In this sec-
tion, we describe and discuss the dataset, its analysis, and the findings, focusing
on the high level view and the details that can be useful to discuss the algorithm.
For the detailed description of the results obtained for each endpoint and the
full code of all the templates we refer the reader respectively to Appendix B and
C of the extended version of the paper.

5.1 The Dataset

The LSQ 2.0 dataset11 contains information about approximately 46M query
executions and is composed of logs extracted from 28 public SPARQL endpoints.
24 of the endpoints are part of Bio2RDF, a project aimed at converting to
8 https://github.com/RubenVerborgh/SPARQL.js
9 https://jena.apache.org/documentation/fuseki2

10 https://github.com/miguel76/sparql-clustering
11 http://lsq.aksw.org/

https://github.com/RubenVerborgh/SPARQL.js
https://jena.apache.org/documentation/fuseki2
https://github.com/miguel76/sparql-clustering
http://lsq.aksw.org/

How is your Knowledge Graph Used 11

RDF different collections of heterogeneously formatted structured biomedical
data [8]. The other four endpoints are the following ones: DBpedia, a well-
known knowledge base automatically extracted from Wikipedia [7]; Wikidata,
an encyclopedic knowledge graph built collaboratively [42]; Semantic Web
Dog Food (SWDF), a dataset describing research in the area of the semantic
web [30]; LinkedGeoData [40], an RDF mapping of OpenStreetMap, which is,
in turn, a user-curated geographical knowledge base [15].

The LSQ project provides the collection of these SPARQL logs and their
conversion to a common (RDF-based) format. In the process of conversion, the
LSQ software performs also some filtering (e.g., only successful queries are con-
sidered) and anonymisation (e.g., client host information is hidden). The main
information items offered by LSQ from each entry of a query log are the following
ones: the endpoint against which the query was executed; the actual SPARQL
query, the timestamp of execution, and an anonymised identifier of the client
host which sent the query.

Dataset Execs Hosts Queries H(Q) Templ.s H(T) ∆H

Bio2RDF 33 829 184 2 306 1 899 027 15.22 12 296 3.73 11.49
DBpedia 6 999 815 37 056 4 257 903 21.16 17 715 5.58 15.59

DBpedia-2010 518 717 1 649 358 955 17.99 2 223 5.66 12.33
DBpedia-2015/6 6 481 098 35 407 3 903 734 21.01 15 808 5.21 15.80

Wikidata 3 298 254 - 844 260 12.26 167 578 7.47 4.80
LinkedGeoData 501 197 25 431 173 043 14.24 2 748 4.78 9.46
SWDF 1 415 568 921 101 422 14.54 1 826 1.03 13.51
Table 1: Statistics on the LSQ 2.0 dataset before/after summarisation.

Table 1 shows some statistics about the data in the LSQ dataset, organised
by endpoints12. The column Execs indicates the number of query executions
contained in the log. Column Hosts is the total number of client hosts and
Queries is the number of unique queries. The column H(Q) is the entropy of the
unique queries distribution across the executions.

5.2 Methodology of Analysis

The aforementioned templates-mining algorithm was applied separately on each
query log in the LSQ 2.0 dataset, with the corresponding set of queries as input.

12 In the table, for conciseness, the statistics of the Bio2RDF endpoints are shown
only aggregated for the whole project. In Appendix B of the extended version of the
paper there is a more detailed version of the table showing the statistics endpoint
by endpoint.

12 L. Asprino and M. Ceriani

Furthermore, the queries of Bio2RDF were also considered as a whole, on top of
analysing each specific endpoint13

The templates obtained with our method can be analysed in a variety of ways.
Different statistics can be computed on top of this summarised representation
of the original data. Furthermore, the templates can be explored in several ways
to have a content-based insight of how an endpoint has been used. In this study
we will focus on two main aspects:

– a quantitative analysis of the effectiveness of the summarisation by measur-
ing for each log 1) the number of templates in comparison with the number
of queries and 2) the entropy of the templates distribution in comparison
with the entropy of the query distribution;

– a qualitative analysis of the templates obtained, choosing for each log the ten
most executed ones and discussing the possible intent of the queries, what
they say about the usage of the endpoint, which ones probably come from
a single code source, which ones instead probably correspond to common
usage patterns, if and how some of them are related between each other.

It should be noted many other perspectives are possible (some of them will
be sketched among the future work in Section 6).

5.3 Results

The execution of the algorithm overall took approximately nine hours on con-
sumer hardware. Statistics about the results for each log or set of logs are shown
in Table 1, alongside the previously described information. The column Templ.s
corresponds to the number of templates generated, while the column H(T) is
the entropy of the templates distribution across the log and ∆H is the difference
between the entropy according to the unique queries and the one according to
the templates (∆H = H(Q)−H(T)).

For all the logs the number of templates is significantly smaller than the
number of unique queries, with a reduction amounting to around two orders
of magnitude (the ratio going from ∼56 to ∼240) for all cases but Wikidata
(for which the reduction is smaller, namely five-fold). The reduction in entropy
considering the distribution using templates shows even more strongly the ef-
fectiveness of the summarisation, as the value is in all the cases greater than
log2

|Q|
|T | , which would be the reduction in entropy in case of uniform distribu-

tions, showing that the algorithm is able to merge the most relevant (in terms
of executions) queries.

Furthermore, it is worth noticing that, regarding the DBpedia log, while there
is a significant difference in the query entropy from the data of 2010 (17.99) to
the ones of 2015/6 (21.01), in line with a ten-fold increase in both executions
and unique queries, the respective entropies measured on templates distribution
13 This choice is motivated by the fact that the Bio2RDF endpoints are part of the same

project, the collected logs refer roughly to the same period, and there is considerable
overlap in the clients querying the endpoints.

How is your Knowledge Graph Used 13

are much closer, actually sightly decreasing from 2010 (5.66) to 2015/6 (5.21).
This is interesting because it shows that the template diversity remains stable,
while the number and diversity of specific queries increase roughly as the volume
of the executions. In our opinion this case also manifests the importance of using
the entropy as an index of diversity, rather than just counting the total number
templates (which is instead quite different between the two datasets, ∼2.2K
against ∼16K).

Then, for each endpoint14, we performed the qualitative analysis of the ten
most frequently executed templates. As part of the interpretation of these tem-
plates, we labelled them using a functional syntax composed of the a name
given to the function (template) and a name given to each parameter. Inter-
estingly, the most executed templates are quite vary across different endpoints
and fulfil different kinds of purposes. Some templates correspond to generic,
content-independent, patterns, like the template from SWDF log labelled prop-
ertiesAndValues(resource) that list all properties and values associated to
a resource and has been executed ∼17K times. Others are specific of some
triple store software as they use specific extensions, as it is the case for as
in the template commonSuperClassAndDistance(class1,class2) from Wiki-
data, executed ∼107K times, which employs a feature specific of Blazegraph,
the software used for this dataset. Others are specific of some domain that the
dataset encompasses, like closePois(latitude,longitude) from LinkedGeoData,
executed ∼81K times, that looks for points of interest close to a geographic
location. Some of them, finally, are specific of a certain application, like air-
portsForCity(cityLabel,lang) in DBpedia, executed ∼1.4M times,.

As previously mentioned, it can be of interest to understand if a template
correspond to a single query-source or instead arises from a pattern which is
common in the usage of an endpoint. While we do not propose a specific met-
ric for this purpose, nor we have a general way to check the ground truth, the
qualitative analysis of the most executed templates offers a chance to reason on
this topic. The generality of the template, as accessed above, offers a hint: the
more general the more likely that it correspond to commonly adopted pattern
rather than a single query-source. But the analysis of the general-purpose tem-
plates found show that they are not necessarily simple and may not correspond
to the most straightforward solution to design a certain query. The structural
complexity is perhaps then a better predictor of the usage of a template. For
example, the template triples(subject) in Bio2RDF is a CONSTRUCT that return
all the triples for which subject is the subject. The query is hence functionally
generic but it is peculiar for being in a form slightly more complex than neces-
sary: it is composed of a triple pattern and a filter instead of using directly a
triple pattern with fixed subject. This template has been executed across most
of the endpoints of Bio2RDF, for a total of ∼9.3M times.

Another interesting aspect that emerges from the qualitative analysis is the
evidence of relationships between different templates. For each endpoint, even
considering just the most executed templates, it is possible to find one or more

14 With the exception of the Bio2RDF endpoints, which are considered as a whole.

14 L. Asprino and M. Ceriani

groups of templates that for structure, function, number of executions, hosts,
period of use show many commonalities and can reasonably be conjectured to
be part of a common process. For example among the most executed templates
on SWDF four of them have been executed the same number of times and have
the same kind of parameter (a researcher) albeit they extract different kind of
data (respectively general information, affiliations, participation to events, pub-
lications). Still on SWDF, there are other two groups of templates having the
same aspects in common (with a group having as common parameter an arti-
cle and another having as common parameter an organisation). While in this
case the grouped templates are probably part of a single process that executes
multiple queries, in other cases the related templates could testify the evolu-
tion of a process. The template commonSubclasses(class1, class2) from the
LinkedGeoData log is executed ∼17K times across a span of ∼7 hours, then it
is “replaced” by the template commonSubclasses(class1, class2, class3) that
fulfills the same purpose but having one class more as parameter. The second
version is then executed ∼17K times across a span of other ∼7 hours.

Such hypothesises about the relationship between among a group of queries
are reinforced in all the cases we found by the fact that the templates are exe-
cuted by a common set of hosts. In most of the cases it is a single host that exe-
cute all the templates in a group, but not necessarily: on DBpedia the templates
countLinksBetween(res1, res2) and countCommonLinks(res1, res2) have
different but related functions15 on the same kind of parameters, they are both
executed ∼181K times by the same set of ∼1130 hosts.

The complete results are available online for download16 The templates found
for each endpoint are represented both as CSVs and RDF. The RDF represen-
tation of the templates is meant to be used alongside the RDF representation
of LSQ and is based on the Provenance Vocabulary [18], a specialisation of the
standard W3C provenance ontology (PROV-O) [23] dealing with web data and
in particular SPARQL queries and query templates.

5.4 Discussion

The aim of the analysis of the LSQ dataset was to prove that our method is able
to effectively summarise the given logs, that the inferred templates often corre-
spond to broadly used patterns or single query-sources, and that their analysis
can give new insights on the usage of the considered endpoints. We quantitatively
measured the efficacy of the summarisation through the ratio of original queries
per template and the reduction in entropy when considering each log entry as
an instance of a template, rather than as an instance of a query. Both measures
show that the summarisation had a noteworthy impact on all the considered logs.
Moreover, the qualitative analysis of a selected sample of templates (specifically
the most executed) shows how their function may be appropriately analysed and
discussed, without the need to check the thousands of corresponding queries.
15 One counts the triples in which one resource is subject and the other object, the

other counts the triples in which they replace each other or have symmetric role.
16 https://doi.org/110.6084/m9.figshare.23751138

https://doi.org/110.6084/m9.figshare.23751138

How is your Knowledge Graph Used 15

Regarding the accuracy of the predicted templates in identifying a single
source for a set of queries, there is no gold standard or previous attempt to
compare with. Thus the qualitative analysis resorts to educated guesses, where
we decide if an inferred template corresponds plausibly to a single source based
on the syntactic distinctness and relationship with other templates and data
from the log. For many of the described templates, it is possible to reasonably
infer a single origin. In terms of the usefulness of the inferred templates to
gain insights, the qualitative analysis has shown multiple ways in which the
analysis of the templates gives direct access to information that was previously
not straightforward and stimulates further study.

Finally, another finding has been that this template-based analysis paves the
way to the analysis of another level of relationships between queries, namely
when different queries are applied to the same (or related) data items as part of
a (possibly automatic) process. Evidence of such relationships has been found
in the qualitative analysis of all the considered logs.

6 Conclusions

In this work, we address the query log summarisation problem, i.e. identifying a
set of query templates (i.e. queries with placeholder meant to be replaced with
RDF terms) describing the queries of a log. We designed and implemented a
method to perform the summarisation of a query log in linear time, based on
the use of a hash table to group sets of queries that can be derived from a common
query template. The approach has been experimented with the available logs of
the LSQ dataset. The representation of the logs using templates has been shown
to be significantly more concise. A qualitative analysis performed on the most
executed templates enabled the characterisation of the log in ways that would
not have been directly possible by analysing just the single queries.

Besides further exploring possible extensions of the template-mining algo-
rithm for normalising the input log (e.g. reordering triple patterns), the analysis
of the discovered templates brought forward some interesting issues that we
consider deserving of further research.

One aspect worth investigating is the relationships between the execution
patterns of each template. In the qualitative analysis, we found groups of tem-
plates being executed by the same set of hosts, often at similar times, and many
times with the same parameters. Such analysis may, for example, allow to mine
the prototypical interactions (namely, processes) with data, beyond the single
query or template.

Moreover, many more interesting levels of abstraction are possible beyond the
query templates: e.g., a common part of the query, the usage of certain BGP, a
property, and so on. The general idea of the approach and the structure of the
algorithm can be still applied. Apart from computing these multiple levels, which
can be done by extending the presented algorithm, it is interesting to understand
if some measure may be used to select the more relevant abstractions, rather than
leaving the choice entirely to the user.

16 L. Asprino and M. Ceriani

Another direction worth exploring is to assess the possible benefits of com-
bining log summarisation with strategies for bot detection (e.g. templates can
help characterise the features of queries and thus favouring the classification of
robotic queries) or for optimising the execution of a sequence of queries (once
prototypical interaction with data is delineated, one could imagine triple stores
being able to predict workload and optimise query execution).

In this work, we mainly focussed on the most frequent queries, but, future
analyses may also investigate what insights can be extracted from the rare ones
(for example, a long tail of rare queries may indicate a high variety of clients
and data exposed by the endpoint).

Finally, the proposed method and algorithm are applicable without much
change to other query languages, thus offering an approach for the analysis of
logs of, e.g. relational databases.

Supplemental Material Statement. The extended version of this paper (pre-print)
is publicly available (see title note), as well as the dataset with the experimen-
tation results (see note 16). The query logs used in the experimentation can be
downloaded from the LSQ website17. The code is available from a public git
repository (see note 10).

Acknowledgements This work was partially supported by the PNRR
project “Fostering Open Science in Social Science Research (FOSSR)” (CUP
B83C22003950001) and by the PNRR MUR project PE0000013-FAIR.

References

1. Aljaloud, S., Luczak-Rösch, M., Chown, T., Gibbins, N.: Get all, filter details-on
the use of regular expressions in sparql queries. Proceedings of the Workshop on
Usage Analysis and the Web of Data (USEWOD 2014) (2014)

2. Arias, M., Fernandez, J.D., Martinez-Prieto, M.A., de la Fuente, P.: An empirical
study of real-world SPARQL queries. Proceedings of Usage Analysis and the Web
of Data (USEWOD 2011) (2011)

3. Asprino, L., Basile, V., Ciancarini, P., Presutti, V.: Empirical analysis of foun-
dational distinctions in linked open data. In: Proceedings of the 27th Interna-
tional Joint Conference on Artificial Intelligence and the 23rd European Confer-
ence on Artificial Intelligence (IJCAI-ECAI 2018). pp. 3962–3969 (2018). https:
//doi.org/10.24963/ijcai.2018/551

4. Asprino, L., Beek, W., Ciancarini, P., van Harmelen, F., Presutti, V.: Observing
LOD using equivalent set graphs: It is mostly flat and sparsely linked. In: Proceed-
ings of the 18th International Semantic Web Conference (ISWC 2019), Part I. pp.
57–74 (2019). https://doi.org/10.1007/978-3-030-30793-6_4

5. Asprino, L., Carriero, V.A., Presutti, V.: Extraction of common conceptual com-
ponents from multiple ontologies. In: Proceedings of the International Conference
on Knowledge Capture (K-CAP 2021). pp. 185–192 (2021). https://doi.org/10.
1145/3460210.3493542

17 http://lsq.aksw.org/

https://doi.org/10.24963/ijcai.2018/551
https://doi.org/10.24963/ijcai.2018/551
https://doi.org/10.24963/ijcai.2018/551
https://doi.org/10.24963/ijcai.2018/551
https://doi.org/10.1007/978-3-030-30793-6_4
https://doi.org/10.1007/978-3-030-30793-6_4
https://doi.org/10.1145/3460210.3493542
https://doi.org/10.1145/3460210.3493542
https://doi.org/10.1145/3460210.3493542
https://doi.org/10.1145/3460210.3493542
http://lsq.aksw.org/

How is your Knowledge Graph Used 17

6. Asprino, L., Presutti, V.: Observing LOD: its knowledge domains and the varying
behavior of ontologies across them. IEEE Access 11, 21127–21143 (2023). https:
//doi.org/10.1109/ACCESS.2023.3250105

7. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia:
A Nucleus for a Web of Open Data. In: Proceedings of the International Semantic
Web Conference (ISWC 2007). pp. 722–735. Springer (2007)

8. Belleau, F., Nolin, M.A., Tourigny, N., Rigault, P., Morissette, J.: Bio2rdf: to-
wards a mashup to build bioinformatics knowledge systems. Journal of biomedical
informatics 41(5), 706–716 (2008)

9. Bielefeldt, A., Gonsior, J., Krötzsch, M.: Practical linked data access via SPARQL:
the case of wikidata. In: Proceedings of the Workshop on Linked Data on the Web
co-located with The Web Conference (LDOW@WWW 2018) (2018)

10. Bonifati, A., Martens, W., Timm, T.: Navigating the maze of wikidata query logs.
In: Proceedings of The Web Conference (WWW 2019). pp. 127–138 (2019). https:
//doi.org/10.1145/3308558.3313472

11. Bonifati, A., Martens, W., Timm, T.: An analytical study of large SPARQL
query logs. VLDB Journal 29(2-3), 655–679 (2020). https://doi.org/10.1007/
s00778-019-00558-9

12. Chekol, M.W., Euzenat, J., Genevès, P., Layaïda, N.: SPARQL query contain-
ment under SHI axioms. In: Proceedings of the Twenty-Sixth AAAI Conference on
Artificial Intelligence (AAAI 2012) (2012)

13. Cyganiak, R., Wood, D., Lanthaler, M.: RDF 1.1 Concepts and Abstract Syntax,
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/

14. Deep, S., Gruenheid, A., Koutris, P., Viglas, S., Naughton, J.F.: Comprehen-
sive and efficient workload summarization. Datenbank-Spektrum 22(3), 249–256
(2022). https://doi.org/10.1007/s13222-022-00427-w

15. Haklay, M., Weber, P.: Openstreetmap: User-generated street maps. IEEE Perva-
sive Computing 7(4), 12–18 (2008). https://doi.org/10.1109/MPRV.2008.80

16. Han, X., Feng, Z., Zhang, X., Wang, X., Rao, G., Jiang, S.: On the statistical
analysis of practical SPARQL queries. In: Proceedings of the 19th International
Workshop on Web and Databases (2016). https://doi.org/10.1145/2932194.
2932196

17. Harris, S., et al.: SPARQL 1.1 Query Language, http://www.w3.org/TR/2013/
REC-sparql11-query-20130321/

18. Hartig, O.: Provenance information in the web of data. In: Proceedings of the
Workshop on Linked Data on the Web (LDOW 2009) (2009), http://ceur-ws.
org/Vol-538/ldow2009_paper18.pdf

19. Hoxha, J., Junghans, M., Agarwal, S.: Enabling semantic analysis of user browsing
patterns in the web of data. Proceedings of Usage Analysis and the Web of Data
(USEWOD 2012) (2012)

20. Huelss, J., Paulheim, H.: What SPARQL query logs tell and do not tell about
semantic relatedness in LOD - or: The unsuccessful attempt to improve the brows-
ing experience of dbpedia by exploiting query logs. In: Proceedings of ESWC
2015, Revised Selected Papers. pp. 297–308 (2015). https://doi.org/10.1007/
978-3-319-25639-9_44

21. Kamra, A., Terzi, E., Bertino, E.: Detecting anomalous access patterns in relational
databases. VLDB Journal 17(5), 1063–1077 (2008). https://doi.org/10.1007/
s00778-007-0051-4

22. Kul, G., Luong, D., Xie, T., Coonan, P., Chandola, V., Kennedy, O., Upadhyaya,
S.J.: Summarizing large query logs in ettu. CoRR (2016), http://arxiv.org/abs/
1608.01013

https://doi.org/10.1109/ACCESS.2023.3250105
https://doi.org/10.1109/ACCESS.2023.3250105
https://doi.org/10.1109/ACCESS.2023.3250105
https://doi.org/10.1109/ACCESS.2023.3250105
https://doi.org/10.1145/3308558.3313472
https://doi.org/10.1145/3308558.3313472
https://doi.org/10.1145/3308558.3313472
https://doi.org/10.1145/3308558.3313472
https://doi.org/10.1007/s00778-019-00558-9
https://doi.org/10.1007/s00778-019-00558-9
https://doi.org/10.1007/s00778-019-00558-9
https://doi.org/10.1007/s00778-019-00558-9
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://doi.org/10.1007/s13222-022-00427-w
https://doi.org/10.1007/s13222-022-00427-w
https://doi.org/10.1109/MPRV.2008.80
https://doi.org/10.1109/MPRV.2008.80
https://doi.org/10.1145/2932194.2932196
https://doi.org/10.1145/2932194.2932196
https://doi.org/10.1145/2932194.2932196
https://doi.org/10.1145/2932194.2932196
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
http://ceur-ws.org/Vol-538/ldow2009_paper18.pdf
http://ceur-ws.org/Vol-538/ldow2009_paper18.pdf
https://doi.org/10.1007/978-3-319-25639-9_44
https://doi.org/10.1007/978-3-319-25639-9_44
https://doi.org/10.1007/978-3-319-25639-9_44
https://doi.org/10.1007/978-3-319-25639-9_44
https://doi.org/10.1007/s00778-007-0051-4
https://doi.org/10.1007/s00778-007-0051-4
https://doi.org/10.1007/s00778-007-0051-4
https://doi.org/10.1007/s00778-007-0051-4
http://arxiv.org/abs/1608.01013
http://arxiv.org/abs/1608.01013

18 L. Asprino and M. Ceriani

23. Lebo, T., Sahoo, S., McGuinness, D.: PROV-O: The PROV Ontology, https:
//www.w3.org/TR/2013/REC-prov-o-20130430/

24. Luczak-Rösch, M., Bischoff, M.: Statistical analysis of web of data usage. In: Joint
Workshop on Knowledge Evolution and Ontology Dynamics (EvoDyn2011) (2011)

25. Luczak-Rösch, M., Hollink, L., Berendt, B.: Current directions for usage analysis
and the web of data: The diverse ecosystem of web of data access mechanisms.
In: Proceedings of the 25th International Conference on World Wide Web (WWW
2016). pp. 885–887 (2016). https://doi.org/10.1145/2872518.2891068

26. Mathew, S., Petropoulos, M., Ngo, H.Q., Upadhyaya, S.J.: A data-centric approach
to insider attack detection in database systems. In: Proceedings of the 13th Inter-
national Symposium on Recent Advances in Intrusion (RAID 2010). pp. 382–401
(2010). https://doi.org/10.1007/978-3-642-15512-3_20

27. Meroño-Peñuela, A., Hoekstra, R.: grlc makes github taste like linked data apis.
In: Proocedings of ESWC 2016. pp. 342–353 (2016)

28. Microsoft: Automatic Tuning - Microsoft SQL Server, https://learn.microsoft.
com/en-us/sql/relational-databases/automatic-tuning/automatic-tuning?
view=sql-server-ver16

29. Möller, K., Hausenblas, M., Cyganiak, R., Handschuh, S.: Learning from linked
open data usage: Patterns & metrics. In: Proceedings of the Web Science Confer-
ence (2010)

30. Möller, K., Heath, T., Handschuh, S., Domingue, J.: Recipes for semantic web
dog food - the ESWC and ISWC metadata projects. In: Proceedings of the
6th International Semantic Web Conference and the 2nd Asian Semantic Web
Conference, ISWC-ASWC 2007. pp. 802–815 (2007). https://doi.org/10.1007/
978-3-540-76298-0_58

31. Oracle: Automatic Indexing - Oracle SQL Devel-
oper Web, https://docs.oracle.com/en/database/oracle/
sql-developer-web/19.2.1/sdweb/automatic-indexing-page.html#
GUID-8198E146-1D87-4541-8EC0-56ABBF52B438

32. Picalausa, F., Vansummeren, S.: What are real SPARQL queries like? In: Proceed-
ings of the International Workshop on Semantic Web Information Management
(SWIM 2011) (2011). https://doi.org/10.1145/1999299.1999306

33. Pichler, R., Skritek, S.: Containment and equivalence of well-designed SPARQL. In:
Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART Symposium on Prin-
ciples of Database Systems (PODS 14). pp. 39–50 (2014). https://doi.org/10.
1145/2594538.2594542

34. Prud’hommeaux, E., Buil-Aranda, C.: SPARQL 1.1 Federated Query, http://www.
w3.org/TR/2013/REC-sparql11-federated-query-20130321/

35. Raghuveer, A.: Characterizing machine agent behavior through sparql query min-
ing. In: Proceedings of the Workshop on Usage Analysis and the Web of Data
(USEWOD 2012) (2012)

36. Rietveld, L., Hoekstra, R., et al.: Man vs. machine: Differences in sparql queries. In:
Proceedings of the Workshop on Usage Analysis and the Web of Data (USEWOD
2014) (2014)

37. Saleem, M., Ali, M.I., Hogan, A., Mehmood, Q., Ngomo, A.N.: LSQ: the linked
SPARQL queries dataset. In: Proceedings of the 14th International Semantic Web
Conference (ISWC 2015) Part II. pp. 261–269 (2015). https://doi.org/10.1007/
978-3-319-25010-6_15

38. Schoenfisch, J., Stuckenschmidt, H.: Analyzing real-world SPARQL queries and
ontology-based data access in the context of probabilistic data. International Jour-

https://www.w3.org/TR/2013/REC-prov-o-20130430/
https://www.w3.org/TR/2013/REC-prov-o-20130430/
https://doi.org/10.1145/2872518.2891068
https://doi.org/10.1145/2872518.2891068
https://doi.org/10.1007/978-3-642-15512-3_20
https://doi.org/10.1007/978-3-642-15512-3_20
https://learn.microsoft.com/en-us/sql/relational-databases/automatic-tuning/automatic-tuning?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/automatic-tuning/automatic-tuning?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/automatic-tuning/automatic-tuning?view=sql-server-ver16
https://doi.org/10.1007/978-3-540-76298-0_58
https://doi.org/10.1007/978-3-540-76298-0_58
https://doi.org/10.1007/978-3-540-76298-0_58
https://doi.org/10.1007/978-3-540-76298-0_58
https://docs.oracle.com/en/database/oracle/sql-developer-web/19.2.1/sdweb/automatic-indexing-page.html#GUID-8198E146-1D87-4541-8EC0-56ABBF52B438
https://docs.oracle.com/en/database/oracle/sql-developer-web/19.2.1/sdweb/automatic-indexing-page.html#GUID-8198E146-1D87-4541-8EC0-56ABBF52B438
https://docs.oracle.com/en/database/oracle/sql-developer-web/19.2.1/sdweb/automatic-indexing-page.html#GUID-8198E146-1D87-4541-8EC0-56ABBF52B438
https://doi.org/10.1145/1999299.1999306
https://doi.org/10.1145/1999299.1999306
https://doi.org/10.1145/2594538.2594542
https://doi.org/10.1145/2594538.2594542
https://doi.org/10.1145/2594538.2594542
https://doi.org/10.1145/2594538.2594542
http://www.w3.org/TR/2013/REC-sparql11-federated-query-20130321/
http://www.w3.org/TR/2013/REC-sparql11-federated-query-20130321/
https://doi.org/10.1007/978-3-319-25010-6_15
https://doi.org/10.1007/978-3-319-25010-6_15
https://doi.org/10.1007/978-3-319-25010-6_15
https://doi.org/10.1007/978-3-319-25010-6_15

How is your Knowledge Graph Used 19

nal of Approximate Reasoning 90, 374–388 (2017). https://doi.org/10.1016/j.
ijar.2017.08.005

39. Shannon, C.E.: A mathematical theory of communication. The Bell System Tech-
nical Journal 27(3), 379–423 (1948). https://doi.org/10.1002/j.1538-7305.
1948.tb01338.x

40. Stadler, C., Lehmann, J., Höffner, K., Auer, S.: Linkedgeodata: A core for a web
of spatial open data. Semantic Web 3(4), 333–354 (2012). https://doi.org/10.
3233/SW-2011-0052

41. Stadler, C., Saleem, M., Mehmood, Q., Buil-Aranda, C., Dumontier, M., Hogan,
A., Ngomo, A.C.N.: Lsq 2.0: A linked dataset of sparql query logs. (Preprint)
(2022), https://aidanhogan.com/docs/lsq-sparql-logs.pdf

42. Vrandečić, D.: Wikidata: A new platform for collaborative data collection. In:
Proceedings of the 21st International Conference on World Wide Web (WWW
2012). p. 1063–1064 (2012). https://doi.org/10.1145/2187980.2188242

43. Wang, J., Li, T., Wang, A., Liu, X., Chen, L., Chen, J., Liu, J., Wu, J., Li, F.,
Gao, Y.: Real-time Workload Pattern Analysis for Large-scale Cloud Databases.
arXiv e-prints arXiv:2307.02626 (Jul 2023). https://doi.org/10.48550/arXiv.
2307.02626

44. Xie, T., Chandola, V., Kennedy, O.: Query log compression for workload analytics.
VLDB Endowment 12(3), 183–196 (2018). https://doi.org/10.14778/3291264.
3291265

https://doi.org/10.1016/j.ijar.2017.08.005
https://doi.org/10.1016/j.ijar.2017.08.005
https://doi.org/10.1016/j.ijar.2017.08.005
https://doi.org/10.1016/j.ijar.2017.08.005
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.3233/SW-2011-0052
https://doi.org/10.3233/SW-2011-0052
https://doi.org/10.3233/SW-2011-0052
https://doi.org/10.3233/SW-2011-0052
https://aidanhogan.com/docs/lsq-sparql-logs.pdf
https://doi.org/10.1145/2187980.2188242
https://doi.org/10.1145/2187980.2188242
https://doi.org/10.48550/arXiv.2307.02626
https://doi.org/10.48550/arXiv.2307.02626
https://doi.org/10.48550/arXiv.2307.02626
https://doi.org/10.48550/arXiv.2307.02626
https://doi.org/10.14778/3291264.3291265
https://doi.org/10.14778/3291264.3291265
https://doi.org/10.14778/3291264.3291265
https://doi.org/10.14778/3291264.3291265

	How is your Knowledge Graph Used:Content-Centric Analysis of SPARQL Query Logs

