
Dependency-aware Core Column Discovery for
Table Understanding

Jingyi Qiu1, Aibo Song1, Jiahui Jin1(B), Tianbo Zhang1, Jingyi Ding1,
Xiaolin Fang1, and Jianguo Qian2

1 School of Computer Science and Engineering, Southeast University, Nanjing, China
{jingyi_qiu, absong, jjin, tianbozhang, jingyi_ding,

xiaolin}@seu.edu.cn
2 STATE GRID ZHEJIANG ELECTRIC POWER COMPANY, LTD, Hangzhou, China

qian_jianguo@zj.sgcc.com.cn

Abstract. In a relational table, core columns represent the primary subject enti-
ties that other columns in the table depend on. While discovering core columns is
crucial for understanding a table’s semantic column types, column relations, and
entities, it is often overlooked. Previous methods typically rely on heuristic rules
or contextual information, which can fail to accurately capture the dependencies
between columns and make it difficult to preserve their relationships. To address
these challenges, we introduce Dependency-aware Core Column Discovery (Da-
Co), an iterative method that uses a novel rough matching strategy to identify both
inter-column dependencies and core columns. Unlike other methods, DaCo does
not require labeled data or contextual information, making it suitable for practi-
cal scenarios. Additionally, it can identify multiple core columns within a table,
which is common in real-world tables. Our experimental results demonstrate that
DaCo outperforms existing core column discovery methods, substantially im-
proving the efficiency of table understanding tasks.

Keywords: table understanding · core column · semantic dependency.

1 Introduction

Tabular data, which includes web tables, CSV files, and data lake tables, is a valuable re-
source for developing knowledge graphs [27, 11] and question answering systems [41].
However, as tabular data often lacks well-defined schemas, the process of table under-
standing (also known as table interpretation or table annotation) is critical in assigning
semantic tags from knowledge graphs to mentions within the table [21, 32]. To do this
effectively, it is necessary to identify the core columns [53], also known as subject
columns, which represent the primary subject entities on which other columns in the
table depend [50, 51, 54]. Once these core columns have been identified, understand-
ing the remaining non-core columns becomes significantly simplified [38, 13]. Existing
methods for discovering core columns mainly rely on heuristic rules, such as the left-
most rule [52], or contextual information [6, 12]. However, these methods may not be
practical or applicable in scenarios like data lakes or enterprise tables [19, 20], where
structures are often incomplete, data is noisy, and there may be multiple core columns.

2 J. Qiu et al.

id filmcountry releasetime name director location

1 america 2010 127 hours danny boyle Manchester

2 united kingdom 2002 28 days later danny boyle manchester

3 united states 2000 the beach danny boyle Manchester

Core Columns

A table about movies and directors

Matching
DirectedBy

BirthIn

ReleasedIn

FilmCountry

Danny_Boyle
(director)

Manchester
(location)

2010
(year)

127_Hours
(film)

America
(location)

The_Beach
(film)

28_Days_Later
(film)

2000
(year)

2002
(year)

United_Kingdom
(location)

A knowledge graph

Fig. 1. A table about movies and directors. Prior works usually choose the leftmost column
i.e.,“id” as the core column, but the values within the “id” column are general and do not refer
to entities in the knowledge graph [18]. In contrast, our method selects the “name” and “movie
director” columns as core columns because they correspond to the entities on which the enti-
ties listed in the “filmcountry”, “releasetime”, and “location” columns depend, according to the
knowledge graph.

Therefore, identifying inter-column dependencies and discovering core columns can be
challenging.

This paper aims to tackle the problem of core column discovery for table under-
standing by identifying the minimum set of columns that other columns depend on3.
While discovering core columns is crucial for table understanding, it is often over-
looked [6]. Existing methods rely on heuristic rules [54, 52, 16] or machine learning
techniques [45], but these may not capture true dependencies [24, 47] or require large
amounts of labeled data. Pre-trained models show promise [12, 44, 10, 48], but their ef-
fectiveness depends on the corpus they were trained on and may not adapt well to specif-
ic domains. Unlike keys discovered based on uniqueness in data profiling, core column
discovery focuses more on semantic inter-column dependency, i.e.,whether there are
entity-attribute relationships [53, 24, 54]. Furthermore, research on discovering multi-
ple core columns often suffers from poor performance due to their reliance on exact
matching [46, 18].

Identifying core columns while preserving their dependencies is a challenging task.
Using a knowledge graph (KG) as a reference may appear to be a solution, but it is in-
tricate due to (1) Data incompleteness and inconsistency. Real-life KGs are inherently
incomplete, which means that a significant portion of mentions in a table may not have
corresponding entries in the KG, named unlinkable mention [36]. Additionally, incon-
sistencies in representation between tables and KGs can make it challenging to map
these mentions accurately. (2) Noisy table metadata. Noisy column names, captions, or
lack of metadata [17] in tables make it difficult to annotate column types accurately,
which is crucial for determining dependent relationships among columns. (3) Multiple
core columns. Detecting multiple core columns [18, 46] in tabular data is challenging
due to their unpredictable number and locations. Although prior research [49, 8, 55, 26,
36, 27] has attempted to tackle these issues, they are computationally expensive and rely
on the success of core column discovery, leading to a dilemma.

We propose a solution called Dependency-Aware Core Column Discovery (DaCo)
to address the above challenges. DaCo is a two-level iterative process that identifies
inter-column dependencies and core columns. Outer iteration performs sampling and

3 By dependency, we are implying that column y is an attribute of column x if y depends on
x [28].

Dependency-aware Core Column Discovery for Table Understanding 3

discovery iteratively until the termination test is satisfied, which considerably reduces
computational complexity when matching tables to knowledge graphs. Inner iteration i-
dentifies the core columns based on the sampled rows. It establishes a rough matching
between each mention (column type) and a set of candidate KG entities (KG types),
providing a coarse understanding of the table, which is necessary for DaCo to handle
situations where the table has only small portions of overlaps with the KG 4. Based on
this rough matching, DaCo calculates the dependency score for each pair of columns.
If the score exceeds a certain threshold, we consider the existence of an dependent re-
lationship between the columns and identify the core column set according to the inter-
column dependencies. Once a core column is found, we update the threshold and repeat
the inner iteration until the core column set size converges. To the best of our knowl-
edge, DaCo is the first approach to discover the core column for table understanding
while preserving inter-column dependencies without requiring table metadata, contex-
tual information and exact table-to-KG matching.

Overall, our contributions are as follows. (1) Rough matching and dependency scor-
-ing. We propose a novel approach that combines rough matching and dependency scor-
ing to explore the semantic dependencies between columns, which enables the extrac-
tion of a core column based on inter-column dependencies. (2) Two-level iterative algor-
-ithm. To improve the effectiveness and efficiency of the dependency and core col-
umn discovery, we introduce a two-level iterative algorithm, named DaCo, that per-
forms sampling in outer iteration and discovery in inner iteration until convergence.
(3) Extensive evaluations. Extensive experiments were conducted on core column dis-
covery and table understanding, revealing that DaCo outperforms other approaches in
terms of effectiveness with precision of 85%-90% on core column set discovery and n-
early 40% improvement on fine grained column type prediction and relation extraction
tasks. Source code is provided on github 5.

The rest of our paper is organized as follows. Sec. 2 provides a definition of the
core column discovery problem. Rough matching strategy and the dependency score
are presented in Sec. 3. The two-level iterative algorithm is presented in Sec. 4. Our
experimental results and related works are showcased in Sec. 5 and 6, respectively.
Finally, we conclude our paper in Sec. 7.

2 Preliminary

A review of basic notations is listed in Table 1. Assume three infinite alphabets, Υ , Θ,
and Φ for table mentions, graph node labels, and graph edge labels.

Definition 1 (Table and Column Set). A table T is a collection of data organized into
m rows and n columns, each cell contains a mention, which refers to the textual content
for representing an entity in KG and often shares relationships with other mentions in
the same row. The mention in ith row and the xth column of table T is denoted by ti,x,
where ti,x ∈ Υ . S ⊆ X is a column set of T , where set X is defined as the set of

4 Our solution can be applied to table understanding tasks since research on table understanding
assumes an overlap between the table and the KG.

5 https://github.com/barrel-0314/daco.

4 J. Qiu et al.

Table 1. Notations and their descriptions.
Notations Descriptions

T , T [x], ti,x a table, the xth column of table T , the mention located in the ith row and the xth column in T
C,G, v, τ core column set, KG, matching function for mention and type
dep(x, y), ζ semantic dependency score between column x and y, threshold of semantic dependency
v̂ki,x, θx the kth entity in rough matching of ti,x, a type in τ(x)
q, η, γ parameter for calculating depτ (·, ·), the threshold and decay parameter of iterations
a,â,ε the ground truth, the sample and a threshold of a
Ts,ms sampled table and the number of sampling rows

all possible column indices in the table, ranging from 1 to n. The projection of T on
column x is represented as T [x].

To avoid the influence of noisy metadata, we exclude headers and captions from
our definition, which distinguishes our approach from previous works [12, 54]. Without
contextual information, annotating mentions, column types, and inter-column relation-
ships by matching tables to a KG is crucial for accurately identifying inter-column
dependencies.
Remark: We assume that each cell in the table refers to a specific entity. However, it’s
common for tables to include cells that do not correspond to any particular entity. For
example, in Fig. 1, the values in the “id” column may not have corresponding entities
in a KG. Even if numerical strings can be treated as text for candidate selection, they
often matches literals in the KG rather than entities, which means it lacks type attributes
or does not share consistent type in the same column. Besides, the “id” column lacks
connecting edges with mentions in the KG within the same row. In this case, the con-
tent of the “id” column cannot be considered as mentions and does not provide entity
information. Therefore, when computing the semantic dependency relationships and i-
dentifying the core columns, we exclude columns where every cell cannot be matched
to the KG.

Definition 2 (Knowledge Graph). A knowledge graph, denoted by G = (V,E, L),
is a directed graph that contains nodes representing entities and edges connecting the
nodes. The set of nodes and edges are denoted by V and E respectively. A labeling
function represented by L is also present in the graph. Each node v ∈ V and edge
e ∈ E has a label denoted by L(v) ∈ Θ and L(e) ∈ Φ respectively. We can represent
the type of a node v as the value of its "type" attribute. We use θ to denote a type.
Because an entity may be related to multiple types, we use set τ(v) to denote the type
set of v.

Assuming that the KG is complete and that the table can completely overlap the
KG, we can match the table and KG exactly by using table annotation. To achieve this,
we use the entity annotation function v(·) to map a table mention to a corresponding
entity in the KG. In other words, for any given table mention ti,x, we have v(ti,x) ∈ V .
Additionally, we use the type annotation function τ(·) to assign a set of semantic types
to each column in the table. Specifically, for any given column x, we have τ(x) ⊆
∪v∈V (τ(v)). Furthermore, we use the relationship annotation function ρ(·, ·) to assign
a property from the KG to the relationship between two columns. In other words, for
any two columns x and y, we have ρ(x, y) ∈ ∪e∈E({L(e)}). If this is no relationship

Dependency-aware Core Column Discovery for Table Understanding 5

between x and y, we let ρ(x, y) = null. With the exact table annotation, we define the
semantic dependency between two columns as follows:

Definition 3 (Semantic Dependency). Given two columns x and y in the same table,
we can determine if column y is semantically dependent on column x by examining
each pair of mentions ti,x and ti,y . If there exists a KG edge ei starting from the entity
represented by ti,x and pointing to the entity represented by ti,y for every row i, we
establish that column y is semantically dependent on column x. Formally, if each edge
ei = (v(ti,x), v(ti,y)) ∈ E satisfies the relation label L(ei) = ρ(x, y), then we denote
this semantic dependency as x→ y.

We expand the idea of column-wise semantic dependency to include column-set-
wise semantic dependency. We denote the semantic dependency between two sets of
columns, S1 and S2, as S1 → S2. Here, S1 and S2 are subsets of X , and for each y
in S2, there exists an x in S1 that satisfies x → y. Also we let column x depend on
itself, i.e., x → x. In the subsequent sections, we will refer to semantic dependency as
“dependency” if there is no confusion.

Example 1. Consider the table in Fig. 1. There is a semantic dependency be-
tween the 5th and 6th columns, specifically, i.e.,5→ 6. This relationship stems
from the presence of an edge labeled as “BirthIn” between v(“dannyboyle”)
and v(“manchester”), meaning that ρ(5, 6) = “BirthIn”. Additionally, we
can also observe a semantic dependency between the “name” column and sever-
al other columns (i.e.,“filmcountry”, and “releasetime”), resulting in a column-
set-wise dependency of {4, 5} → {2, 3, 6}.

Because KG is far from complete and overlapping for real-life table to be matched,
accurately identifying inter-column dependencies becomes infeasible. To account for
real-world situations, we propose a dependency score dep(x, y) that gauges the possi-
bility of column y being dependent on column x. If the value of dep(x, y) surpasses
a predetermined threshold ζ, then we establish a relation between x and y, such that
(dep(x, y) > ζ) ⇒ (x → y). Sec. 3 explains how to calculate dep(x, y). By utilizing
these dependency scores, we can define the core column discovery problem as follows.

Definition 4 (Core Column Discovery Problem). Given a table with the set of column-
s (denoted by X), the problem is to discover a set of core columns C that is the smallest
subset of X on which all other columns in the table depend, i.e.,C → X and for all C ′

that satisfies C ′ → X , |C| ≤ |C ′|.

Determining the core column remains an NP-hard problem even when the depen-
dency scores dep(·, ·) and the threshold ζ are provided. This can be demonstrated
through a reduction from the directed dominating set problem [39]. In the next sections,
we show how to measure dep(·, ·) (Sec. 3) and how to iteratively compute dep(·, ·) to
discover the core column (Sec. 4).

6 J. Qiu et al.

3 Rough Matching and Dependency Scores

This section aims at measuring the dependency score dep(·, ·). The semantic dependen-
cy definition implies that if column y depends on column x, each pair of corresponding
entities v(ti,x) and v(ti,y) should share the same relationship as the columns them-
selves. In other words, ρ(x, y) = L((v(ti,x), v(ti,y))), where ti,x and ti,y are mentions
in the ith row of columns x and y, respectively. However, this entity-centric match-
ing approach may be too strict for real-life tables and KGs, since the mentions in the
table may not always be linkable to entities in the KG. Additionally, there might not
exist a shared relationship capable of connecting all pairs of matched entities due to the
incompleteness of KG.

To overcome these limitations, we propose a column-centric strategy called rough
matching to replace the fine-grained entity-centric matching. By taking the column-
centric approach, we can relax the constraints on linkability and account for the incom-
pleteness of KGs which provides a more flexible and robust method for measuring the
dependency score of real-world tables.

3.1 Rough matching

The rough matching approach generate candidate entities for each mention and assigns
potential types τ(x) to each column x, rather than providing precise annotations. Let
ti,x be the ith mention in column x. In this approach, we produce the top-K candidate
entities for ti,x, denoted as v̂(ti,x) = {v̂k(ti,x)}Kk=1, where v̂k(ti,x) represents the
kth candidate entity. Note that any label similarity function can be employed to select
candidates by comparing the mention and the entity name, and we use edit distance
as the label similarity measure here. For simplicity, we represent v̂k(ti,x) as v̂ki,x. To
determine a potential type set for column x, we extract the types of mentions’ candidate
entities from the knowledge graph by using the edges labeled “type” and then merge
the type sets. We accomplish this by combining the sets τ(v̂ki,x) for all i ∈ [1,m] and
k ∈ [1,K], where m is the number of rows and τ(·) is a function that assigns type sets
to entities and columns. The resulting union is the type set of column x, i.e.,τ(x).

In our approach, the type sets τ(x) and τ(y) are essential for calculating dep(x, y).
Nevertheless, τ(·) may include many irrelevant types as the top-k candidates chosen
for each mention might not pertain to the table’s topic. To filter those irrelevant types,
we define a score function sτ (θ, x) to determine the relevance of a particular type θ to
column x as follows:

sτ (θ, x) =
1

mK

m∑
i=1

K∑
k=1

wki,xs
v
τ (θ, v̂

k
i,x), (1)

where svτ (θ, v̂
k
i,x) = I[θ ∈ τ(v̂ki,x)] and I[·] is the indicator function that takes the value

1 if its argument is true and 0 otherwise determines whether θ ∈ τ(v̂ki,x) and takes the
value 1 if it does, otherwise it is 0. sτ (θ, x) can be seen as the weighted sum of the
svτ (θ, v̂

k
i,x) for each candidate.

We employ the weight wki,x to distinguish whether v̂ki,x is a correct match for ti,x.
Ideally, all correct entities corresponding to the same column should have the same set

Dependency-aware Core Column Discovery for Table Understanding 7

of types. Therefore, we use the Jaccard function to measure the similarity between the
type set of v̂ki,x and those of other candidates. If the types of v̂ki,x are more consistent
with those of other candidates, it is more likely to be a correct match. To compute wki,x,
we use the following equation:

wki,x =
σki,x
mK

m∑
j=1

K∑
l=1

Jaccard(τ(v̂ki,x), τ(v̂
l
j,x)), (2)

where the weight σki,x evaluates whether v̂ki,x correctly matches ti,x based on the inter-
column relationship. Since the inter-column relationship is not predetermined, our al-
gorithm adjusts σki,x’s value dynamically with Eq.(7).

After computing sτ (θ, x) for each type θ, we cluster the types into two groups using
k-means (k = 2) and select the types with the highest scores as τ(x). We also select
candidate entities whose types belong to the updated τ(x). Here, k-means is used rather
than selecting top-k types or setting a threshold because k-means eliminates the need
to set parameter values.
3.2 Dependency score
After performing a rough matching, we proceed to calculate the dependency score
dep(x, y) for columns x and y. To consider that the semantic dependencies between cor-
responding entities have similar relationships as the columns themselves, we divide the
score into two parts. The first part, denoted as depv̂(x, y), considers the dependencies
between candidate entities in v̂i,x and v̂i,y . The second part, denoted as depτ (x, y), e-
valuates the dependency between two columns based on τ(x) and τ(y). Then dep(x, y)
is a linear combination of the two part of scores, which is as follows.

dep(x, y) = αdepv̂(x, y) + (1− α)depτ (x, y) (3)

where α ∈ [0, 1] is a parameter for balancing depv̂(·, ·) and depτ (·, ·) and defaults to
0.5.

We show how to compute depv̂(x, y). Our main idea is to count the number of edges
in the KG that link the candidate entities of column x with those of column y. When
there are more edges present, it suggests a stronger likelihood of interdependence be-
tween these columns. Formally, if there exists a relationship ρ(x, y) ∈ Φ connecting
x and y, the corresponding entities should be connected by edges in E between two
columns, i.e.,(v(ti,x), v(ti,y)) ∈ E. However, it is difficult to calculate an exact value
for ρ(x, y) using v̂i,x and v̂i,y . Nonetheless, since the number of edges |E| is consid-
erably smaller |V |2 in a KG, there are barely any edges existed between two randomly
selected entities. Hence, if y does not depend on x, it is difficult for there to exist edges
from v̂i,x to v̂i,y . Conversely, x has a higher dependency with y when there are several
edges from v̂i,x to v̂i,y , which can be used as an indicator for the existence of ρ(x, y).
Based on this observation, we compute depv̂(x, y) as follows:

depv̂(x, y) =
ne(x, y)−min{ne}
max{ne} −min{ne}

(4)

where ne(x, y) =
∑m
i=1

∑
v̂ki,x∈v̂i,x

∑
v̂li,y∈v̂i,y

I[(v̂ki,x, v̂li,y) ∈ E]. ne(x, y) represents
the total number of edges between candidates v̂i,x and v̂i,y in each row of columns x
and y. To normalize depv̂(x, y) to the range of [0, 1], we apply min-max normalization

8 J. Qiu et al.

to ne(x, y). Here, max{ne} and min{ne} represent the max and min values of ne over
all pairs of columns, respectively.

Next, we demonstrate the computation of depτ (x, y), which tackles scenarios where
a relationship exists between two columns, but there are no direct connections among
the candidate entities. Our main idea is to assess the inter-column dependency by ex-
amining the correlation between the candidate types of column x, i.e.,τ(x), and the
candidate types of column y, i.e.,τ(y) based on the KG ontology. This involves com-
puting the correlation of θx and θy for each type pair (θx, θy) where θx ∈ τ(x) and
θy ∈ τ(y). The correlation, denoted as Corr(θx, θy), takes into account the ontology
and can be computed using the method described in [58], which considers the specifici-
ty of types and the distance between types in the ontology graph. However, the method
presented in [58] can only determine the existence of a relationship between columns x
and y, without indicating its direction, i.e.,whether it is x→ y or y → x. To address this
issue, we calculate the proportion of head nodes with type θx and θy , denoted as h(θx)
and h(θy), respectively. The ratio of h(θx)/(h(θx)+h(θy)) serves as a useful reference
for determining the direction of dependency between x and y. If this value is greater,
it signifies that θx has more head entities and θy has fewer head entities, implying that
the direction of dependency is more likely to be x→ y rather than y → x. Overall, we
have

depτ (x, y) =
T (x, y)−minx′,y′∈X,x′ 6=y′ T (x′, y′)

maxx′,y′∈X,x′ 6=y′ T (x′, y′)−minx′,y′∈X,x′ 6=y′ T (x′, y′)
(5)

where T (x, y) =
∑
θx∈τ(x)

∑
θy∈τ(y)

h(θx)
h(θx)+h(θy)

q
√
Corr(θx, θy). To balance the scores,

we introduce the parameter q due to the exponential nature of Corr(θx, θy) as calcu-
lated by [58], where q > 0. This equation considers potential type matches, computes
scores for each pair, and normalizes them to 0 to 1. The score is determined by a com-
bination of the relationship between the two column types in the ontology graph and
the proportion in which the two column types appear as head entities in the knowledge
graph. Moreover, since the values of depτ (·, ·) for different (θx, θy) pairs are always
greater than zero, it is possible to identify the core column using dep(x, y) even if
depv̂(x, y) = 0.

4 DaCo: A Two-level Iterative Algorithm

This section presents DaCo, a two-level iterative algorithm for identifying core column-
s based on dependency scores. The algorithm includes an outer iteration and an inner
iteration (Alg. 1). The outer iteration handles large tables using a sampling method with
a termination check to avoid biased samples. The inner iteration refines rough matching
results to discover core columns. An example of applying DaCo is shown in Fig. 2,
which demonstrates the process of discovering core columns from the table of Fig. 1 .

4.1 Outer iteration

In the process, the outer iteration randomly selects rows from a table and proceeds with
the inner iteration until the termination check is met. To be specific, every cycle of the
outer iteration involves the following steps.
• Initialization (lines 2-5). We randomly select ms rows for T to form a sub-table Ts
and generate the candidate entities for each mention in Ts.

Dependency-aware Core Column Discovery for Table Understanding 9

{America} {2010} {127_Hours} {Danny_Boyle,

Danny_Coale}Rough Matching

decay of mention
without connected edgeCalculate

1 america 2010 127 hours danny boyle Manchester

{Manchester}

Candidates in KG

DirectedBy

BirthIn

ReleasedIn

FilmCountry

Danny_Boyle
(director)

Manchester
(location)2010

(year)

127_Hours
(film)

America
(country)

Danny_Coale
(athlete)

2

4

3 6

5

Semantic

dependency

Dependencies between

columns

Dominating

Set

Core column

output

convergence

check

conduct next inner iteration

32 4 5 6

Dependency Score

 2 3 6

2

3

6

4 5

4

5

Termination

check

Inner IterationOuter Iteration

sample

Core column

within

confidence

interval

otherwise

Sampled Rows

Table

1

{}

Selecting
 as dependency

Fig. 2. An example of DaCo algorithm : (i) In the outer iteration, it keeps sampling rows and
discovering the core columns from the table until the results are unbiased. Before inner iteration,
it conducts rough matching for each mention of the sampled rows. If one column (e.g., column 1)
cannot generate entity candidates in KG or its candidates do not connect with candidates in other
columns, this column will be excluded for the following operations. (ii) In the inner iteration,
the weights of candidate entities are adjusted based on their connecting edges in the KG, and
the dependency scores are computed. Based on the calculated dependency scores, core column
discovery can be transformed into a problem of finding the dominating set in a directed graph: Set
a threshold and consider each column as a vertex, connecting two columns if their dependency
score exceeds the threshold. The inner iteration terminates and outputs the set of core columns
when erroneous candidates such as Danny_Coale are filtered out, and the candidates’ weights
are stabilize, ensuring the convergence of the process.

• Perform inter iteration (lines 6-13). We iteratively determine the core column set C
based on the sampled rows with detailed information in Sec. 4.2.
• Termination check (line 14). To confidently terminate the algorithm, it is necessary
to verify that the core column set C discovered from Ts is equivalent to that obtained
from T . We represent a core column set as an n-bit feature vector C, where if x is a core
column, then C[x] = 1, otherwise C[x] = 0. The feature vectors of the core column sets
discovered from Ts, T , and row i, are denoted by C, CT , and Ci, respectively. Since CT
is not known in advance, it must be discovered from each row. For each column x, we
have defined a function a(x) to measure the degree of consistency between CT [x] and
Ci[x] for all rows i, such that a(x) = 1

m

∑
1≤i≤m[CT [x] ≡ Ci[x]].

By introducing a(x) and Rademacher random variables [33], we can estimate the
confidence interval of the samples, i.e., whether the core column of the sample is con-
sistent with the one of the entire table. If a sample falls within the confidence inter-
val, it indicates that the sample is unbiased and the result can be returned. Other-
wise, it suggests that the biased sample causes its core column inconsistent with the
one of the entire table, requiring a new round of sampling. Additionally, we compute
â(x) = 1

m

∑
1≤i≤ms [C[x] ≡ Ci[x]] for Ts. We have the following theorem regarding

the confidential interval of â(x).

Theorem 1. Given a confidence level 1−ε > 0, the confidence interval of â(x) satisfies
the following bound:

Pr

(
sup
x∈X
|â(x)− a(x)| ≤ 2max

x∈X

√
2â(x) · ln(n)

ms
+

√
2 ln(2/ε)

ms

)
≥ 1− ε. (6)

10 J. Qiu et al.

Algorithm 1: DaCo Algorithm
Input: Table T , iteration threshold η
Output: Core column set C

1 while flag = False ; /* Outer iteration */
2 do
3 sample Ts from T ;
4 generate v̂ for each mention in Ts; /* Generate candidate entities */
5 r ← 0, δ ←∞;
6 while δ > η ; /* Inner iteration */
7 do
8 calculate σ with Eq. (7); /* Compute weights of candidates */
9 calculate dep(·, ·) with Eq. (3); /* Compute dependency scores */

10 ζ ← k-means(dep(·, ·)); /* Update ζ */
11 C ← CoreColumnSet(ζ, dep(·, ·)) ; /* Discover core column set */
12 r ← r + 1;
13 δ ← ConvergenceCheck(ζ);
14 flag ← TerminationCheck(C, Ts, ε);
15 return C

Sketch of proof. Theorem 1 can be proved by introducing Rademacher random variable
and Massart’s lemma [33].

The termination check of the algorithm involves computing a bound based on The-
orem 1. This bound is evidently determined by ε, C, and Ts. If the resulting bound is
less than a predetermined threshold, the algorithm terminates.

4.2 Inner iteration

During the inner iteration, we use sampled sub-table to generate core column sets. The
following steps are repeated in each iteration.
• Update dependency scores (lines 8-9). In each iteration, we update the dependency
scores dep(·, ·) of all pairs of columns by adjusting the weights of candidate entities
through Eq. (2). This involves changing the value of σki,x which evaluates candidate
entities based on the relationship between the two columns. To achieve this, we initialize
σk,0i,x as 1 and compute σk,ri,x in the rth iteration by Eq. (7) using the core column set
discovered in the previous iteration.

The main idea of Eq. (7) is to determine whether a candidate is a correct match entity
by examining the existence of connecting edges between candidates, and to lower the
weight of candidates that are more likely to be incorrect matches. Assuming ti,x is a
mention in a core column, we determine the correctness of v̂ki,x by examining whether
there exists an edge between it and a candidate of any non-core column. If such an
edge exists, we set σk,ri,x to σk,r−1

i,x . Otherwise, we reduce the importance of v̂ki,y by
multiplying it with factor γ, where 0 < γ < 1. Consequently, we compute σk,ri,x as
either σk,r−1

i,x or γσk,r−1
i,x :

σk,ri,x =

1, if r = 0

σk,r−1
i,x , if r > 0 ∧ ∃v̂li,y′ such that (v̂ki,x, v̂

l
i,y′) ∈ E

γσk,r−1
i,x , otherwise,

(7)

where y′ is any non-core columns. In a similar way, we compute the weight σk,ri,y for
candidate entities in the non-core columns. Once all the weights have been computed,
we update the dependency scores with Eq. (3).

Dependency-aware Core Column Discovery for Table Understanding 11

• Discover core column set (lines 10-11). After dep(·, ·) is updated, we utilize a k-
means (k = 2) cluster algorithm to divide dep(·, ·) into two groups, one with higher
dep(·, ·) and the other with lower dep(·, ·). ζ is set as the smallest value in the higher-
score group. Then, C can discovered by finding the minimize size of core column set
that satisfies dep(x, y) > ζ for ∀x ∈ C, y ∈ X\C. Since the problem is NP-hard, we
apply a heuristic method where we repeatedly identify and mark a column as the core
column if it results in the determination of the maximum number of non-core columns.
• Convergence check (line 13). The inner iteration stops when the core column set
remains unchanged. To track the progress of convergence, we use the change of σk,ri,x
as a metric. When σk,ri,x doesn’t change, the output of sτ (θ, x), τ(x), dep(x, y) also re-
main unchanged, which leads to a converged core column C. Therefore, to check for
convergence, we need to identify any differences in σ, specifically |σk,ri,x − σ

k,r−1
i,x |. We

define the check variable δ as
∑
x∈X

∑m
i=1

∑K
k=1(|σ

k,r
i,x − σ

k,r−1
i,x |)/(mnK). Conver-

gence of σk,ri,x can be proved by applying Cauchy’s convergence criterion [30]. It follows
that both τ(x) for every column x, dep(x, y) and C are also convergent, indicating the
guaranteed convergence of the inner iteration. To terminate the inner iteration, we set
the threshold η to stop at δ < η. In Sec 5.6, we discuss the impact of η.

5 Experiment

We conduct experiments to evaluate the performance of DaCo. There are four research
questions to seek in this section:

– RQ1: How does DaCo perform compared with other baselines of core column set
discovery task?

– RQ2: To what extent do multiple core columns, unlinkable mention portion, and
the number of sampled rows impact the effectiveness of DaCo?

– RQ3: What is the impact of parameter settings on the performance of DaCo?
– RQ4: How does DaCo improve the performance of table understanding?

5.1 Experimental settings

Dataset: We use two main data sources:

– Table Corpus: We conducted experiments for core column set discovery on SEM6 [3],
T2D [1], GIT [2], WIKI [4] and TUS [34]. In all datasets, except T2D, we manu-
ally identified the single core column in each table. We excluded blank tables and
tables without core columns in GIT. For TUS, we labeled it by sampling 300 ta-
bles. Additionally, we introduce a new dataset called MULTICC, consisting of 94
tables, which is collected from SEM and WIKI for multiple core column discovery,
by adding new columns generated with reference to the KG. The statistics of these
datasets are summarized in Table 2. We use the portion of unlinkable mentions
(UMP) in each table corpus to indicate the overlap between tables and KGs.

6 It includes tough tables generated from SemTab for dealing with the tabular data to KG match-
ing problem.

12 J. Qiu et al.

Table 2. Statistics of table datasets.
Dataset |T | m̄ n̄ maxm maxn

∑
m

∑
n UMP[%]

SEM 180 1080.21 4.46 15,478 8 194,438 803 6.74
T2D 233 121.60 4.950 586 14 28,333 1,153 30.53
GIT 460 47.27 18.00 1,015 75 38,478 14,652 53.92

WIKI 428 35.55 3.79 465 6 15,215 1,622 61.10
TUS 5049 1932.12 10.98 4,987 44 9,755,274 55,438 >72.12

MULTICC 94 1132.23 3.47 15,477 7 106,430 326 28.99

Table 3. Precision, accuracy and recall of core column discovery. Pre, Acc and Rec represent
precision, accuracy and recall, respectively. The bolds denote the best results.

Method SEM T2D GIT WIKI TUS
Pre Acc Rec Pre Acc Rec Pre Acc Rec Pre Acc Rec Pre Acc Rec

H
eu

ri
st

ic LEFT .811 .898 .811 .906 .941 .906 .594 .865 .594 .624 .778 .624 .380 .862 .380
UNI .617 .816 .617 .644 .790 .644 .757 .911 .757 .675 .794 .675 .280 .859 .280
SUP .378 .590 .378 .498 .663 .498 .622 .868 .622 .304 .601 .304 .200 .825 .200

CONN .439 .628 .439 .451 .642 .451 .639 .878 .639 .344 .631 .344 .180 .816 .180
MIX .361 .571 .361 .506 .671 .506 .598 .857 .598 .278 .584 .278 .160 .814 .160

D
B HPI .633 .810 .633 .691 .812 .691 .735 .904 .735 .703 .811 .703 .400 .882 .400

GOR .628 .817 .628 .640 .778 .640 .737 .903 .737 .668 .789 .668 .337 .862 .337

M
L SVM .400 .498 .400 .652 .474 .652 .587 .854 .587 .175 .482 .175 .060 .661 .060

NK .806 .810 .806 .871 .902 .871 .535 .761 .535 .643 .726 .643 .360 .858 .360
TURL .683 .689 .683 .652 .776 .652 .613 .834 .613 .591 .695 .591 .080 .760 .080

DaCo .850 .901 .850 .949 .970 .949 .798 .930 .798 .918 .959 .918 .800 .959 .800

– Knowledge Graphs: We use subsets of DBpedia [25], i.e.,mappingbased_ object-
s_en, mappingbased_literals_en, instance_types_en, DBpedia Ontology.

Baselines: We compared DaCo with ten baseline methods, including five heuristic-
based methods (LEFT, UNI, SUP, CONN, MIX [14]), two database-based methods (H-
PIValid (HPI) [5], GORDIAN (GOR) [40]), and three machine learning-based methods
(SVM [45], NK [6], TURL [12]). SUP, CONN, and MIX are based on disambiguation
results and linked edges between columns. HPI and GOR are key discovery approaches
in data profiling, where we implement modules such as preprocessing, sampling, tree
search and validation of HPI, prefix tree creation and merging, finding non-keys, prun-
ing, and computing keys from non-keys of GOR. SVM and NK are supervised learning
methods. TURL is a pretrained table representation model, which we fine-tuned it by
using the cross-entropy loss function and 70 tables in T2D with their core column la-
bels.
Parameter default configurations: Parameter q for calculating d(x, y) is 1, conver-
gence threshold η=0.01, decay parameter γ=0.85 [4], sample number ms=10.

5.2 Overall performance (RQ1)

In this study, precision, accuracy, and recall results of different approaches are reported
on five table corpora (Table 3). Notice that all tables in the corpus have a single core
column, resulting in identical precision and recall values.

The evaluation of various methods indicates DaCo’s superiority over state-of-the-
art baselines in all five benchmark datasets. DaCo attains precision improvements rang-
ing from 3.9%-40% and accuracy improvements from 0.3%-14.8%. Precision ranges
between 80% to 95% and accuracy varies from 90%-97% across different table corpora.
DaCo performs better than baselines even with incomplete data (e.g., WIKI and TUS),
making it effective for various types of tables, particularly those with more unlinkable

Dependency-aware Core Column Discovery for Table Understanding 13

0 10 20 30 40 50 60 70 80 90
UMP[%]

30%

40%

50%

60%

70%

80%

90%

P
re

ci
si

on
[%

]

(a) SEM

0 10 20 30 40 50 60 70 80 90
UMP[%]

40%

50%

60%

70%

80%

90%

100%

P
re

ci
si

on
[%

]

(b) T2D

DaCo
LEFT

UNI
HPI

GOR
SUP

CONN
MIX

SVM
NK

TURL

0 10 20 30 40 50 60 70 80 90
UMP[%]

50%

55%

60%

65%

70%

75%

80%

P
re

ci
si

on
[%

]

(c) GIT

0 10 20 30 40 50 60 70 80 90
UMP[%]

20%

30%

40%

50%

60%

70%

80%

90%

100%

P
re

ci
si

on
[%

]

(d) WIKI

Fig. 3. Effects of unlinkable mention. Precision of four table corpus are depicted with UMP rang-
ing from 10% to 90%.

mentions. These results demonstrate DaCo’s robustness for core column detection in
table understanding.

5.3 Effects of unlinkable mentions (RQ2-1)

We conducted an experiment to study the impact of Unlinkable Mention Portion (UMP)
in tables by randomly setting cells to blank with varying rates to simulate UMP. The
results of this experiment are presented in Fig. 3.

Our experimental findings demonstrate that DaCo outperforms existing approach-
es, particularly when dealing with tables containing numerous unlinkable mentions.
Despite a decrease in precision with an increase in UMP, DaCo achieves a precision of
over 70% and yields improvements of approximately 10% and 20% on GIT and WIKI,
respectively, when UMP is 90%. The superior performance of DaCo can be attributed
to its ability to extract valid dependencies using rough matching, even in the presence
of a scarcity of linkable mentions. Additionally, our results highlight that DaCo has a
distinct advantage in processing real-life tables with incomplete data.

5.4 Effects of row sampling (RQ2-2)

In order to further investigate the effectiveness of DaCo, we conduct experiments with-
in the range of sampled row numbers (ms = [2, 20]) in each outer iteration. For compar-
ison, baselines sample ms rows in this experiment. As shown in Fig. 4, we compare the
results with DaCo−, which represents our model without termination check module,
i.e.,running once in outer iteration.

Based on the results shown in Fig. 4, DaCo outperforms other methods in most
cases, with its precision gradually increasing and leveling off as the number of sampled
rows increases. Even only with two rows, DaCo reports precision about 75%-90%. On
GIT and WIKI, DaCo outperforms other methods on any of ms with an improvement
of at least 3% and 18% respectively. This further demonstrates that DaCo can achieve
good results even with a small number of sampled rows on tables with many unlinkable
mentions, making it suitable for real-life tables with various size.

Comparing DaCo with DaCo−, DaCo achieves higher precision, especially with
a lower number of sampled rows, e.g.,it brings an improvement on precision to DaCo−

about 10%, 12%, 11% and 8% on different table corpus. This is because a smaller
number of sampled rows is more likely to result in biased samples. Termination check

14 J. Qiu et al.

2 4 6 8 10 12 14 16 18 20
Sample number

30%

40%

50%

60%

70%

80%

90%

P
re

ci
si

on
[%

]

(a) SEM

2 4 6 8 10 12 14 16 18 20
Sample number

40%

50%

60%

70%

80%

90%

100%

P
re

ci
si

on
[%

]

(b) T2D

DaCo
DaCo-

LEFT
UNI

HPI
GOR

SUP
CONN

MIX
SVM

NK
TURL

2 4 6 8 10 12 14 16 18 20
Sample number

55%

60%

65%

70%

75%

80%

P
re

ci
si

on
[%

]

(c) GIT

2 4 6 8 10 12 14 16 18 20
Sample number

20%

30%

40%

50%

60%

70%

80%

90%

100%

P
re

ci
si

on
[%

]

(d) WIKI

Fig. 4. Sample number effect on core column discovery. Sample number ms is ranged from 2 to
20. The whole table will be input when it has less number of rows than ms.

0%

20%

40%

60%

80%

100%

A
cc

ur
ac

y[
%

]

Accuracy

0%

10%

20%

30%

40%

50%

60%

R
ec

al
l[%

]

Recall

HPI
GOR

SVM
NK

TURL
DaCo

Fig. 5. Results on MULTICC

0.5 0.7
5 1.0 1.2

5 1.5 1.7
5 2.0

80%

85%

90%

95%

100%

P
re

ci
si

on
[%

]

q 0.0
01

0.0
02

0.0
05 0.0

1
0.0

2
0.0

5 0.1
80%

85%

90%

95%

100%

P
re

ci
si

on
[%

]

SEM T2D

Fig. 6. Effects of varying q and η

can prevent this. Therefore, the existence of the termination check module improves the
precision of results, particularly when working with small tables.

5.5 Effects of multiple core columns (RQ2-3)

In order to evaluate the performance of DaCo in identifying multiple core column from
tables, we conducted experiments on MULTICC. We extend the DB and ML approach-
es to support multi core columns discovery for comparison of accuracy and recall, as
shown in Fig. 5. DB is designed to implement the identification of unique column com-
binations, which inherently allows for the discovery of multiple core columns. ML in-
volves classifying each column, and in cases where multiple columns in a table are
classified as core columns, it provides results for multiple core column discovery.

The evaluation results show that DaCo outperforms state-of-the-art methods in i-
dentifying tables with multiple core columns, achieving an accuracy improvement of
8% and a recall improvement of 13%. Specifically, DaCo achieves an accuracy of 80%
and a recall of 50% for multiple core column discovery, which indicates its effective-
ness in discovering multiple core columns even without metadata and complete data.

5.6 Effects of varying parameter settings (RQ3)

We investigated the impact of parameter settings, specifically the values of q in depτ (·, ·)
and η in the inner iteration. Fig. 6 reveals an initial increase, followed by fluctuation
within a certain range, and eventually a decrease in precision on both of q and η. We
found that the highest precision for core column discovery in both datasets was achieved
when q=1.00 and η=0.01.

Dependency-aware Core Column Discovery for Table Understanding 15

Table 4. Effects on table understanding tasks’ precision.

Method
Column Type Prediction Entity Linking Relation Extraction
T2K Hybrid I T2K Hybrid I T2K

SEM T2D WIKI SEM T2D WIKI SEM T2D WIKI SEM T2D WIKI SEM T2D WIKI

H
eu

ri
st

ic LEFT .320 .220 .620 .381 .354 .380 .438 .312 .217 .582 .100 .178 .326 .096 .153
UNI .330 .142 .553 .381 .241 .391 .334 .178 .234 .410 .073 .206 .278 .104 .170
SUP .300 .152 .448 .356 .288 .201 .330 .183 .165 .218 .047 .070 .120 .054 .082

CONN .305 .114 .306 .332 .202 .191 .324 .123 .131 .231 .053 .076 .166 .079 .079
MIX .282 .156 .435 .349 .302 .198 .319 .188 .175 .192 .048 .067 .104 .073 .075

D
B HPI .339 .188 .553 .380 .259 .423 .334 .226 .224 .385 .075 .207 .260 .131 .190

GOR .314 .149 .541 .385 .239 .392 .345 .169 .219 .413 .077 .199 .255 .118 .181
DaCo .795 .646 .630 .795 .646 .630 .457 .347 .290 .590 .114 .287 .733 .533 .442

5.7 Performance on table understanding tasks (RQ4)

We present various experiments to demonstrate the effectiveness of DaCo in three pri-
mary tasks in table understanding [53]: Column Type Prediction (CTP), Entity Linking
(EL), and Relation Extraction (RE). We integrate DaCo with two core column-based
table understanding methods, T2K [38] and Hybrid I [13], and evaluate the results.
We do not compare Hybrid I’s RE task as it does not include a RE implementation.
Both methods are core column based table understanding approaches. The CTP and RE
tasks are subsequently completed based on these linked entities or entity candidate set-
s. Table 4 summarizes the precision of the two table understanding models using core
column discovery.

The table shows that DaCo significantly outperforms state-of-the-art baselines in
CTP, achieving precision values of 60%-80% compared to the precision values of T2K
and Hybrid I. This is because DaCo returns a more accurate or fine-grained column
type than baselines. For example, in Fig. 1, DaCo returns “Director” while T2K returns
“Person” for the 5th column , where we identify “Director” as the correct result. DaCo’s
advantage in CTP is due to the use of dependency analysis and two-level iteration to
refine the type of each column during core column discovery, which yields more precise
column types. T2K and Hybrid I often predict a general type by majority voting of top-1
results. In EL, DaCo also achieves a slight improvement in precision by 0.8%, 3.5%,
and 5.6% over state-of-the-art baselines when inputting the core columns identified
by DaCo. For RE, DaCo again outperforms the state-of-the-art baselines, achieving
precision values of 44%-73% and improving RE by 30%-50%.

6 Related Work

Table understanding. The comprehension of table semantics for downstream appli-
cations is essential, and this task often involves referencing a knowledge graph [53].
Table understanding research can be divided into core column-based and core column-
free. Core column-free techniques generate representations from supervised learning or
context in table surroundings [9, 42, 35, 37]. In contrast, core column-based methods
integrate semantics more efficiently from core column entities to non-core column at-
tributes [56, 27, 31, 16, 57]. We consider discovering core columns is a crucial task for
successful table understanding. However, there is currently a lack of deep investigation
into this area [6].

16 J. Qiu et al.

Core column discovery. Core column discovery is a crucial task in web table un-
derstanding [53] that can provide input to multiple downstream applications [26, 27,
36, 51, 18]. There are three main categories approaches for core column discovery:
(1) heuristic-based. Heuristic approaches often select the leftmost column [7, 54, 52]
or the most unique column [23, 55, 16]. However, these approaches only focus on a
single core column and lack explanation; (2) machine learning-based. They treat core
column discovery as a binary classification problem for each column [45, 6], which suf-
fer from the unavailability of training data due to the limited labeled tables and the lack
of metadata; (3) databased-based. These methods aim to identify core columns based
on unique column detection and functional dependency [29, 22], which often demand
numerous tables to explore inter-table information for reducing noise. Our approach is
based on the perspective of mining inter-column dependencies semantically, which is
ignored by most previous work.
Dependencies in database. Functional dependencies are fundamental to discover keys,
rules, and schema in relational data. They allow for the determination of whether one
column set can uniquely determine the value of another column set [24]. In response to
the growing demands of real-world datasets, extensions to functional dependencies have
been proposed [47, 43, 24, 15]. However, semantic dependencies are defined on tables
using KG and discovered by relations in KG but not value uniqueness in functional
dependency studies.

7 Conclusion

DaCo is a novel method for discovering core column that can handle challenges such
as incomplete and inconsistent data, lack of metadata, and multiple core columns. This
is achieved by defining a new semantic dependency that measures the inter-column
relationship and a two-level iterative algorithm to obtain the core columns. Extensive
experiments demonstrate the effectiveness of our model on various aspects and im-
provements in table understanding tasks.

Supplemental Material Statement: Code for our DaCo and dataset are available from
GitHub at https://github.com/barrel-0314/daco.git. There are some examples and theo-
retical analysis which will be published on arXiv in an extended version of the paper.

Acknowledgements We would like to thank Jiaoyan Chen for his useful comment on
this paper. This work is supported by the State Grid Technology Project “research and
application of key technologies for automatic graphic construction of power grid control
system driven by model and data”, the National Natural Science Foundation of China
under the grant numbers [6201101008, 62072099], the “Zhishan” Scholars Programs of
Southeast University, and the Fundamental Research Funds for the Central Universities.

Dependency-aware Core Column Discovery for Table Understanding 17

References

1. T2d gold standard for matching web tables to dbpedia (2015),
http://webdatacommons.org/webtables/goldstandard.html

2. Gittables benchmark-column type detection (2021), http-
s://zenodo.org/record/5706316#.YxAVU9NBw2x

3. Semtab 2021: Semantic web challenge on tabular data to knowledge graph matching (2021),
http://www.cs.ox.ac.uk/isg/challenges/sem-tab/2021/

4. Bhagavatula, C.S., Noraset, T., Downey, D.: Tabel: Entity linking in web tables. In: Proceed-
ings of the 14th International Semantic Web Conference. pp. 425–441. Springer (2015)

5. Birnick, J., Blasius, T., Friedrich, T., Naumann, F., Papenbrock, T., Schirneck, M.: Hitting
set enumeration with partial information for unique column combination discovery. In: Pro-
ceedings of the VLDB Endowment. vol. 13, pp. 2070–2083 (2020)

6. Bornemann, L., Bleifuß, T., Kalashnikov, D.V., Naumann, F., Srivastava, D.: Natural key
discovery in wikipedia tables. In: Proceedings of The Web Conference 2020. pp. 2789–2795
(2020)

7. Cafarella, M.J., Halevy, A., Wang, D.: Webtables: Exploring the power of tables on the web.
In: Proceedings of the VLDB Endowment. pp. 538–549 (2008)

8. Cafarella, M.J., Halevy, A., Wang, D., Wu, E., Zhang, Y.: Uncovering the relational web. In:
Proceedings of the 11th International Workshop on Web and Databases (2008)

9. Chen, J., Jiménez-Ruiz, E., Horrocks, I., Sutton, C.: Colnet: Embedding the semantics of
web tables for column type prediction. In: Proceedings of the AAAI Conference on Artificial
Intelligence. vol. 33, pp. 29–36 (2019)

10. Chen, Z., Trabelsi, M., Heflin, J., Xu, Y., Davison, B.D.: Table search using a deep contex-
tualized language model. In: Proceedings of the 43rd International ACM SIGIR Conference
on Research and Development in Information Retrieval. pp. 589–598 (2020)

11. Chirigati, F., Liu, J., Korn, F., Wu, Y., Yu, C., Zhang, H.: Knowledge exploration using tables
on the web. In: Proceedings of the VLDB Endowment. vol. 10, pp. 193–204 (2016)

12. Deng, X., Sun, H., Lees, A., Wu, Y., Yu, C.: Turl: Table understanding through represen-
tation learning. In: Proceedings of the 2022 ACM SIGMOD International Conference on
Management of Data. vol. 14, pp. 33–40 (2022)

13. Efthymiou, V., Hassanzadeh, O., Rodriguez-Muro, M., Christophides, V.: Matching web ta-
bles with knowledge base entities: from entity lookups to entity embeddings. In: Proceedings
of the International Semantic Web Conference. pp. 260–277 (2017)

14. Ermilov, I., Ngomo, A.C.N.: Taipan: automatic property mapping for tabular data. In: Euro-
pean Knowledge Acquisition Workshop. pp. 163–179. Springer (2016)

15. Fan, W., Wu, Y., Xu, J.: Functional dependencies for graphs. In: Proceedings of the 2016
ACM SIGMOD International Conference on Management of Data. pp. 1843–1857 (2016)

16. Gentile, A.L., Ristoski, P., Eckel, S., Ritze, D., Paulheim, H.: Entity matching on web ta-
bles: a table embeddings approach for blocking. In: Proceedings of the 20th International
Conference on Extending Database Technology. pp. 510–513 (2017)

17. Harmouch, H., Papenbrock, T., Naumann, F.: Relational header discovery using similarity
search in a table corpus. In: 2021 IEEE 37th International Conference on Data Engineering.
pp. 444–455. IEEE (2021)

18. Ho, V.T., Pal, K., Razniewski, S., Berberich, K., Weikum, G.: Extracting contextualized
quantity facts from web tables. In: Proceedings of the Web Conference 2021. pp. 4033–4042
(2021)

19. Ibrahim, Y., Riedewald, M., Weikum, G., Zeinalipour-Yazti, D.: Bridging quantities in tables
and text. In: Proceedings of IEEE 35th International Conference on Data Engineering. pp.
1010–1021 (2019)

18 J. Qiu et al.

20. Khatiwada, A., Fan, G., Shraga, R., Zixuan, C., Gatterbauer, W., Miller, R.J., Riedewald, M.:
Santos: relationship-based semantic table union search. CoRR abs/2209.13589 (2022)

21. Korini1, K., Peeters, R., Bizer, C.: Sotab: The wdc schema.org table annotation benchmark.
In: Proceedings of the Semantic Web Challenge on Tabular Data to Knowledge Graph Match-
ing co-located with the 21st International Semantic Web Conference. vol. 3320, pp. 14–19
(2022)

22. Kruit, B., Boncz, P., Urbani, J.: Extracting n-ary facts from wikipedia table clusters. In:
Proceedings of the 29th ACM International Conference on Information & Knowledge Man-
agement. pp. 655–664 (2020)

23. Kruit, B., Boncz, P., Urbani, J.: Takco: A platform for extracting novel facts from tables. In:
Companion Proceedings of the Web Conference 2021. pp. 705–707 (2021)

24. Kruse, S., Naumann, F.: Efficient discovery of approximate dependencies. In: Proceedings
of the VLDB Endowment. vol. 11, pp. 759–772 (2018)

25. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N., Hellmann, S.,
Morsey, M., Kleef, P.v., Auer, S., Bizer, C.: Dbpedia - a large-scale, multilingual knowledge
base extracted from wikipedia. Semantic Web 6(2), 167–195 (2014)

26. Lehmberg, O., Bizer, C.: Web table column categorisation and profiling. In: Proceedings of
the 19th International Workshop on Web and Databases. pp. 1–7 (2016)

27. Lehmberg, O., Bizer, C.: Stitching web tables for improving matching quality. In: Proceed-
ings of the VLDB Endowment. vol. 10, pp. 1502–1513 (2017)

28. Lehmberg, O., Bizer, C.: Profiling the semantics of N-ary web table data. In: Proceedings of
the International Workshop on Semantic Big Data. vol. 5, pp. 1–6 (2019)

29. Lehmberg, O., Bizer, C.: Synthesizing N-ary relations from web tables. In: Proceedings of
the 9th International Conference on Web Intelligence, Mining and Semantics. vol. 17, pp.
1–12 (2019)

30. Li, Z.: Cauchy convergence topologies on the space of continuous functions. Topology and
its applications 161, 321–329 (2014)

31. Luzuriaga, J., Munoz, E., Rosales-Mendez, H., Hogan, A.: Merging web tables for relation
extraction with knowledge graphs. IEEE Trans. Knowl. Data Eng. 35(2), 1803–1816 (2023)

32. Marzocchi, M., Cremaschi, M., Pozzi1, R., Avogadro, R., Palmonari, M.: Mammotab: a giant
and comprehensive dataset for semantic table interpretation. In: Proceedings of the Semantic
Web Challenge on Tabular Data to Knowledge Graph Matching co-located with the 21st
International Semantic Web Conference. vol. 3320, pp. 28–33 (2022)

33. Mohri, M., Rostamizadeh, A., Talwalkar, A.: Foundations of Machine Learning. The MIT
Press (2018)

34. Nargesian, F., Zhu, E., Pu, K.Q., Miller, R.J.: Table union search on open data. In: Proceed-
ings of the VLDB Endowment. vol. 11, pp. 813–825 (2018)

35. Neumaier, S., Umbrich, J., Parreira, J.X., Polleres, A.: Multi-level semantic labelling of nu-
merical values. In: Groth, P., Simperl, E., Gray, A., Sabou, M., Krötzsch, M., Lecue, F.,
Flöck, F., Gil, Y. (eds.) Proceedings of the 15th International Semantic Web Conference. pp.
428–445 (2016)

36. Nguyen, P., Kertkeidkachorn, N., Ichise, R., Takeda, H.: Tabeano: table to knowledge graph
entity annotation. CoRR abs/2010.01829 (2020)

37. Pham, M., Alse, S., Knoblock, C.A., Szekely, P.: Semantic labeling: a domain-independent
approach. In: Groth, P., Simperl, E., Gray, A., Sabou, M., Krötzsch, M., Lecue, F., Flöck, F.,
Gil, Y. (eds.) Proceedings of the 15th International Semantic Web Conference. pp. 446–462
(2016)

38. Ritze, D., Lehmberg, O., Bizer, C.: Matching html tables to dbpedia. In: Proceedings of the
5th International Conference on Web Intelligence, Mining and Semantics. pp. 1–6 (2015)

39. Shyu, S.j., Yin, P., Lin, B.M.T.: An ant colony optimization algorithm for the minimum
weight vertex cover problem. Annals of Operations Research 131, 283–304 (2004)

Dependency-aware Core Column Discovery for Table Understanding 19

40. Sismanis, Y., Brown, P., Haas, P.J., Reinwald, B.: Gordian: efficient and scalable discovery
of composite keys. In: Proceedings of the VLDB Endowment. pp. 691–702 (2006)

41. Sun, H., Ma, H., Yih, W.t., Yan, X.: Table cell search for question answering. In: Proceedings
of the 25th International Conference on World Wide Web. pp. 771–782 (2016)

42. Takeoka, K., Oyamada, M., Nakadai, S., Okadome, T.: Meimei: An efficient probabilistic
approach for semantically annotating tables. In: Proceedings of the AAAI Conference on
Artificial Intelligence. vol. 33, pp. 281–288 (2019)

43. Tan, Z., Ran, A., Ma, S., Qin, S.: Fast incremental discovery of pointwise order dependencies.
In: Proceedings of the VLDB Endwment. vol. 13, pp. 1669–1681 (2020)

44. Trabelsi, M., Chen, Z., Zhang, S., Davison, B.D., Heflin, J.: Strubert: structure-aware bert
for table search and matching. In: Proceedings of the Web Conference 2022. pp. 442–451
(2021)

45. Venetis, P., Halevy, A.Y., Madhavan, J., Pasca, M., Shen, W., Wu, F., Miao, G.: Recovering
semantics of tables on the web. In: Proceedings of the VLDB Endowment. vol. 4, pp. 528–
538 (2011)

46. Wang, N., Ren, X.: Identifying multiple entity columns in web tables. International Journal
of Software Engineering and Knowledge Engineering 28(3), 287–309 (2018)

47. Wei, Z., Hartmann, S., Link, S.: Discovery algorithms for embedded functional dependen-
cies. In: Proceedings of the 2020 ACM SIGMOD International Conference on Management
of Data. pp. 833–843 (2020)

48. Yin, P., Neubig, G., Yih, W.T., Riedel, S.: Tabert: pretraining for joint understanding of tex-
tual and tabular data. In: Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, ACL 2020. pp. 8413–8426 (2020)

49. Zhang, M., Chakrabarti, K.: Infogather+ semantic matching and annotation of numeric and
time-varying attributes in web tables. In: Proceedings of the 2013 ACM SIGMOD Interna-
tional Conference on Management of Data. pp. 145–156 (2013)

50. Zhang, S., Balog, K.: Ad hoc table retrieval using semantic similarity. In: Proceedings of the
World Wide Web Conference. pp. 1553–1562 (2018)

51. Zhang, S., Balog, K.: On-the-fly Table Generation. In: Proceedings of the 41st International
ACM SIGIR Conference on Research & Development in Information Retrieval. pp. 595–604
(2018)

52. Zhang, S., Balog, K.: Auto-completion for data cells in relational tables. In: Proceedings of
the 28th ACM International Conference on Information and Knowledge Management. pp.
761–770 (2019)

53. Zhang, S., Balog, K.: Web table extraction, retrieval, and augmentation: a survey. ACM
Transactions on Intelligent Systems and Technology 11, 13: 1–13: 35 (2020)

54. Zhang, S., Meij, E., Balog, K., Rernanda, R.: Novel entity discovery from web tables. In:
Proceedings of International World Wide Web Conference. pp. 1298–1308 (2020)

55. Zhang, X., Chen, Y., Chen, J., Du, X., Zou, L.: Mapping entity-attribute web tables to web-
scale knowledge bases. In: International Conference on Database Systems for Advanced
Applications. pp. 108–122. Springer (2013)

56. Zhang, Z.: Towards efficient and effective semantic table interpretation. In: Proceedings of
13th International Semantic Web Conference. pp. 487–502. Springer (2014)

57. Zhang, Z.: Effective and Efficient Semantic Table Interpretation using TableMiner+. Seman-
tic Web 8(6), 921–957 (2017)

58. Zhu, G., Iglesias, C.A.: Computing semantic similarity of concepts in knowledge graphs.
IEEE Transactions on Knowledge and Data Engineering 29(1), 72–89 (2017)

