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Abstract. Knowledge Graphs (KGs) play an increasingly important
role as useful side information in recommender systems. Recently, de-
veloping end-to-end models based on graph neural networks (GNNs) be-
comes the technical trend of knowledge-aware recommendation. How-
ever, we argue that prior methods are insufficient to discover multi-
faceted user preferences based on diverse aspects of item attributes, since
they only learn a single representation for each user and item. To allevi-
ate this limitation, we focus on exploring user preferences from multiple
aspects of item attributes, and propose a novel disentangled contrastive
learning framework for knowledge-aware recommendation (DCLKR). Tech-
nically, we first disentangle item knowledge graph into multiple aspects
for the knowledge view, and user-item interaction graph for the collab-
orative view, equipped with attentive neighbor assignment and embed-
ding propagation mechanisms. Then we perform intra-view contrastive
learning to encourage differences among disentangled representations in
each view, and inter-view contrastive learning to transfer knowledge be-
tween the two views. Extensive experiments conducted on three bench-
mark datasets demonstrate the superior performance of our proposed
method over the state-of-the-arts. The implementations are available at:
https://github.com/Jill5/DCLKR.

Keywords: Recommender System · Knowledge Graphs · Disentan-
gled Representation Learning · Contrastive Learning · Graph Neural
Networks.

1 Introduction

Recommender systems are crucial for many online services to discover interested
items for users. For developing effective recommendation approaches, learning
high-quality user and item representations is of great significance. In recent years,
a great deal of research effort is devoted to utilizing knowledge graphs (KGs) to
improve the representation learning of recommendation [45, 28, 33]. A KG is a
semantic network of real-world entities, and illustrates the relationship between
them. The rich entity and relation information can not only reveal various relat-
edness among items (e.g., co-directed by a director) but also be used to interpret
user preference (e.g., attributing a user’s choice of a movie to its director).
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Fig. 1. A toy example of different facets of user preferences. Best viewed in color.

Early studies on knowledge-aware recommendation focus on bridging differ-
ent knowledge graph embedding (KGE) models [2, 39, 16] with recommendation
models, by pre-processing KGs with KGE models and feeding the learned entity
embeddings into recommendation frameworks. Some follow-on studies [10, 36, 42]
propose to construct multi-hop paths along with multiple relations in KGs from
users to items, exploiting the high-order KG connectivity to model user-item
relations better. More recently, due to the powerful capabilities of graph neural
networks (GNNs) [15, 25, 7], the information aggregation schemes of GNNs be-
come the mainstream in knowledge-aware recommendation [32, 33, 23, 34]. Such
methods unify user-item interactions and KGs as user-item-entity graphs, then
recursively integrate multi-hop neighbors into node representations.

However, we argue that prior methods are insufficient to discover multi-
faceted user preferences. The key reason is that each item contains diverse rela-
tion and entity information, but prior methods only learn a single representation
for each item, which is further used to characterize user preferences. An underly-
ing fact has been ignored that user preferences are multi-faceted based on diverse
aspects of item attributes, and a user likes an item doesn’t mean he/she likes all
the attributes of the item. Taking Figure 1 as an example, the movie Batman
Begins has multiple aspects of relation and entity information, user u1 saw the
movie Batman Begins because he liked its genre, while user u2 saw this movie for
its director and star. Ignoring the diverse facets behind user preferences limits
the performance of recommendation. To solve this limitation, we propose to ex-
plore user preferences at a more granular level, by disentangling item knowledge
graph and user-item interaction graph under multiple aspects of item attributes,
which form the knowledge view and the collaborative view, respectively. The
main challenge is how to learn such disentangled representations of users and
items in two views, while transferring knowledge between these two views for
knowledge-aware recommendation.

Recently, contrastive learning, one of the classical self-supervised learning
(SSL) methods, shows excellent performance on learning discriminative repre-
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sentations from unlabeled data, via maximizing the distance between negative
samples while minimizing the distance between positive samples [17]. Besides,
contrastive learning enables knowledge transferring between views by maximiz-
ing the mutual information between those augmented views of the same instance
(i.e., user or item) [47].

Motivated by the advantage of contrastive learning in representation learning,
we develop a novel Disentangled Contrastive Learning framework for Knowledge-
aware Recommendation (DCLKR). More specifically, we first initialize multi-
aspect embeddings via multiple gate units, coupling each gate unit with an
aspect. We then apply graph disentangling modules in the knowledge view and
collaborative view separately, equipped with attentive neighbor assignment and
embedding propagation mechanisms. In particular, attentive neighbor assign-
ment exploits node-neighbor affinity to refine the graph in each aspect, high-
lighting the importance of influential connections, i.e., user-item interactions
and KG triplets. In turn, embedding propagation on such graphs updates a
node embedding relevant to a certain aspect. By iteratively performing such dis-
entangling operations, we establish a set of disentangled representations under
multiple aspects. Simultaneously, a contrastive learning module is introduced,
consisting of intra-view contrastive learning and inter-view contrastive learning.
The intra-view contrastive learning is performed to encourage differences among
disentangled representations in each view. Besides, the inter-view contrastive
learning is conducted to align item representations between two views, for trans-
ferring item knowledge to the collaborative view as well as collaborative signals
to the knowledge view.

Our contributions are summarized as follows:

– This work emphasizes the significance of exploring multi-faceted user pref-
erences based on different aspects of item attributes, and presents the idea
of modeling multi-faceted user preferences by disentangled representation
learning.

– We propose a novel model DCLKR, which builds a disentangled contrastive
learning framework for knowledge-aware recommendation. DCLKR learns
disentangled representations of users and items from the knowledge view
and the collaborative view. Besides, it performs intra-view and inter-view
contrastive learning to enhance representation learning.

– We conduct extensive experiments on three benchmark datasets to demon-
strate the advantages of our DCLKR in recommendation, and investigate
the effectiveness of each component with ablation studies.

2 Preliminaries

In this section, we introduce main notations used throughout the paper and
formulate the knowledge-aware recommendation task.

In a typical recommendation scenario, let U be a set of users and I be a
set of items, respectively. Let O+ = {(u, i)|u ∈ U , i ∈ I} be a set of observed
feedback, where each (u, i) pair indicates that user u has engaged item i before.
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KGs store plentiful real-world facts associated with items, e.g., item at-
tributes, or external commonsense knowledge, in the form of heterogeneous
graphs. Let a KG be a collection of triplets G = {(h, r, t)|h, t ∈ V , r ∈ R},
where each triplet (h, r, t) indicates that a relation r exists from head entity h to
tail entity t; V and R refer to the sets of entities and relations in G, respectively.
Here, V is comprised of items I and non-item entities V/ I. For example, the
triplet (Batman Begins, star, Christian Bale) describes that Christian Bale is
the star of movie Batman Begins.

Given the user-item interaction data O+ and the knowledge graph G, our
task of knowledge-aware recommendation is to learn a function that can predict
the probability that a user u ∈ U would interact with an item i ∈ I.

3 Methodology

In this section, we present the proposed DCLKR. It aims to incorporate con-
trastive learning into knowledge-aware recommendation to model disentangled
multi-faceted user preferences. The framework of DCLKR is illustrated in Fig-
ure 2, which consists of three key components: (1) Knowledge Graph Dis-
entangling Module. It incorporates an attentive neighbor assignment mecha-
nism into a path-aware GNN to encode disentangled knowledge-aware represen-
tations of items. (2) Interaction Graph Disentangling Module. It applies
an attentive light aggregation scheme to encode the interaction graphs, under
the guidance of the multi-faceted representations from the knowledge view. (3)
Contrastive Learning Module. First, it separately performs intra-view con-
trastive learning in the two views, then conducts inter-view contrastive learning
to aligned item representations between the two views. We next present the three
components in details.

3.1 Multi-aspect Embeddings Initialization

Before the graph disentangling, we need to initialize embeddings for multiple
aspects. Formally, we assume that there are total K aspects. Instead of slicing
ID embeddings into K chunks [35], we utilize element-wise self-gating units to
control the information flow from ID embeddings to each aspect, as follow:

ei,k = fk
gate(ei) = ei ⊙ σ(Wkei + bk) , (1)

where ei is ID embedding of item i, ei,k is the initial embedding of item i un-
der the k-th aspect, Wk ∈ Rd×d and bk ∈ Rd are parameters to be learned, ⊙
denotes the element-wise product and σ is the sigmoid function. Analogously,
eu,k, ev,k, er,k, are established for user u, entity v and relation r, respectively.
The self-gating mechanism effectively learns non-linear gates to modulate ID
embeddings under different aspects at element-wise granularity through dimen-
sion re-weighting, which is more adaptive than simply dividing embeddings into
multiple chunks.
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Fig. 2. Illustration of the proposed DCLKR model. The upper part is the model frame-
work of DCLKR, and the lower part is the details of intra-view and inter-view con-
trastive learning mechanism. Best viewed in color.

3.2 Knowledge Graph Disentangling Module

In this component, we aim to learn disentangled knowledge-aware representa-
tions to distinguish different aspects of relations and entities. Inspired by [34], we
propose a path-aware GNN to encode the relation information in item knowl-
edge graphs. The path-aware GNN aggregates neighboring information for L
times, i.e., aggregation depth, meanwhile preserving the path information, i.e.,
long-range connectivity such as item-relation-entity-relation-item.

However, in the knowledge graph disentanglement task, we should not aggre-
gate all the neighbors when re-constructing node representations in one aspect,
as only a subset of neighbors are highly correlated with this aspect. Taking Fig-
ure 1 as an example, movie Batman Begins’s neighbors, (genre, Science Fiction)
and (genre, Action) are strongly relevant to the aspect of genre, while (language,
English) and (release date, 2005 ) are weakly correlated. Thus, in order to better
capture the affinity between item i and its neighbors in each aspect, we leverage
an attentive neighbor assignment mechanism to infer the importance of each
neighbor in aggregation. Here we simply adopt the similarity-based attention
based on the hypothesis that the more similar the item i and the neighbor (r, v)
are in the k-th aspect, the better neighbor (r, v) characterizes the feature of item
i in terms of the k-th aspect. The attention score of item i’s neighbor (r, v) in
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the k-th aspect is formulated as:

αk
(i,r,v) =

exp(e⊤i,k(er,k ⊙ ev,k))∑
k′∈K exp(e⊤i,k′(er,k′ ⊙ ev,k′))

. (2)

With the attention score, the l-th layer aggregation in the k-th aspect can
be formulated as:

e
(l+1)
i,k =

1

|N s
i |

∑
(r,v)∈N s

i

αk
(i,r,v)er,k ⊙ e

(l)
v,k , (3)

where N s
i represents a set of item i’s neighbors in the knowledge graph, e(l+1)

i,k

denotes the k-th representation of item i after l + 1 layers aggregation, and
representation e

(l)
v,k of entity v is obtained by l layers aggregation in a similar

way.
Then we sum all layers’ representations up to obtain the final representations

specific to the k-th aspect:

xs
i,k = e

(0)
i,k + · · ·+ e

(L)
i,k , (4)

where e
(0)
i,k is equal to the initial embedding of item i under the k-th aspect.

3.3 Interaction Graph Disentangling Module

The collaborative view lays stress on collaborative signals in user-item interac-
tions, i.e., user-item-user and item-user-item co-occurrences. As a result, collabo-
rative information could be captured by modeling long-range connectivity in the
user-item interaction graphs, where an edge between a user and an item indicates
that the user has interacted with the item. Thus, we adopt a light aggregation
scheme referred to LightGCN [9], which adopts a simple message passing and ag-
gregation mechanism without feature transformation and non-linear activation,
effective and computationally efficient.

However, like knowledge graph disentangling, it is unwise to aggregate all the
interacted neighbors under one aspect when disentangling interaction graphs,
as only a subset of neighbors are strongly correlated with this aspect. Taking
Figure 1 as an example, the relations and entities of the genre aspect are the
main factors leading to the interaction between user u1 and movie Batman Be-
gins, while those of other aspects are not. Thus, we also leverage an attentive
neighbor assignment mechanism to refine the interaction graph by inferring the
importance of each interaction under different aspects, which is based on dis-
entangled knowledge-aware representations. In particular, the attention score of
an interaction (u, i) under the k-th aspect is formulated as:

αk
(u,i) =

exp(e⊤u,kx
s
i,k)∑

k′∈K exp(e⊤u,k′xs
i,k′)

. (5)
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At the l-th layer under the k-th aspect, the aggregation can be formulated
as:

e
(l+1)
u,k =

1

|N c
u|

∑
i∈N c

u

αk
(u,i)e

(l)
i,k , e

(l+1)
i,k =

1

|N c
i |

∑
u∈N c

i

αk
(u,i)e

(l)
u,k , (6)

where N c
u and N c

i represent sets of user u’s neighbors and item i’s neighbors in
the interaction graph.

Then representations at different layers are summed up as the collaborative
representations of the k-th aspect, as follows:

xc
u,k = e

(0)
u,k + · · ·+ e

(L)
u,k , xc

i,k = e
(0)
i,k + · · ·+ e

(L)
i,k , (7)

where e
(0)
u,k and e

(0)
i,k are equal to the initial embeddings of user u and item i in

the k-th aspect.

3.4 Contrastive Learning Module

Intra-view Contrastive Learning. We expect that there should be a weak
dependence among disentangled representations from different aspects. In gen-
eral, disentangled representations with unique information will be able to supply
diverse and complementary angles to characterize node features. Otherwise, they
might be less informative and not capable of achieving comprehensive disentan-
glement.

Here we utilize contrastive learning among disentangled knowledge graphs, as
well as among disentangled interaction graphs, to guide the independent repre-
sentation learning. First, we define the positive and negative samples. In particu-
lar, for any node in one view, its representations under the same aspect form the
positive pairs, and its representations under different aspects form the negative
pairs. With the positive and negative samples, we have the following contrastive
loss in the knowledge view:

Ls
intra =

∑
v∈V

∑
k∈K

− log
es(x

s
v,k,x

s
v,k)/τ∑

k′∈K e
s(xs

v,k,x
s
v,k′ )/τ

, (8)

where s(·) denotes the cosine similarity calculating, and τ denotes a temper-
ature parameter. In a similar way, we can obtain the contrastive loss of the
collaborative view as follow:

Lc
intra =

∑
n∈U∪I

∑
k∈K

− log
es(x

c
n,k,x

c
n,k)/τ∑

k′∈K e
s(xc

n,k,x
c
n,k′ )/τ

. (9)

The complete intra-view contrastive loss is the sum of the above two losses:

Lintra = Ls
intra + Lc

intra . (10)

In this way, we successfully learn discriminative disentangled node representa-
tions from various perspectives with the guidance of contrastive learning.
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Inter-view Contrastive Learning. In order to transfer item knowledge to
the collaborative view, as well as collaborative signals to the knowledge view,
we conduct inter-view contrastive learning to align item representations between
these two views. For any item in one view, the same item embedding learned by
the other view forms the positive sample, and the item embeddings except itself
in the other view are naturally regarded as negative samples. With the positive
and negative samples, we have the following inter-view contrastive loss:

Linter =
∑
i∈I

∑
k∈K

− log
es(x

s
i,k,x

c
i,k)/τ∑

i′∈I e
s(xs

i′,k,x
c
i,k)/τ +

∑
i′∈I e

s(xs
i,k,x

c
i′,k)/τ

. (11)

3.5 Model Prediction

In this module, we first conduct aspect-level prediction and then leverage an
attentive scoring mechanism to guide the fusion of results from different aspects.
For the aspect-level prediction, we combine embeddings from two views, and
predict their matching scores through inner product as follows:

zu,k = xc
u,k , zi,k = xs

i,k + xc
i,k , ŷk(u,i) = z⊤u,kzi,k . (12)

As discussed in Section 3.3, each interaction has different correlation with
different aspects. Thus, we adopt an attentive fusion of prediction scores from
different aspects to get the final results, as follows:

βk
(u,i) =

exp((eu ⊙ ei)
⊤(eu,k ⊙ ei,k))∑

k′∈K exp((eu ⊙ ei)⊤(eu,k′ ⊙ ei,k′))
,

ŷ(u,i) =
∑
k∈K

βk
(u,i)ŷ

k
(u,i) .

(13)

3.6 Multi-task Training

We apply a multi-task learning strategy to jointly train the recommendation loss
and the contrastive losses. For the knowledge-aware recommendation task, we
employ a pairwise BPR loss [22] as follow:

LBPR =
∑

(u,i,j)∈O

− lnσ(ŷ(u,i) − ŷ(u,j)) , (14)

where ŷ(u,i) and ŷ(u,j) are predicted scores, O = {(u, i, j)|(u, i) ∈ O+, (u, j) ∈
O−} is the training dataset consisting of the observed interactions O+ and unob-
served counterparts O−; σ is the sigmoid function. By combining the intra-view
and inter-view contrastive losses with BPR loss, we minimize the following ob-
jective function to learn the model parameters:

LDCLKR = LBPR + λ1Lintra + λ2Linter + λ3∥Θ∥22 , (15)

where Θ is the model parameter set, λ1 and λ2 are the hyper-parameters to
control the weights of the intra-view and inter-view contrastive losses, λ3 is the
hyper-parameter to control L2 regularization term, respectively.
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Table 1. Statistics and hyper-parameter settings for the three datasets.

Book-Crossing MovieLens-1M Last.FM

User-item
Interaction

# users 17,860 6,036 1,872
# items 14,967 2,445 3,846
# interactions 139,746 753,772 42,346

Knowledge
Graph

# entities 77,903 182,011 9,366
# relations 25 12 60
# triplets 151,500 1,241,996 15,518

Hyper-
parameter
Settings

# K 3 3 3
# L 2 3 2
# λ1 0.1 0.01 0.01
# λ2 0.1 0.01 0.01

4 Experiment

Extensive experiments are performed on three public datasets, which are widely
used in knowledge-aware recommender systems, to evaluate the effectiveness of
our proposed DCLKR by answering the following research questions:

– RQ1: How does DCLKR perform, compared with the state-of-the-art knowledge-
aware recommender models?

– RQ2: Are the key components in our DCLKR framework really improving
the overall performance?

– RQ3: How do different hyper-parameter settings affect DCLKR?

4.1 Experiment Settings

Dataset Description. Three benchmark datasets are Book-Crossing3, MovieLens-
1M4, and Last.FM5, which vary in size, interaction sparsity and knowledge graph
characteristics, making our experiments more convincing. Table 1 presents the
statistical information of our experimented datasets.

We follow RippleNet [28] to transform the explicit ratings into the implicit
marks where 1 indicates that the user has rated the item (the threshold of the
rating to be viewed as positive is 4 for MovieLens-1M, but no threshold is set for
Book-Crossing and Last.FM due to their sparsity). Closely following RippleNet,
we use Microsoft Satori6 to construct the KGs for three datasets. We gather
Satori IDs of all valid items through their names, and match the IDs with the
heads and tails of all KG triplets to extract all well-matched triplets.

3 http://www2.informatik.uni-freiburg.de/~cziegler/BX/
4 https://grouplens.org/datasets/movielens/1m/
5 https://grouplens.org/datasets/hetrec-2011/
6 https://searchengineland.com/library/bing/bing-satori
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Evaluation Metrics. We conduct the evaluation in two experimental scenarios:
(1) In click-through rate (CTR) prediction, we adopt two widely used metrics
AUC and F1. (2) In top-N recommendation, we choose Recall@N to evaluate
the recommended lists, where N is set to 5, 10, 20, 50, and 100 for consistency.

Baselines. To comprehensively demonstrate the effectiveness of our proposed
DCLKR, we compare it with different types of recommender system methods:

– BPRMF [22]: It is a conventional collaborative filtering method that uses
pairwise matrix factorization for implicit feedback optimized by the pairwise
ranking loss.

– CKE [45]: This method first encodes items’ semantic knowledge, then unifies
knowledge embeddings, text embeddings, and image embeddings into recom-
mendation framework.

– RippleNet [28]: This method propagates users’ preferences along with paths
in KGs to encode user embeddings.

– KGAT [33]: This GNN-based method designs an attentive message passing
scheme over the user-item-entity graph for embedding fusion.

– CKAN [38]: This GNN-based method utilizes different neighbor aggregation
schemes over the user-item interaction graphs and KGs, respectively.

– KGIN [34]: It is a state-of-the-art GNN-based knowledge-aware method, which
performs relational path-based aggregation on the user-intent-item-entity graph
to identify latent intention of users.

– KDR [20]: This method utilizes KGs to guide the implicit disentangled repre-
sentation learning on the user-item interaction graph.

– KGIC [48]: This method constructs local and non-local graphs for users and
items in KGs, and conducts layer-wise contrastive learning on these graphs.

– MCCLK [47]: It is a state-of-the-art knowledge-aware method with contrastive
learning, which generates three different graph views and performs contrastive
learning across three views on both local and global levels.

Parameter Settings. Our proposed DCLKR is implemented with PyTorch.
For a fair comparison, we fix the embedding dimensionality as 64 for all models,
and the embedding parameters are initialized with the Xavier method [6]. We
optimize our method with Adam [14] with the learning rate of 1e−3 and the
batch size of 2048. And λ3 of L2 regularization term is set to 1e−5. Other hyper-
parameter settings are provided in Table 1, including the number of disentangled
aspects K, aggregation depth L, intra-view contrastive loss weight λ1, and inter-
view contrastive loss weight λ2. The best settings for hyper-parameters in all
comparison methods are researched by either empirical study or following the
original papers.

4.2 Performance Comparison (RQ1)

We report the overall performance evaluation of all methods in Table 2 and
Figure 3, where %Imp. denotes the relative improvements of the best performing
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Table 2. The results of AUC and F1 in CTR prediction.

Model
Book-Crossing MovieLens-1M Last.FM

AUC F1 AUC F1 AUC F1

BPRMF 0.6583 0.6117 0.8920 0.7921 0.7563 0.7010
CKE 0.6759 0.6235 0.9065 0.8024 0.7471 0.6740

RippleNet 0.7211 0.6472 0.9190 0.8422 0.7762 0.7025
KGAT 0.7314 0.6544 0.9140 0.8440 0.8293 0.7424
CKAN 0.7439 0.6676 0.9091 0.8466 0.8421 0.7607
KGIN 0.7225 0.6730 0.9321 0.8601 0.8602 0.7803
KDR 0.7246 0.6528 0.9265 0.8463 0.8550 0.7790
KGIC 0.7573 0.6723 0.9252 0.8560 0.8590 0.7802

MCCLK 0.7508 0.6774 0.9325 0.8603 0.8742 0.7908
DCLKR 0.7910* 0.6983* 0.9445* 0.8703* 0.8936* 0.8105*

%Imp. 4.45% 3.09% 1.29% 1.16% 2.22% 2.49%

method (starred) over the strongest baselines (underlined). By analyzing the
results, we summarize the following observations:

– Our proposed DCLKR achieves the best results. DCLKR consistently
performs better than other baselines in all cases of measures. More specifi-
cally, it achieves considerable improvements over the strongest baselines w.r.t.
AUC by 4.45%, 1.29%, and 2.22% in Book-Crossing, MovieLens-1M and
Last.FM datasets, respectively. In top-N recommendation scenario, DCLKR
also achieves best performance w.r.t. Recall@N (N = 5, 10, 20, 50, 100). We
attribute such improvements to the following aspects: (1) By disentangling
the user-item interaction graphs and KGs, DCLKR is able to capture users’
multi-faceted preferences based on diverse aspects of item attributes. (2) The
contrastive mechanism preserves features from both knowledge view and col-
laborative view, hence prompting the representations to be more informative
for DCLKR.

– Incorporating KGs benefits recommender systems. We can observe
that all the models that incorporate KGs perform better than conventional
CF methods. Compared with BPRMF, CKE simply incorporating KG embed-
dings into matrix factorization elevates the model performance, which clarifies
the significance of bringing in KGs as side information.

– Extracting more informative KG facts boosts the model perfor-
mance. KGIN disentangles user-item interactions at the fine granularity of
user intents which related to semantic relations in KGs, so that KGIN is the
state-of-the-art in GNN-based knowledge-aware methods. The truth inspires
us to explore user preferences on different aspects of item attributes implicit
in KGs. KDR also learns disentangled representations from the knowledge
and collaborative view, but ignores different importance of the connections in
graphs, which degrades its performance.
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Fig. 3. The results of Recall@N in top-N recommendation.
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Fig. 4. Effect of ablation study.

– Contrastive learning benefits graph learning. We can observe that the
methods based on contrastive learning paradigm achieve better performance
than the GNN-based methods in most cases, which indicates that contrastive
learning brings benefits to the graph learning of recommendation.

4.3 Ablation Studies (RQ2)

We investigate the effect of main components in our model to the final perfor-
mance by comparing DCLKR with the following three variants:

– DCLKRw/o d: the variant of DCLKR without disentangled representation learn-
ing. Naturally, the intra-view contrastive learning is also removed.

– DCLKRw/o v: the variant of DCLKR without the inter-view contrastive learn-
ing.

– DCLKRw/o g: the variant of DCLKR which removes the self-gating units and
initializes multi-aspect embeddings by simply slicing ID embeddings into mul-
tiple chunks.
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Table 3. Effect of disentangled aspects number K.

Book-Crossing MovieLens-1M Last.FM
AUC F1 AUC F1 AUC F1

K = 2 0.7862 0.6893 0.9436 0.8690 0.8925 0.8064
K = 3 0.7910 0.6983 0.9445 0.8703 0.8936 0.8105
K = 4 0.7906 0.6916 0.9430 0.8696 0.8928 0.8071
K = 5 0.7844 0.6903 0.9435 0.8660 0.8919 0.8058

Table 4. Effect of aggregation depth L.

Book-Crossing MovieLens-1M Last.FM
AUC F1 AUC F1 AUC F1

L = 1 0.7828 0.6939 0.9332 0.8634 0.8777 0.7937
L = 2 0.7910 0.6983 0.9420 0.8696 0.8936 0.8105
L = 3 0.7908 0.6668 0.9445 0.8703 0.8892 0.7803
L = 4 0.7840 0.6691 0.9424 0.8685 0.8889 0.7782

As shown in Figure 4, we have the following observations: (1) Without disen-
tangled representation learning, DCLKRw/o d leads to a significant performance
decrease, which demonstrates that disentangled representation learning is propi-
tious to comprehensive modeling of multi-faceted user preferences. (2) Removing
the inter-view contrastive learning degrades the model performance. It makes
sense since DCLKRw/o v fails to transfer item knowledge to the collaborative
view, as well as collaborative signals to the knowledge view, which is benefi-
cial for representation learning. (3) The decreased performance of DCLKRw/o g

indicates that the self-gating units is superior to the operation of slicing the
embeddings, since it can modulate ID embeddings under different aspects at a
finer element-wise granularity.

4.4 Sensitivity Analysis (RQ3)

Effect of disentangled aspects number. To analyze the effect of disen-
tangled aspects number, we vary K in range of {2, 3, 4, 5} and illustrate the
performance comparison on Book-Crossing, MovieLens-1M and Last.FM in Ta-
ble 3. We observe that increasing the number of disentangled aspects enhances
the predictive results, as it enables model to capture user preferences from more
diverse perspectives. However, excessive number of disentangled aspects impairs
model performance, as it is detrimental to the independence among disentangled
aspects. DCLKR performs best on all three datasets when K = 3.

Effect of aggregation depth. To study the influence of graph aggregation
depth, we vary L in range of {1, 2, 3, 4} and demonstrate the performance
comparison on Book-Crossing, MovieLens-1M and Last.FM in Table 4. We can
observe that DCLKR substantially achieves improvements on Book-Crossing,
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Fig. 5. Effect of intra-view contrastive loss weight λ1.
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Fig. 6. Effect of inter-view contrastive loss weight λ2.

MovieLens-1M and Last.FM when L = 2, 3, 2, respectively. But further stack-
ing more layers leads to performance degradation, cause neighbors in too long
distance may introduce noise to node representations.

Effect of contrastive loss weights. The trade-off parameters λ1 and λ2 con-
trol the influence of intra-view and inter-view contrastive losses in final loss,
respectively. To study the effect of contrastive loss weights, we vary both λ1 and
λ2 in {0.001, 0.01, 0.1, 1}. According to the results shown in Figure 5 and Fig-
ure 6, we can observe that DCLKR performs best when λ1 = 0.1, 0.01, 0.01 and
λ2 = 0.1, 0.01, 0.01 on Book-Crossing, MovieLens-1M and Last.FM, respectively.
The intra-view contrastive learning is deployed to encourage the independence
among disentangled representations from different aspects, and the inter-view
contrastive learning is adopted to transfer knowledge between the knowledge
and collaborative views. Tuning the contributions of these two contrastive losses
to a proper degree could boost the model performance.

5 Related Work

5.1 Knowledge-aware Recommendation

In recent years, there is a surge of interest in the knowledge-aware recommenda-
tion. A typical approach is to pre-train the entity embeddings with knowledge
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graph embedding (KGE) algorithms [2, 39, 16], then incorporate them into rec-
ommendation frameworks [45, 11, 29, 27, 3, 31]. CKE [45] adopts TransR [16] to
encode items’ semantic knowledge, and then combines knowledge embeddings,
text embeddings, and image embeddings together for collaborative filtering. Be-
sides, some methods [44, 4, 10, 24, 28, 19, 36] focus on exploring various patterns
of connections among items to afford supplementary assistance for recommen-
dation. RippleNet [28] propagates users’ historical interacted items along with
paths in KGs to explore users’ potential long-range preferences via a memory-
like neural model. More recently, the information aggregation mechanisms of
GNNs [15, 25, 7] become the technical trend of knowledge-aware recommenda-
tion [32, 30, 33, 12, 38, 34]. KGAT [33] unifies user-item interactions and KGs as
user-item-entity graphs, then utilizes GCN with an attention mechanism to per-
form aggregation on it. But, CKAN [38] separately applies different neighbor
aggregation schemes over the user-item interaction graphs and KGs. KGIN [34]
disentangles user-item interactions at the granularity of user intents, and fur-
ther performs the relational path-aware aggregation for both user-intent-item
and KG triplets.

5.2 Disentangled Representation Learning

Disentangled representation learning aims to separate the underlying factors in
the data through embedding objects from multiple perspectives [1, 18], which
has been applied to many fields, such as texts [13], images [5], and knowledge
graph embeddings [41]. There are also some effort [35, 40, 20, 46] has been done
towards disentangled representation learning on recommendation. DGCF [35]
disentangles the intents hidden in the user-item interaction graphs and learns
the intent-aware disentangled representations. KDR [20] leverages KGs to guide
the disentangled representation learning in recommendation, making the dis-
entangled representations interpretable. MDKE [46] is proposed to disentangle
the knowledge-aware recommendation into semantic-level and structural-level
subspaces, and then utilize two levels disentangled representations to enhance
recommendation. Our work considers the fact that relations and entities in KGs
have different correlation with different aspects which is ignored by KDR and
MDKE, and emphasizes influential relations and entities by attention mecha-
nisms.

5.3 Contrastive Learning

Contrastive learning methods [26, 21, 8, 37] learn discriminative node represen-
tations from unlabeled data by maximizing the distance between negative pairs
while minimizing the distance between positive pairs. Recently, there are several
efforts [43, 47, 48] that apply contrastive learning on knowledge-aware recom-
mendation. KGCL [43] proposes a KG augmentation schema to suppress KG
noise in information aggregation to derive more robust knowledge-aware rep-
resentations for items, and exploits the KG augmentation to guide cross-view
contrastive learning. MCCLK [47] generates three different graph views from
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collaborative interactions and KGs, then performs contrastive learning across
three views on both local and global levels. KGIC [48] constructs local and non-
local graphs for users and items in KGs, and conducts layer-wise contrastive
learning on these graphs. All the above methods conduct contrastive learning
to align node representations among different views, but do not perform con-
trastive learning among the disentangled graphs, which helps to distinguish user
preferences under different semantic aspects.

6 Conclusion

In this work, we focus on exploring user preferences from multiple aspects of
item attributes, and propose a novel disentangled contrastive learning frame-
work for knowledge-aware recommendation, DCLKR, which achieves better rec-
ommendation performance from two dimensions: (1) It disentangles the knowl-
edge graph and the user-item interaction graph into multiple aspects, and uses
attentive neighbor assignment mechanisms to highlight the importance of influ-
ential connections. (2) It performs intra-view and inter-view contrastive learning
to enhance the disentangled representation learning. The experimental results
on three public datasets demonstrate the superior performance of our proposed
method over the state-of the-arts.
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