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Abstract. Knowledge representation learning (KRL) aims to project entities and
relations in knowledge graphs (KGs) to densely distributed embedding space. As
the knowledge base expands, we are often presented with zero-shot entities, of-
ten with textual descriptions. Although many closed-world KRL methods have
been proposed, most of them focus on connections between entities in the ex-
isting KGs. Therefore, they cannot handle zero-shot entities well, resulting in
the inability of bringing zero-shot entities to existing KGs. To address this issue,
this paper proposes ASKRL, a straightforward yet efficient open-world knowl-
edge representation learning framework. ASKRL learns representations of enti-
ties and relations in both structured and semantic spaces, and subsequently aligns
the semantic space with the structured space. To begin with, ASKRL employs
the off-the-shelf KRL models to derive entity and relation embeddings in the
structured embedding space. Afterward, a Transformer-based encoder is applied
to obtain contextualized representations of existing entities and relations in se-
mantic space. To introduce structure knowledge of KG into the contextualized
representations, ASKRL aligns semantic embedding space to structured embed-
ding space from the perspective of common properties (i.e., angle and length).
Additionally, it aligns the output distribution of the score function between the
two spaces. To further learn representations of zero-shot entities effectively, a so-
phisticated three-stage optimization strategy is devised in the training phase. In
the inference phase, representations of zero-shot entities can be directly derived
from the Transformer-based encoder. ASKRL is plug-and-play, enabling off-the-
shelf closed-world KRL models to handle the open-world KGs. Extensive ex-
periments demonstrate that ASKRL significantly outperforms strong baselines in
open-world datasets, and the results illuminate that ASKRL is simple and effi-
cient in modeling zero-shot entities.

Keywords: Knowledge Graph · Knowledge Representation Learning · Knowl-
edge Graph Completion.

1 Introduction

In knowledge graphs (KGs) [6,9], entities and relations are organized in a graph struc-
tured form. KGs consist of a large number of factual triples (h, r, t), where h and t
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Nationality

Play

Award
Play

Leonardo Wilhelm DiCaprio is
an American actor and film
producer.

Leonardo Wilhelm DiCaprio

America is a country primarily
located in North America.

America

Titanic is a 1997 American epic
romance and disaster film.

Titanic

Direct

James Cameron is a Canadian
filmmaker and best known for
making science fiction and epic
films.

James Cameron

Academy Awards are awards for
artistic and technical merit in the
film industry.

Academy Awards

Inception is a 2010 science
fiction action film written and
directed by Christopher Nolan.

Inception

Fig. 1: Open-world knowledge graph examples with entity descriptions. The blue boxes represent
in-KG entities and their descriptions, and the pink box represents the zero-shot entity and corre-
sponding description to be added to the existing knowledge base.

represent head and tail entities, respectively, and r represents the relationship between
h and t. Some large-scale KGs such as DBpedia [1], Freebase [2], and YAGO [20] have
been widely used in many applications including natural language understanding [26],
question answering [14], and recommender systems [27]. Meanwhile, many knowledge
representation learning (KRL) methods [3,24,21,13,11] have been proposed to embed
entities and relations into densely low-dimensional spaces.

With the development of information extraction [30,36,10], many zero-shot (new)
entities, which are out of the pre-defined entity set, have been mined. These zero-shot
entities can empower the current KGs to provide more value for downstream appli-
cations. However, most of the existing KRL models follow closed-world assumption
[16], which means that they can only handle the entities in the pre-defined entity set,
and fail to process zero-shot entities. To handle zero-shot entities, the closed-world
models must be retrained when zero-shot entities are added to existing KGs. In real-
world scenarios, this paradigm is prone to inefficiency. Moreover, it is intractable to
model the zero-shot entities with only the entity-self information such as entity name.
To effectively process zero-shot entities, it usually needs more extra entity-related infor-
mation. Fortunately, besides entities and relations, there are many textual descriptions
of entities in most KGs. For a zero-shot entity, there is usually descriptive text as well
[31]. As the example shown in Fig. 1, entity descriptions are informative, and the pre-
viously unseen entity James Cameron contains a textual description James Cameron is
a Canadian filmmaker and best known for making science fiction and epic films. Valu-
able information is contained in this entity description such as Canadian filmmaker,
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science fiction and epic films to help to link with the correct entities in KGs, namely
(James Cameron, director, T itanic). However, such helpful entity descriptions pro-
viding further contextual information have not been exploited effectively in existing
closed-world KRL models.

To model zero-shot entities, some open-world models exploiting entity descriptions
have been proposed. DKRL [31] proposes using CNN to learn knowledge representa-
tions with both triples and descriptions. By this design, even though no embeddings
have been learned for zero-shot entities, representations of zero-shot entities can be de-
rived from their entity descriptions. Although DKRL can handle the zero-shot entities
using entity descriptions, it neglects the noise of descriptions. To alleviate the impact of
noisy entity descriptions, ConMask [19] proposes a relation-dependent content mask-
ing model to extract relevant content segments and then trains a CNN to model the
extracted segments with entities in KGs. Despite the success of previous methods, they
can only work for specific KRL models (e.g., TransE [3]) and cannot be migrated to
other backbone models. To mitigate this problem, OWE [18] proposes an open-world
extension for closed-world KRL models. OWE combines a regular closed-world KRL
model learned from KGs with a simple word embedding model learned from the de-
scriptions of entities. In OWE, the goal is to learn a mapping function from the textual
description representations of entities to the structural representations learned by the
closed-world KRL model. Therefore, closed-world KRL models are able to handle the
open-world problem with this plug-and-play extension. However, in terms of the choice
of the closed-world KRL model, it is not modular but is trained separately and indepen-
dently from the contextualized representation model, so there may be a problem of
error-propagating in OWE. Moreover, OWE attempts to map the word vector embed-
ding space directly to the structural embedding space learned by the close-world KRL
model via a linear layer. By mapping the semantic space directly to the structured space,
we argue that a significant amount of semantic information is lost. In addition, the sim-
ple word embedding model might not be effective to model text descriptions. To deal
with this deficiency, Caps-OWKG [29] applies capsule networks to encode entity de-
scriptions better. It can be seen that these open-world models handle zero-shot entities
by encoding entity descriptions. However, these models employ static word embedding
trained on the domain-specific data, e.g., Wikipedia2Vec [33] is trained on Wikipedia.
Therefore, if the zero-shot entities and their corresponding descriptions are derived from
other domains, the existing models suffer from the generalization problem.

To address the above issues, we propose a novel Aligned-Spatial Knowledge Rep-
resentation Learning framework ASKRL. This framework aligns the semantic space
with the structural space from two distinct perspectives. The first perspective takes into
consideration the common properties of different embedding spaces, i.e., the angle and
length, while the second perspective focuses on the output distribution of distinct spaces
on KRL. Specifically, ASKRL consists of three layers: a structured embedding layer,
a description encoding layer, and an embedding space alignment layer. Firstly, it em-
ploys widely-used closed-world KRL models to learn the embeddings of entities and
relations in the structured knowledge embedding layer. Then, it applies a Transformer-
based model such as BERT [5] to encode the description of entities and relations, and
then fine-tunes representations in the description encoding layer. Finally, in the embed-
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ding space alignment layer, we align common properties in different embedding spaces
in a structure-to-structure manner, while aligning the output distribution of the KRL
model on different embedding spaces in a distribution-to-distribution manner. Besides,
to effectively learn representations of zero-shot entities, a three-stage optimization strat-
egy is proposed. In the first stage, ASKRL focuses on optimizing the backbone KRL
model in the structured embedding layer. In the second stage, ASKRL further opti-
mizes the Transformer-based encoder in the description encoding layer and aligns se-
mantic embedding space to structured embedding space in both structure-to-structure
and distribution-to-distribution ways. In the third stage, in order to exploit the poten-
tial of the Transformer-based encoder, ASKRL only optimizes the description repre-
sentation model to learn richer representations from textual descriptions. Because the
Transformer-based encoder is usually trained on massive corpora by self-supervised
tasks such as masked language model and next sentence prediction [5], they can learn
rich prior knowledge within corpora. Thus the proposed ASKRL is more powerful than
the previous several open-world models encoding the entity descriptions. Extensive ex-
periments illuminate that ASKRL consistently achieves better performance than strong
baseline models in widely-adopted open-world knowledge graph completion datasets.
This evidence demonstrates that ASKRL is competent in modeling zero-shot entities.

In summary, our main contributions are twofold: (1) We propose a straightforward
yet efficient open-world embedding framework, ASKRL, which proposes a novel ap-
proach to align two different embedding spaces to solve the zero-shot entity problem.
(2) ASKRL is plug-and-play and can enable most KRL models under the closed-world
assumption to be modular and efficient to produce embeddings of the zero-shot entities.

2 Related Work

2.1 Closed-world KRL Models

TransE [3] treats relations as translation operations from head entities to tail entities. It
can model inverse and compositional relationship patterns, but it is too simple to handle
complex relations such as 1-to-N, N-to-1, and N-to-N. To alleviate this problem, Yang et
al. [34] proposed a bilinear diagonal model DistMult to capture the interaction between
head entities, relations, and tail entities using the product of corresponding elements.
DistMult can model symmetric relational patterns but fails to process the antisymmet-
ric patterns. To solve antisymmetric patterns, Trouillon et al. [24] proposed ComplEx
and introduced the concept of complex space to learn the representations of entities and
relations in complex space. Liu et al. [13] proposed a triple-level self-attention model to
handle the symmetric and antisymmetric patterns. Besides symmetric and antisymmet-
ric patterns, Sun et al. [21] proposed RotatE to model more complex patterns including
inversion, and composition. RotatE regards relations as rotations from source to target
entities in complex space.

2.2 Open-world KRL Models

In real-world scenarios, entities and relations are constantly added, removed, or changed
over time. The unseen added entities cannot be handled by closed-world models. Some
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open-world models have been proposed to model zero-shot entities. Xie et al. [31] first
notice that there are descriptions for most zero-shot entities. To exploit entity descrip-
tions, Xie et al. [31] proposed a model DKRL which employs CNN to encode entity
descriptions and learns entity embedding from both entities and their descriptions. In
this way, DKRL can model zero-shot entities using entity descriptions. To mitigate
the effect of noise in descriptions, Shi et al. [19] proposed ConMask using a relation-
dependent content masking mechanism to extract relevant segments and fuse them with
entities in KGs by CNN. Recently, OWE [18] trains graph embeddings and text em-
beddings separately, and then learns the transformation function between the two em-
bedding spaces. Because OWE ignores the unequal nature of different words in entity
descriptions, WOWE [37] improves OWE by replacing the average aggregator with an
attention mechanism to capture the weights of different words in entity descriptions.
Furthermore, Caps-OWKG [29] combines text descriptions and KGs by using capsule
networks to capture known and unknown triple features in open-world KGs.

2.3 Inductive KRL Models

The open-world setting emphasizes that the KRL model can deal with entities that are
not seen during training, whereas the KRL model in the inductive setting focuses on the
ability to leverage knowledge learned from the source KG to the target KG. Specifically,
the sets of entities of the target and source KGs are disjoint, while the sets of relations
are completely overlapping [22]. Therefore, inductive setting can be considered as a
subset of open-world setting. Inductive KRL models can be divided into three main
families: external resources-based models, logical rule-based models, and graph neural
network-based models. The external resource-based models [4,28] mainly utilize ac-
cessible corpus about the target KG to assist in KRL. Logical rule-based methods [8,7]
model logical rules with explicit frequent patterns, which are inherently inductive since
logical rules are entity-independent. Neural LP [35] and DRUM [17] extract logical
rules and confidence that are scored by differentiable rule learners in an end-to-end
paradigm. Nevertheless, the neighbor structures surrounding the missing factual triples
are ignored by these methods. Representative among the graph neural network-based
models are GraIL [22] and SNIR [32], which extract the enclosing subgraphs around
the target links to learn entity-independent features to deal with unseen entities.

3 Methodology

3.1 Preliminary

Definition 1. (Knowledge Graph). A knowledge graph (KG) G = {E ,R, T } is defined
by the set of entities E , relations R, and triples T . A triple is usually denoted as (h, r, t)
∈ T , where h ∈ E , t ∈ E and r ∈ R denote the head entity, and the tail entity, and the
relation between them, respectively.

Definition 2. (Closed-World Assumption and Open-World Assumption). For a world
W (EW ,RW ), closed-world assumption believes that a KG GC under the closed world
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is the closure of the world, which can be formulated as follows:

GC =
⋃

G′∈W

G′ (1)

where the union is defined on the triple set. And for a KG G′′, if G′′ ̸= GC , then G′′ is
open-world KG under open-world assumption.

Keeping in line with the previous open-world KG setup [18], only new entities are
required to appear and the type of relations does not change, i.e., for an open-world KG
G′′, EG′′ ̸⊆ EGC

and RG′′ ⊆ RGC
.

Definition 3. (Open-Wrold Knowledge Graph Completion). Given an incomplete open-
world Knowledge Graph GO = {EO,RO, TO}, where EO ⊂ EW and RO = RW ,
open-world knowledge graph completion completes GO by predicting a set of missing
triple T ′ = {(h, r, t)|(h, r, t) /∈ TO, h ∈ EW , r ∈ RO, t ∈ EW }.

In this paper, given a triple (h, r, t), h, r, and t represent the head entity, relation,
and tail entity, respectively, and hstru, rstru, tstru ∈ Rds denote their corresponding
structured embedding vectors. For textual description, we denote the head entity de-
scription as Xh = [xh

1 , x
h
2 , ..., x

h
|h|], where |h| is the description length of all words

in the head entity, the tail entity description as Xt = [xt
1, x

t
2, ..., x

t
|t|], where the |t|

stands for the length of all words in the tail description, and the relation description as
Xr = [xr

1, x
r
2, ..., x

r
|r|], where the |r| stands for the length of all words in the relation

description. The hdesc, rdesc, tdesc ∈ Rdt denote the description representations of the
head entity, relation, and tail entity, respectively.

3.2 Framework Overview

This paper proposes a framework following the open-world assumption, namely ASKRL.
There are three layers in ASKRL: the structured embedding layer, the description en-
coding layer, and the embedding space alignment layer. Firstly, the structured embed-
ding layer is applied to learn embeddings of entities and relations in structured space.
Then, the description encoding layer is used to produce embeddings of entities and rela-
tions in semantic space by encoding corresponding textual descriptions. Finally, in the
embedding space alignment layer, we align the semantic space to the structured space
in two steps. Firstly, we align the common properties of the semantic space and the
structured space, such as angle and length. Concretely, ASKRL aligns the angle formed
between the head, tail embeddings, and the relation embedding in the semantic space
with the structured space, as well as aligning the ratio of the lengths of the head and tail
embeddings with the structured space. Secondly, based on the score function defined in
the structured embedding layer, ASKRL aligns the output distribution of the semantic
space with the output distribution of the structured space. The overview framework of
ASKRL is depicted in Fig. 2.
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Fig. 2: The generic framework of ASKRL. The lower-left block is the component of closed-world
embedding learning. The structured embedding is learned in this phase. The lower-right block is
the component of open-world representation learning. The description representation is learned
in this phase. The upper block is the component of embedding space alignment.

3.3 Structured Embedding Layer

The purpose of the structured embedding layer is to project entities and relations in KGs
into densely embedding space. The procedure of this layer is similar to most closed-
world KRL models. In other words, ASKRL can apply most closed-world KRL models
to enable them for the open-world KGs. Specifically, we adopt the widely-used KRL
models in this layer, including TransE [3], DistMult [34], ComplEx [21], and RotatE
[21] as the backbone model.

The structured embedding of each entity can be learned as follows:

Estru,Rstru = ϕ(Einit,Rinit) (2)

where Einit and Rinit denote the initial entity and relation embedding, respectively.
They are usually initialized by a uniform initializer or Gaussian initializer, and ϕ de-
notes the transformation function of closed-world KRL models. In this way, for triple
(h, r, t), we can obtain structured embedding hstru, rstru, tstru.
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3.4 Description Encoding Layer

The description encoding layer aims to learn rich textual semantic information from en-
tity and relation descriptions. In this paper, we apply a Transformer-based encoder [5]
to encode the description. More specifically, we first use the Transformer-based encoder
to encode the textual description, and then we input each word vector in the descrip-
tion representation obtained by the encoder to the average pooling layer, which can be
formulated as follows:

Edesc = AvgPool(Transformer-Enc([x[CLS], Xh/t, x
[SEP]]))

Rdesc = AvgPool(Transformer-Enc([x[CLS], Xr, x
[SEP]]))

(3)

In this way, for triple (h, r, t), we can get the head entity description representation
hdesc, the relation description representation rdesc, the tail entity description represen-
tation tdesc.

3.5 Embedding Space Alignment Layer

For KRL, the Transformer-based models usually need to be trained longer than conven-
tional KRL models (e.g., TransE) due to the larger number of model parameters [25].
Moreover, there is a lack of KGs structural information in the contextualized represen-
tations of entities and relations obtained by encoding the corresponding descriptions us-
ing a textual encoder. Intuitively, the embedding space learned by the conventional KRL
model and learned by the text-based encoder is different, the former being the structure
space and the latter the semantic space. To introduce graph structure knowledge into the
contextualized representations of entities, previous methods attempt to learn the map-
ping function from the textual description representation space to the structure space
by minimizing the L2 norm of the corresponding embedding of the same entity in the
transformation space. Nevertheless, it is worth noting that the dimensions of the se-
mantic space and the structure space are often different, and therefore, mapping the
semantic space onto the structure space could lead to the loss of significant semantic
information. To this end, we propose a new approach to aligning structure embedding
space and semantic embedding space in a soft alignment manner, while can accelerate
the training of text-based learning. Specifically, we argue that the common properties in
different embedding spaces are angle and length [15]. Given triple (h, r, t) in different
embedding spaces, we have two objectives: firstly, to minimize the difference in the an-
gles between the head entity, tail entity, and relation in different embedding spaces, and
secondly, to minimize the differences in the ratio of the length between the head and
tail entity in different embedding spaces. Therefore, in heterogeneous spaces, both the
angle and length ratio can measure structural similarity, rather than the absolute repli-
cability. Therefore, the objective of embedding space common property alignment can
be expressed as follows:

Lproperty =lH(fA(hstru, rstru, tstru), fA(hdesc, rdesc, tdesc))

+ lH(fDR(hstru, tstru), fDR(hdesc, tdesc))
(4)
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where fA(h·, r·, t·) =< h·−r·
||h·−r·||2 ,

r·−t·
||r·−t·||2 > and fDR(h·, t·) =

||h·||2
||t·||2 , lH is Huber

loss which is defined in Equation 5.

lH(a, b) =

{
1
2 (a− b)2, |a− b| ≤ 1
|a− b| − 1

2 , |a− b| > 1
(5)

In addition to the alignment of embedding space common properties, the output
distribution of the score function in the semantic space and the output distribution of
the score function in the structure space also need to be aligned. Taking the prediction of
missing triples (h, r, ?) as an example, we input the Transformer-based contextualized
representation and structured embedding corresponding to the candidate entities into
the score function fr(·, ·) defined in the structured embedding layer to obtain logits of
the candidate entities Pentity and Pdesc, and then align Pdesc to Pentity as follows:

Loutput = LKL(Pstru ∥ Pdesc) =

m∑
i=1

Pi
strulog

Pi
stru

Pi
desc

(6)

where m is the candidate entity size, and Pi
stru and Pi

desc can be defined as follows:

Pi
stru =

exp fr(hstru,E
i
stru)∑m

j=1 exp fr(hstru,E
j
stru)

Pi
desc =

exp fr(hdesc,E
i
desc)∑m

j=1 exp fr(hdesc,E
j
desc)

(7)

3.6 Training Optimization

Structured Embedding Optimization We follow the settings of previous closed-
world KRL models [21] to optimize the structured embedding layer. We first gather
positive triples and build their corresponding negative samples to compute the rank-
based hinge loss function. Considering each positive triple (h, r, t), the impact of their
negative triples is different. We apply the self-adversarial negative sampling method
[21] to measure the impact as follows:

p((h
′

j , r, t
′

j)|(hi, ri, ti)) =
exp(αfr(h

′

struj
, t

′

struj
))∑

i exp(αfr(h
′
strui

, t
′
strui

))
(8)

where α denotes the temperature coefficient of sampling, fr(h
′

strui
, t

′

strui
) denotes the

score of the i-th negative triple in the negative sample candidate set, and fr(h
′

struj
, t

′

struj
)

denotes the the score of the j-th negative sample. The hinge loss is calculated as follows:

Lstru = −log σ(γ − fr(hstru, tstru))

−
n∑

i=1

p(h
′

i, r, t
′

i)log σ(fr(h
′

strui
, t

′

strui
)− γ)

(9)

where γ denotes the margin of the hinge loss.
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Transformer-based Encoder Optimization Similar to the structured embedding opti-
mization, we also adopt the self-adversarial negative sampling to optimize the Transformer-
based encoder, as follows:

p((h
′

j , r, t
′

j)|(hi, ri, ti)) =
exp(αfr(h

′

descj
, t

′

descj
))∑

i exp(αfr(h
′
desci

, t
′
desci

))
(10)

The loss function is calculated as follows:

Ldesc = −log σ(γ − fr(hdesc, tdesc))

−
n∑

i=1

p(h
′

i, r, t
′

i)log σ(fr(h
′

desci , t
′

desci)− γ)
(11)

where γ is the margin of the hinge loss.

3.7 Three-stage Optimization Strategy

To model the zero-shot entities effectively, this paper proposes a three-stage optimiza-
tion strategy. In the first stage, ASKRL is trained following the closed-world setting,
i.e., only the structured embedding layer is trained in this stage. Specifically, it is opti-
mized only using the structured embedding optimization and the loss is calculated by
Lstru. The first stage ends when the validation set’s MRR score calculated by structured
embedding essentially remains unchanged. In the second stage, the Transformer-based
encoder is participated in encoding the descriptions of entities and relations via the
Transformer-based encoder optimization Ldesc. It is usually more time-consuming for
Transformer-based to fine-tune descriptions than structured embedding layer learning.
To alleviate this problem and introduce graph structure knowledge into contextualized
representations, we apply the embedding space alignment layer to align the semantic
embedding space to the structure embedding space, and the loss in the second stage is
calculated by Lproperty + Loutput + Ldesc. The second stage ends when the validation
set’s MRR calculation using the text semantic embedding is substantially unaffected.
In the third stage, to continuously activate the power of the Transformer-based encoder
to encode the description, ASKRL is optimized only by Ldesc. The third stage finishes
until the validation set’s MRR calculated with the semantic embedding stays essen-
tially unchanged. In a nutshell, the three-stage training objectives of the ASKRL can be
formulated as follows:

L =

 Lstru ,First Stage
Lproperty + Loutput + Ldesc ,Second Stage

Ldesc ,Third Stage
(12)

4 Experiment

4.1 Datasets and Evaluation Metrics

To evaluate the performance of ASKRL, we conduct experiments on widely-used open-
world knowledge graph completion datasets, including FB20k [31], DBPedia50k [19],
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and FB15k-237-OWE [18]. Particularly, FB20k is built on top of the FB15k [3] dataset
by adding triples with new entities, which are selected to have long textual descriptions.
DBPedia50k contains approximately 50k entities and is constructed from DBPedia [1].
FB15k-237-OWE is built upon the FB15k-237 [23] dataset, where redundant inverse
relations have been removed and new entities with short descriptions are added. The
statistics of these datasets are summarized in Table 1. The code of ASKRL and the
datasets can be accessed via https://github.com/seukgcode/ASKRL.

Dataset |R| |E| |Eopen| |Ldesc|
Number of triples

Train
Head Pred. Tail Pred.

Valid Test Valid Test

FB20k 1, 341 149, 04 5, 019 147 472, 860 1, 800 18, 753 1, 000 11, 586
DBPedia50k 351 24, 624 3, 636 454 32, 388 55 2, 139 164 4, 320
FB15k-237-OWE 235 12, 324 2, 081 5 242, 489 1, 539 13, 857 9, 424 22, 393

Table 1: The statistics of datasets. |E| stands for the entity size, |R| denotes the relation size,
|Ldesc| is the average length of all words in entity descriptions, and |Eopen| is the set of new en-
tities which are not in KGs. Head Pred. is Head Prediction, and Tail Pred. denotes Tail Prediction.

We evaluate baselines and our proposed ASKRL in the open-world link prediction
task. For a fair comparison, we evaluate the performance of all models on tail predic-
tion following to [18]. We report the MRR (Mean Reciprocal Rank), and Hits@N (the
proportion of correct entities ranked in the top N) metrics as most baselines do. Notice
that metrics in the main experiment are reported in the target filter setting [19] for a
fair comparison with baselines. In the target filter setting, when evaluating a test triple
(h, r, t), a candidate tail t′ is only included in the ranked result list if the triple (?, r, t′)
exists in the training data, otherwise, it is removed.

4.2 Baselines

We compare the proposed model ASKRL with the following widely-adopted open-
world state-of-the-art models: DKRL [31] uses a two-layer CNN to encode entity de-
scriptions. ConMask [19] employs the relation-dependent content masking mechanism
to extract relevant content description segments and applies CNNs to encode the en-
tity descriptions. OWE [18] maps the text-based entity description representation to the
pre-trained graph embedding space. WOWE [37] applies the attention mechanism in-
stead of the average aggregator to model entity descriptions. Caps-OWKG [29] uses the
capsule network to capture known and unknown triples features in open-world KGs.

4.3 Implementation Details

All experiments are obtained on the single NVIDIA RTX 3090Ti GPU. The hyper-
parameters are tuned by grid search and the range of hyper-parameters is set as fol-
lows: embedding size d ∈ {300, 400, 500, 600, 1000}, the initial learning rate of back-
bone models: lr1 ∈ {1e − 3, 2e − 3, 3e − 3, 4e − 3, 5e − 3}, the initial learning rate
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of Transformer-based encoder: lr2 ∈ {1e − 4, 5e − 4, 1e − 5, 5e − 5}, batch size
b ∈ {16, 32, 256, 512, 1024}, temperature coefficient α ∈ {0.1, 0.5, 1.0}, and margin
γ ∈ {3, 6, 9, 12, 18, 24}. There are two types of negative samples in the training pro-
cess: (1) Other entities within the same batch as negative samples. (2) The current entity
as a difficult negative sample, e.g., taking the predicted tail entity (h, r, t) as an example,
we consider (h, r, h) as a difficult negative sample. We use the popular library Hugging-
Face Transformers 3 to load the Transformer-based encoder and fine-tune it. For the
default setting, we apply the RotatE as the KRL model and BERT-base-uncased [5] 4

as the default Transformer-based encoder. In our experiments, we utilize the textual
descriptions of entities that are available in the dataset, while the relation name is con-
sidered as the textual description of the corresponding relation. For those entities in
the datasets that do not have textual descriptions, we directly use text mentions of their
name as the corresponding descriptions.

Table 2: Tail prediction results of baselines models on FB20k, DBPedia50k, and FB15k-237-
OWE datasets (with target filter). † stands for results obtained from [18] , and ‡ denotes results
retrieved from original papers. The numbers in bold indicate the best performances, whereas the
second-best performances are underlined.

Model FB20k DBPedia50k FB15k-237-OWE

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

Target Filt. Base. † 27.2 17.5 32.1 41.2 11.0 4.5 9.7 23.0 12.7 6.4 14.2 23.3
DKRL † − − − 67.4 23.0 − − 40.0 − − − −

ConMask † 53.3 42.3 57.3 71.7 58.4 47.1 64.5 81.0 29.9 21.5 39.9 45.8
OWE ‡ 53.1 44.8 57.1 69.1 60.3 51.9 65.2 76.0 40.1 31.6 43.9 56.0

Caps-OWKG ‡ − − − − 59.6 48.8 64.8 75.8 35.2 25.5 39.0 50.8
WOWE ‡ 54.1 45.2 58.3 70.0 61.2 52.7 66.5 76.9 40.4 31.9 44.1 56.4

ASKRL-LSTM 56.2 47.3 61.4 75.2 61.3 52.3 66.5 77.9 42.4 33.5 45.9 58.2
ASKRL-BERTbase 61.5 52.9 69.8 81.4 68.7 60.3 73.6 82.9 44.3 34.5 47.6 61.8

4.4 Main Results

We evaluate models with different settings to provide a multi-perspective analysis. In
Table 2, we compute metrics in the target filter setting. We can see that our proposed
ASKRL-BERTbase achieves new state-of-the-art performance in Table 2. ASKRL-
BERTbase outperforms all baselines on the FB20k dataset. More specifically, ASKRL-
BERTbase achieves approximately 7.4% gain to 61.5 on MRR against WOWE. For the
DBPedia50k dataset, ASKRL-BERTbase achieves approximately 7.5% gain to 68.7
on MRR against WOWE. Besides, we can also find that ASKRL-BERTbase achieves
a 3.9% gain to 44.3 on MRR than WOWE on the FB15k-237-OWE dataset. Further-
more, to verify whether the performance of ASKRL is brought by the pre-trained lan-
guage model, we replace BERTbase with an LSTM encoder and use 300-dimensional

3 https://github.com/huggingface/transformers
4 https://github.com/google-research/bert
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Wiki-pedia2Vec word embedding. The results are reported in Table 2. We can see that
ASKRL-LSTM beats most of the baselines except Hits@3 and Hits@10 on the DBPe-
dia50k dataset, which shows the effectiveness of the proposed approach of aligning two
different representation spaces by aligning both common properties and the output dis-
tribution of the score function. However, compared to on the FB20k and DBPedia50k
datasets, using BERTbase on the FB15k-237-OWE is not a significant improvement
compared to using LSTM. The reason for this can be seen in Table 1, where the average
length of all words in entity descriptions for FB15k-237-OWE is 5. Most of the descrip-
tions are even just entity names, which do not contain more additional information that
can be used.

Apart from the target filter setting, we also report the metrics in the normal set-
ting (without target filter) on the FB15k-237-OWE dataset in Table 3. We can find that
ASKRL-BERTbase still consistently achieves better results than the baseline model
OWE in the normal setting. Notably, ASKRL-BERTbase achieves 4.6% gain than
OWE on the MRR, which suggests that ASKRL-BERTbase can process zero-shot en-
tities effectively. Besides, the MRR of ASKRL-LSTM is improved by 2.9% compared
to OWE, which indicates that the performance of ASKRL is not entirely attributable to
the pre-trained Transformer-based encoder.

Table 3: Tail prediction results on the FB15k-
237-OWE dataset without target filter. † marks
results retrieved from the original paper.

Model MRR H@1 H@3 H@10

OWE † 35.2 27.8 38.6 49.1

ASKRL-LSTM 38.1 30.5 41.2 52.8
ASKRL-BERTbase 39.8 31.0 43.9 57.6

Table 4: Comparison of ASKRL based on dif-
ferent KRL models on the FB15k-237-OWE
(with target filter).

Model MRR H@1 H@3 H@10

ASKRL-TransE 38.3 30.6 42.3 53.9
ASKRL-DistMult 39.8 31.2 43.3 55.6
ASKRL-ComplEx 40.3 32.2 43.9 55.6

ASKRL-RotatE 44.3 34.5 47.6 61.8

4.5 Results of Ablation Study

Effect of KRL models One of our critical insights is to design a plug-and-play strategy
that can be seamlessly adapted to diverse KRL methods, such as TransE and RotatE.
Specifically, ASKRL encodes the raw entity semantics with a Transformer-based en-
coder and augments their comparability in the perspective of spatial aspects (angles and
length ratios). Such a design can be easily integrated as an auxiliary loss to fine-tune
the BERT efficiently. Despite the different geometric suppositions made by different
structured-based KRL models, their corresponding output distribution remains gener-
ally applicable across the semantic-spatial transformation. Thus, the alignment space
mechanism is also applicable. To verify the effectiveness of ASKRL for different KRL
models, we conduct experiments on different backbone KRL models. The results are
shown in Table 4. It can be seen that ASKRL can be applied to off-the-shelf KRL mod-
els with different geometrical assumptions and that the results are slightly different in
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terms of different backbone KRL models. In general, the performance ranking of KRL
models is as follows: RotatE > ComplEx > DisMult > TransE. Our results follow the
above rank. In our results, RotatE-based ASKRL achieves the best results.

Table 5: Comparison results of different Transformer-based encoders on FB15k-237-OWE
dataset (with target filter).

Encoder MRR H@1 H@3 H@10

ASKRL-BERTtiny 34.0 27.1 37.6 48.9
ASKRL-BERTsmall 42.5 32.1 45.7 59.5
ASKRL-BERTbase 44.3 34.5 47.6 61.8
ASKRL-BERTlarge 44.9 35.0 47.9 62.3

ASKRL-RoBERTabase 45.3 36.2 48.5 63.8
ASKRL-RoBERTalarge 44.7 35.8 47.6 62.7

Effect of Transformer-base Encoder Models Furthermore, we conduct experiments
on the effect of different Transformer-base encoders on ASKRL. We use two families
of Transformer-base encoders, i.e., BERT [5] and RoBERTa [12], with ASKRL. In gen-
eral, RoBERTa is superior to BERT in terms of the performance of pre-trained language
models on downstream tasks [12,5]. The results, shown in Table 5, fit with our common
sense. Specifically, ASKRL-RoBERTabase achieves the best MRR in all encoder set-
tings, with a 0.4% improvement compared to the second-best result. However, we find
that ASKRL-RoBERTalarge does not perform better than ASKRL-RoBERTabase.
The main reason could be that there are too many parameters in RoBERTabase, making
it difficult to train to converge to a globally optimal parameter.

Table 6: Experimental results on the ablation of embedding space alignment layer, where Time
refers to the time (hours) required to train the model until the MRR of validation set is essentially
unchanged.

Model FB20k DBPedia50k FB15k-237-OWE

MRR H@10 Time MRR H@10 Time MRR H@10 Time

ASKRL-BERTbase 61.5 81.4 20.58 h 68.7 82.9 8.97 h 44.3 61.8 15.30 h
-Lproperty 58.4 79.6 20.36 h 65.5 80.9 8.33 h 42.9 59.3 14.62 h
-Loutput 59.1 80.2 20.49 h 66.8 81.5 8.67 h 43.8 60.6 15.21 h

BERTbase 50.0 63.8 28.33 h 58.6 70.3 12.90 h 35.8 50.0 19.63 h
BERTlarge 51.3 64.2 35.95 h 59.9 71.6 16.47 h 36.3 51.2 25.71 h

Effect of Embedding Space Alignment Layer To explore the effect of aligning the
semantic space to the structure space by aligning the common properties and the out-
put distribution of score function proposed in this paper, we removed the correspond-
ing parts from the default settings of ASKRL. The experimental results are shown in
Table 6. After removing the alignment of spatial properties (refer to -Lproperty), the
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performance of ASKRL drops significantly on all datasets. Concretely, the MRR of
ASKRL decreases by 3.1%, 3.2%, and 1.4% on FB20K, DBPedia50K, and FB15k-237-
OWE datasets, respectively, compared to the default setting. Meanwhile, after removing
the alignment of output distribution (refer to -Loutput), the performance degradation of
ASKRL is not too significant, which indicates that it is necessary to introduce the com-
mon structural information of the triples into the semantic space.

Furthermore, we remove the entire embedding space alignment layer, and then only
optimize Ldesc (refer to BERTbase and BERTlarge). The following conclusions can be
drawn: (1) Optimizing solely Ldesc results in a significant decline in performance for
ASKRL, suggesting that relying solely on features from the semantic space is inade-
quate for modeling zero-shot entities. (2) There is a substantial difference in training
time between BERTbase and ASKRL-BERTbase in FB20K, DBPedia50k, and FB15k-
237-OWE datasets, with the former taking as much as 37.7%, 43.8%, and 28.3% longer
than the latter, respectively. This suggests that our proposed embedding space alignment
layer can provide a more explicit optimization direction and accelerate the convergence
of the Transformer-based encoder.

Effect of the Three-stage Optimization Strategy This paper introduces a three-stage
optimization strategy to train the model effectively. Each stage includes unique and
luminous optimization targets, i,e., structured, semantic, and continual fine-tuning rel-
ative to the 1st, 2nd, and 3rd stages, respectively. Meanwhile, such a pipeline training
strategy makes ASKRL converge successfully and efficiently. Moreover, the effective-
ness of the three-stage optimization strategy has also been validated in the experiments.
In the first optimization stage, the structured KRL model is trained to learn represen-
tations of entities and relations. After training, the backbone model will learn an ex-
perienced prior distribution. In the second optimization stage, the experienced prior
distribution is applied to the embedding space alignment, in which the distribution of
the Transformer-based encoder is aligned to the experienced prior distribution of the
trained structured KRL model. Moreover, the average MRR experiences a decrease of
10.0% without the first and second Stages. This design not only accelerates the conver-
gence of the Transformer-based encoder, but also introduces the knowledge of the KGs
structure into the textual encoder. In our experiment, it usually needs to be trained five
or more epochs to converge for the Transformer-based encoder without the embedding
space alignment layer. In the third optimization stage, the Transformer-based encoder
is continuously trained to achieve better performance. In our experiment, there is ap-
proximately 0.2% to 0.7% improvement in MRR with the third stage optimization than
without it.

4.6 Case Study

To intuitively explain how ASKRL solves the zero-shot entities, we provide some pre-
diction cases of ASKRL on the FB15k-237-OWE dataset, as shown in Table 7.

Supposed that The Mask of Zorro is a zero-shot entity with description 1998 Amer-
ican swashbuckler film. Because the The Mask of Zorro does not belong to the pre-
defined entity set, the entity-based structured backbone model cannot encode it. At
this time, ASKRL can encode its description 1998 American swashbuckler film by the
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Table 7: Case Study: The actual tail prediction results on the FB15k-237-OWE dataset of ASKRL.
Test Triples Head Description Top-k Predicted Tails

(The Mask of Zorro,
/film/film/language,

English)
1998 American swashbuckler film

1.English
2.Russian
3.French
4.Spanish
5.United States of America

(Bury My Heart at Wounded Knee,
/film/film/language,

English)
2007 US TV film

1.English
2.Library of Congress Classification
3.Birdie Kim
4.United States of America
5.French

(Daytona Beach,
/base/biblioness

/bibs_location/country,
United States of America)

city in Florida, United States

1.Library of Congress Classification
2.United States of America
3.actor
4.CE Campos
5.EA Vancouver

(Thomas Jefferson,
/influence/influence_node

/peers./influence
/peer_relationship/peers ,

John Adams)

3rd President of the United States
of America

1.Europe
2.marriage
3.New York University
4.New York City
132.John Adams

(Christopher McDonald,
/people/person

/spouse_s./people
/marriage/type_of_union,

marriage)

American actor

1.actor
2.film producer
3.United States of America
4.Warner Bros.
249.marriage

Transformer-based encoder to obtain its embedding. Table 7 shows that the top-1 tail
prediction of ASKRL is English when the input relation is /film/film/language, which is
equal to the ground-truth tail entity. We can also see that the first three examples show
good performance: the ground truth is in the top five predicted results. These actual pre-
diction cases intuitively prove that the proposed model ASKRL is capable of modeling
zero-shot entities effectively.

However, we notice that some complicated relations consist of multiple sub-relations
in the FB15k-237-OWE dataset. For instance, there are two sub-relations: /people/-
person/spouse_s and /people/marriage/type_of_union in the relation /people/person/-
spouse_s./people/marriage/type_of_union. It is still challenging for ASKRL to handle
relations with multiple sub-relations, e.g., the fourth and fifth examples.

5 Conclusion

In this paper, we propose a novel model ASKRL to handle the knowledge represen-
tation learning of zero-shot entities. For given zero-shot entities, ASKRL uses the
Transformer-based encoder to encode their descriptions as input. ASKRL can be a plug-
and-play extension for off-the-shelf closed-world KRL models to enable them to handle
zero-shot entities. We conduct extensive experiments on widely-used open-world KGC
datasets to demonstrate the effectiveness of ASKRL.
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