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Abstract. Knowledge base population seeks to expand knowledge graphs
with facts that are typically extracted from a text corpus. Recently, lan-
guage models pretrained on large corpora have been shown to contain
factual knowledge that can be retrieved using cloze-style strategies. Such
approach enables zero-shot recall of facts, showing competitive results in
object prediction compared to supervised baselines. However, prompt-
based fact retrieval can be brittle and heavily depend on the prompts
and context used, which may produce results that are unintended or
hallucinatory. We propose to use textual entailment to validate facts
extracted from language models through cloze statements. Our results
show that triple validation based on textual entailment improves lan-
guage model predictions in different training regimes. Furthermore, we
show that entailment-based triple validation is also effective to validate
candidate facts extracted from other sources including existing knowl-
edge graphs and text passages where named entities are recognized.

Keywords: Object Prediction · Knowledge Base Population · Recog-
nizing Textual Entailment

1 Introduction

Knowledge Graphs arrange entities and relationships in a graph structure to
represent knowledge [43, 29]. The edges of the graph describe relations between
subject and object entities that are encoded as <subject relation object> triples.
Knowledge graphs have applications in many areas, including search1, recom-
mendation, and natural language processing [22]. Nowadays the collaboration
between editors and bots to curate and extend knowledge graphs has become
common [50]. However, this is a complex and never-ending task and as a conse-
quence, knowledge graphs are often incomplete [52, 12].

Knowledge Base Completion KBC [3] aims at predicting relations between
existing entities. Similarly, the goal of the Knowledge Base Population KBP task
[21] is to expand knowledge graphs with new facts discovered from text corpora.
While in recent years a plethora of embeddings-based approaches have emerged

1 https://blog.google/products/search/introducing-knowledge-graph-things-not/
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for KBC [22], KBP research has not progressed at the same speed due to the
complexity of the pipelines [21, 14] and the lack of established benchmarks.2

Recently, language models have been revealed as promising resources for
KBP. Language models trained on large text corpora encode different types of
knowledge including syntactic [26], semantic [47], commonsense [57], and factual
knowledge [31]. To elicit facts from the internal memory of a language model,
researchers typically use cloze statements to make the language model fill in
the masked tokens, e.g., John Lennon plays <MASK>. Cloze statements, also
known as prompts in this context, enable zero-shot fact retrieval without any
fine-tuning [31]. Nevertheless, the knowledge encoded in the language model is
limited to the data it has seen during pretraining. Additionally, prompt-based
fact retrieval can be brittle [32] and heavily depend on the prompts and context
used [9], which may produce results that are unintended or hallucinatory. For
example, as a response to the previous prompt, BERT would return guitar,

piano, drums, himself, harmonica. Lennon played percussion overdubs on
some tracks, but he never actually played the drums. Further, while all of the
remaining statements are true, ”John Lennon plays himself” relates to his acting
side, while we are interested in musical instruments. An apparently more specific
prompt like John Lennon plays instrument <MASK> returns here, there,

too, himself, onstage, adding even more noise.

To address such limitations we propose to validate candidate triples using
textual entailment [34] against evidence retrieved from the Web. Within KBP,
we focus on the object prediction task [42]. Given a subject entity and a rela-
tion, the goal is to predict every object that renders a valid triple, where such
objects may not have been contained in the knowledge graph yet. In this paper
we present our system SATORI (Seek And enTail for Object pRedIction). As
shown in Fig. 1, SATORI obtains candidate objects from language models using
cloze statements and generates candidate triples. To improve recall SATORI also
considers other sources of candidate objects including external knowledge bases
and named entities recognized in relevant text passages. A language model fine-
tuned on the entailment task is used to validate whether the generated triples
can be entailed from passages retrieved from the web. The objects of the triples
validated by the model as entailment are the output of the system.

SATORI relies on templates to convert the input subject and relation pair
into search engine queries to retrieve text passages, language model prompts to
get candidate objects, and hypotheses describing candidate triples. Templates
need to be defined only once per relation, and in its most basic form a template
can be re-used across all the system components. For example, given the input
pair (John Lennon, PersonIntrument) and a relation template {X} plays, we can
submit the query John Lennon plays to the search engine, prompt the language
model with John Lennon plays <MASK> for a candidate object, e.g., Guitar,
and validate the entailment of the hypothesis John Lennon plays Guitar against
the premises retrieved through our web search. Using language models as a source

2 The KBP evaluation track of the TAC [14] is a long running initiative. However,
manual system evaluation makes it hard to reproduce evaluation for new systems.



Textual Entailment for Effective Triple Validation in Object Prediction 3

Fig. 1: SATORI architecture exemplified using as input pair John Lennon in the sub-
ject and PersonInstrument in the relation.

of factual knowledge, SATORI could also leverage breakthroughs in prompting
and knowledge-based enhancement of language models [32].

Validating candidate triples generated from objects predicted using language
models raises the following main research questions:

– Q1: Does candidate triple validation through textual entailment improve
object prediction results over prompting a pretrained language model?

– Q2: How do further pretraining the language model and fine-tuning for
entailment-based triple validation under different data regimes impact object
prediction?

– Q3: How do language models compare to other potential sources of struc-
tured knowledge, as well as to methods based on extracting information from
text, for the generation of candidate triples?

In this paper, we investigate such research questions and present the following
contributions. First, an approach for object prediction including the validation
of triples using textual entailment. Second, an experimental study where differ-
ent configurations of SATORI and baseline systems are evaluated using a gold
dataset for object prediction [42]. In such experiments we show that triple valida-
tion through textual entailment improves the performance of facts extracted from
pretrained language models and also when additional training data is available.
Finally, we compare language models with other sources including structured
knowledge and unstructured text, which we process using extractive techniques
repurposed for object prediction.
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2 Related Work

Knowledge base population. A prototypical KBP architecture [4, 21] applies
entity linking [54] on a corpus to recognize the entities mentioned in the text.
Then a slot filling process [44] predicts an object, either an entity or a value for
each subject entity and named relation, given the text where the entity appears.
A key component of slot filling is a relation extraction model [1, 18] that identifies
the relation between the entity and the candidate object. Thus, in KPB object
prediction could complement the slot filling task since both share the goal of
getting entities or values for a given subject and predicate. However, while slot
filling leverages a large corpus to get the objects, in object prediction we rely on
a language model to get objects and neither entity linking, relation extraction
nor a text corpus are required.

Similar to our work West et al. [52] extract values from web search snippets
although using question-answering (QA). Nevertheless, they experiment only
with relations of subject type PERSON, and their approach only predict entities
already in the knowledge graph. Unlike West et al., our work is framed in open
world KBP [39], where predicted entities are not restricted to existing entities.

Knowledge base completion.KBC [22] mostly refers to relation prediction
[3, 56] where the goal is to recognize a relation between two existing entities.
However, KBC de facto evaluation turns relation prediction into a ranking task
where triples with right objects (or subjects) are expected at the top [6, 55]. Such
evaluation could lead to confusing KBC goal with object prediction. However
in KBC the predicted objects are already part of the knowledge graph, while in
object prediction they are not necessarily known.

Prompts and entity-enhanced languages models. To elicit relational
knowledge from language models Petroni et al. [31] use prompting. They show
that prompting BERT achieves competitive results againts non-neural and su-
pervised alternatives. Prompts can be hand-crafted [31], mined from a large
corpus [7] or learned [33, 40]. Li et al. [25] decompose prompts to split the task
into multiple steps, and use task-specific pretraining for object prediction. Sim-
ilar to our work Alivanistos et al. [2] add a fact probing step. However rather
than using entailment for the validation, they ask a generative language model
whether the generated fact is correct. Other works such as KnowBERT [30], and
E-BERT [32] enhance BERT with pretrained entity embeddings, showing that
such enhanced versions improve BERT results on LAMA [31].

Textual Entailment. It aims at recognizing, given two text fragments,
whether the meaning of one text can be inferred (entailed) from the other [11].
The state of the art for textual entailment [51] is to fine-tune language mod-
els on datasets such as SNLI [8] or MNLI [53]. Researchers have reformulated
several task as entailment. Wang et al. [51] convert single-sentence and sentence-
pair classification tasks into entailment style. Entailment has been also used for
zero-shot and few-shot relation extraction [37], answer validation [35], event ar-
gument extraction [36], and claim verification in fact checking [16]. Preliminary
experiments suggest that a slot filling validation filter using textual entailment
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could be useful for KBP systems [5]. To the best of our knowledge we are the
first to use textual entailment to validate object prediction results.

Fact checking. Fact checking [16], originally proposed for assessing whether
claims made in written or spoken language are true, have been applied also to
check the trustworthiness of facts in knowledge graphs. Approaches for truth
scoring of facts can be broadly classified into two types [23]: approaches that
use unstructured textual data to find supporting evidential sentences for a given
statement [13, 46, 48], and approaches that use a knowledge graph to find sup-
porting evidential paths for a given statement [41, 45]. Fact checking, is a step
beyond our triple validation approach, where trustworthiness of the triples and
the sources is evaluated. Trustworthiness analysis is out of the scope of out work
that is defined in the research questions that we pose.

3 Object Prediction

3.1 Task definition

Let F ⊂ E ×R×E be the set of facts in a knowledge graph, where E is the set
of entities and R the set of relations. Given s ∈ E and r ∈ R, the goal of the
object prediction task is to find every o ∈ E ∪ E′ where E′ is the complement
of E such that the triple (s, r, o) is a valid fact. Valid triples are added to F ,
and E is expanded when o is not an existing entity in the graph. In object
prediction, as in other KBP tasks, the knowledge graph schema is available.
The schema defines the relations in the knowledge graph including their range3.
The range indicates that the objects of a particular relation are instances of a
designated class. For example, the range of the PersonInstrument relation is the
class MusicalInstrument.

3.2 SATORI: Seek and entail for object prediction

Recognizing textual entailment (RTE) is central in SATORI to validate triples.
RTE is the task to determine whether a hypothesis H is true given a premise
P. Typically for an input pair P and H, an RTE model assigns the labels En-
tailment (true), Contradiction (false) or Neutral [27]. We consider as hypothesis
a natural language description of the candidate triple that we are validating,
and as premises relevant text retrieved from the web. Thus SATORI has three
major steps (see Fig. 1): i) retrieving premises, ii) getting candidate objects to
generate new triples, and iii) validating triples using RTE. Along this section we
use the input pair s = JohnLennon, r = PersonInstrument as an example for
the object prediction task.

Retrieving premises. The goal is to query a search engine using the input
pair s and r to retrieve relevant text passages (featured snippets). For a relation
r we define a search template tsearch,r as a keyword-based query including a
placeholder for the subject. The subject s is replaced in the template tsearch,r and

3 See RDF schema in https://www.w3.org/TR/rdf-primer/#properties
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the output query is sent to the search engine API. We retrieve the top k featured
snippets to use them as premises. For the example input pair and template
tsearch,r = X plays instrument, our query is John Lennon plays instrument.

Getting candidate objects. Our first source of candidate objects is a pre-
trained language model. For each relation we define a template tlm,r of a prompt
for the language model. The prompt is obtained by replacing the subject s in the
template tlm,r. For example the template tlm,r = X plays <MASK> becomes the
prompt John Lennon plays <MASK>. In a bidirectional transformer like BERT
the output vectors corresponding to the mask tokens are fed into an output
softmax layer over the vocabulary. Hence the language model output for a mask
token is the words in the vocabulary and the score indicating the probability
of being the mask token in the input sequence. We use a per-relation threshold
Tlm,r on the word score. Predicted words with a score above the threshold are
added to the set of candidate objects objs = {oi}. Given an input pair (s, r) and
each candidate object oi we create a candidate triple (s, r, oi)

In addition, we consider existing knowledge graphs as source of candidate ob-
jects. We use instances of the classes defined in the relation range as candidate
objects. To retrieve such instances we use SPARQL queries. First, we get the
classes Cj in the relation range from the schema of the knowledge graph that we
are populating. Next, for each class in the relation range we send the following
SPARQL query to the knowledge graph from where we want to obtain candi-
dates: SELECT ?y WHERE ?y rdf:type Cj .

4 The retrieved entities are added
to the set of candidate objects objs = {oi}. For example, the relation person-
Instrument expects entities of class MusicalInstrument in the range. Thus, the
SPARQL query generated for the example input pair is SELECT ?y WHERE
?y rdf:type MusicalInstrument.

Both language models and knowledge graphs can generate a high number of
non-relevant candidate objects. We use heuristics to filter out unrelated objects.
The most basic filter is a stop word list including punctuation marks. Language
models are known for assigning high probability to punctuation marks and arti-
cles. In addition, we filter out objects which are not explicitly mentioned in the
text passages gathered in the premise retrieval stage.

Named Entity Recognition NER can also be used to identify candidate ob-
jects for some relations depending on the classes in the relation range. Standard
NER recognizes People, Locations, and Organizations5. We apply NER on the
texts passages retrieved from the web for the input pair. If there is a match be-
tween the classes in the relation range and the classes of the recognized entities
then we add such entities to the set of candidate objects objs = {oi}.

Validating triples. We generate a short text description of a candidate
triple (s, r, oi) to be used as hypothesis to validate against the premises through
RTE. We define per-relation templates th,r to generate hypotheses containing
placeholders for the subject (X) and object (Y). Then we replace the subject (X)

4 While rdf:type is the standard property used to state that a resource is an instance
of a class, some knowledge graphs could use other ad-hoc property.

5 Due to the diverse nature of the MISC category we do not consider it.
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and object (Y) placeholders with s and oi to generate a hypothesis Hl. Given
the candidate triple (John Lennon, PersonInstrument, Guitar), and template
th,r = X plays Y, the generated hypothesis is Hl = John Lennon plays guitar.
Next, we use a language model fine-tuned for the RTE task to evaluate whether
Hl is entailed on average by the k premises. The objects oi corresponding to an
entailed hypothesis are the final objects for the input tuple (s, r).

Language models fine-tuned for RTE address the task as a multi-class classi-
fication of premise and hypothesis pairs into Entailment, Contradiction and Neu-
tral classes. For transformers like BERT the input is a sequence [CLS] premise
[SEP] hypothesis [SEP]. The [CLS] output vector C ∈ RH , where H is the hid-
den size in the transformer, acts as the aggregated representation of the input
sequence, and is connected to an output layer for classification W ∈K×H , where
K is the number of classes. Softmax is the activation function of the output layer
and cross-entropy the loss function. In SATORI we focus on the Entailment and
Contradiction classes, and softmax is applied only to the corresponding outputs.
For each pair of premise and hypothesis the classifier generates scores for each
of the classes. We use a per-relation threshold Te,r on the Entailment class score
to accept the prediction as valid.

4 Evaluation setup

4.1 Dataset

The datasets used in the TAC KBP [14] evaluation series are tightly coupled with
the text corpus used to mine facts: only information extracted from the corpus
is considered valid to populate the knowledge graph. We discard such datasets
since SATORI’s web-based approach does not rely on a particular corpus. In
addition, the evaluation of the slot-filling task, which is the most closely related
to object prediction, is carried out manually.

Other triple-based datasets like LAMA [31], FB15K-237 [49] and WN18 [6],
and their derived versions, were also discarded since they do not guarantee the
completeness of objects for subject and relation pairs. Completeness of objects
is important to evaluate precision and recall in object prediction. For instance,
when predicting objects for relation PersonInstrument we want to predict all
the instruments and not only some instruments for a given individual. In LAMA
triples are randomly sampled, while in FB15K-237 and WN18 only frequent
entities and relations are selected.

Moreover, optional relations that do not apply to every subject in the domain
play an important role in object prediction evaluation. For example, the optional
PlaceOfDeath relation only applies to people that have passed away, not to all
the instances of people. Thus, to evaluate whether an object prediction system
must produce or not an object for a subject and relation pair, the dataset needs
to include pairs for which an object is not expected.

Therefore, we resort to the recently introduced LM KBC22 [42] dataset6 that
includes all expected objects for a given subject and relation pair, is not tied to

6 https://lm-kbc.github.io/2022/
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a particular corpus, and comprises subject-relation pairs for which objects are
not expected. The dataset includes 12 relations exemplified by a set of subjects
and a complete list of ground-truth objects per subject and relation pair. Five
relations also contain subjects without any correct ground truth objects. In
this dataset relation domains are diverse, including Person, Organization, or
Chemical compound. Similarly the range of relations includes Country, Language,
Chemical element, Profession,Musical Instruments, or Companies to name a few
classes. The training set includes 100 subjects per relation, and development and
test sets each contain 50 subjects per relation.

4.2 Metrics

KBP systems are required to make accurate decisions with good coverage of the
predicted entities. Rank-aware metrics customary used in KBC such as Mean
Rank, and Mean Recriprocal Rank are of little use in a real KBP setting. They
indicate how high in the ranking of predicted objects are the right ones. How-
ever in KBP we are interested in making actual predictions. Therefore, we use
standard classification metrics that are good indicators of system accuracy and
coverage: precision, recall, and F1.

4.3 SATORI configuration

We use the duckduckgo.com search engine to gather premises from the Web for
each subject-relation pair. We leverage its python library7 to send queries to the
text search service. This service returns the web page title, url, and featured
snippet that we keep as a premise. The duckduckgo library is very convenient
since it can be used straightaway in Python programs and does not require
registration in a cloud-based platform, unlike with leading search engines. We
set k = 3 to gather at least three different premises that we can use to evaluate
the hypotheses that we generate.

We evaluate three sources of candidate objects: pretrained language model
(LM), knowledge graph (KG) and NER. We use BERT large cased as pretrained
LM since it allows us to compare SATORI with the baseline model in the LM-
KBC22 dataset. KG and NER are used together since NER recognizes a limited
number of entity types and some entity types might not be covered in a KG. To
perform NER we use a transformer model fine-tuned on the task8. We use NER
to get candidate locations for relations StateSharesBorderState and PersonPlace-
OfDeath, and candidate organizations for relations CompanyParentOrganization
and PersonEmployer. We use Wikidata [50] as KG for the rest of the relations
in the dataset. Wikidata includes instances of all classes in the ranges of the
remaining relations: Language, Country, ChemicalElement, MusicalInstrument,
Profession, and CauseOfDeath.

7 https://pypi.org/project/duckduckgo-search/
8 https://spacy.io/models/en#en core web trf
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To validate candidate triples we test three language models fine-tuned for the
entailment task. We choose the models according to their performance on the
entailment task and the number of parameters in the model. We use a DeBERTa
Extra Large (XL) model 9 with 900M parameters that reports 91.7 accuracy on
the MNLI dataset [53]. We also use DeBERTa Extra Small (XS)10 model with
22M parameters that reports 88.1 accuracy on the same dataset. The final model
that we test is a BERT large model11 with 336M parameters that reports 86.7
accuracy on MNLI.

Templates tlm,r, tsearch,r, and th,r used in the experiments are listed in the
paper repository.12 Particularly, templates tlm,r are reused from the language
model baseline that we describe below.

4.4 Baselines

The first baseline that we use is prompting a language model. Such baseline al-
lows to test our hypothesis that triple validation through textual entailment can
benefit object prediction from language models. In addition, we are interested in
comparing the knowledge in language models with other sources of knowledge
including knowledge graphs and text passages related to the input subject and
relation pair. Thus, we use as baselines a state of the art extractive question an-
swering model and a relation extraction model repurposed for object prediction.

LM-baselineWe reuse the baseline system from the LM KBC challenge [42],
which prompts a BERT-large-cased model. We use the templates to transform
triples into prompts made available in the challenge repository.13 The baseline
uses a threshold Tlm,r on the likelihood of words to fill in the mask token. Stop
words are also filtered out. In addition, following Li et al. [25] we further-pretrain
the language model on the masked language modeling objective using training
data from the LM KBC22 dataset. We transform triples in the training dataset
into prompts where the objects are masked, and train the model to predict the
right objects (see section 4.5 for further pretraining details).

The BERT-based system that scored highest in the LM KBC22 challenge
trains several BERT models (one model per relation) and further pretrains the
models with data from Wikidata [25]. While we could have used such approach
as a baseline and integrated it in SATORI as source of candidate objects, we
decided against it since we think such approach does not scale due to the number
of models being trained.

QA-baseline We use an extractive Question Answering (QA) system as
baseline. To this end, we transform each subject-relation pair using per-relation
templates into a question, where the answer is the expected object. The QA sys-
tem then attempts to extract the answer from the text passages that we gather

9 https://huggingface.co/microsoft/deberta-v2-xlarge-mnli
10 https://huggingface.co/microsoft/deberta-v3-xsmall
11 https://huggingface.co/boychaboy/MNLI bert-large-cased
12 https://github.com/satori2023/Textual-Entailment-for-Effective-Triple-Validation-

in-Object-Prediction
13 https://github.com/lm-kbc/dataset
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from the Web as premises in SATORI for the same input pair (see section 3 for
the premise retrieval procedure). QA per-relation templates tqa,r have a place-
holder (X) for the subject entity and follow a similar basic pattern with minor
variations: What relation* X?, where relation* is a text fragment derived from
the relation label. For example, the template for the PlaysInstrument relation
is: What instruments plays X?. The complete set of QA templates is available
in the paper repository.

As QA model we use DeBERTa large14 fine-tuned on SQUAD 2.0. DeBERTa
is the highest scoring single model in the SQuAD 2.0 leaderboard15 (F1=90.3)
that is available on hugginface.co. We slightly post-process DeBERTa’s answers
containing lists of items to extract each item. For example, for the question
What instruments plays John Lennon?, DeBERTa extracts the answer guitar,
keyboard, harmonica and horn. From such list we extract each single instrument
as a possible answer. Along with the answer span DeBERTa generates a score
that indicates the probability of the answer. We use a per-relation threshold Tqa,r

on that score to accept or reject an answer. In addition we further fine-tune the
QA model using questions and answers derived from the training set and the
premise retrieved in SATORI as text passages from where the answers can be
extracted (see section 4.5 for further details on QA fine-tuning).

RE-baseline We also test the state of the art relation extraction system
REBEL [19] in the object prediction task. REBEL is a sequence to sequence
model based on BART[24] that performs end-to-end relation extraction for more
than 200 different relation types. REBEL autoregressively generates each triple
present in the input text. To use REBEL we need to map the relations it supports
with relations in the LM KBC22 dataset. From the 12 relations in LM KBC22
we find 10 relations with the same or very similar semantics in REBEL.16 For
the ChemicalCompoundElement, one of the remaining relations, we establish a
mapping with the broader has part relation. The PersonCauseOfDeath relation
could not be mapped. We use REBEL to generate triples from the text pas-
sages previously retrieved as premises for input subject-relation pairs. Finally,
we extract the objects from those triples as the predicted objects.

4.5 Pretrained models and training regimes

We evaluate pretrained models off the shelf and once they are further trained
using the LM KBC22 dataset. Since the test set is withheld by the dataset
authors, we test on the development set and use a held-out 20% of the training
set as a new development set, leaving the remaining 80% as training data.

First we evaluate SATORI and the baselines using available pretrained mod-
els (see sections 4.3 and 4.4). To adjust the parameters that control the predic-
tions of the different models for each relation, i.e. Tlm,r, Te,r in SATORI, Tlm,r in
the LM baseline and Tqa,r in the QA baseline, we search for the best thresholds

14 https://huggingface.co/deepset/deberta-v3-large-squad2
15 https://rajpurkar.github.io/SQuAD-explorer/
16 The relation mapping can be found in the paper repository
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F1-wise in the range 0.01 to 0.99 with 0.01 increments over the union of training
and development sets.

In addition, we train the models that we use in SATORI and the baselines
on random samples of 5%, 10% and 20% of the training set corresponding on
average to 4, 8, and 16 examples per relation. We also use 100% of the training
data. The same percentages are used to sample the development set in each
training scenario. Each training scenario is repeated 10 times, and evaluation
metrics are averaged. We follow the same strategy to adjust the parameter that
we use for pretrained models using the training and development sets. In the
following we describe how we train the models.

Language model. The language model used in SATORI and the LM-
baseline (BERT large) is further trained on the masked language model objective
using the data from the training set in each scenario. We transform triples in the
training and development set into prompts using the per-relation templates tlm,r

and train the model to fill in the mask tokens with the corresponding objects. For
the masked language modeling training objective, we set the hyper-parameters
following [25]. That is, we train the model for 10 epochs, use a learning rate
of 5e-6, an a batch size of 32. We save checkpoints at the end of every epoch,
considering as the best checkpoint the one with the lowest development set loss.

Entailment model. An entailment training instance comprises a premise,
hypothesis, and a label indicating Entailment or Contradiction. We create en-
tailment training instances as follows. For each triple in the training set we use
the text passages retrieved as premises for the subject and relation in the triple.
If the subject and object are mentioned in the text passage we generate a pos-
itive entailment example using the passage as premise and the hypothesis that
we generate using the corresponding template th,r. To generate negative exam-
ples, i.e., contradictions, we replace the object in the positive example with an
incorrect object, and use a premise retrieved for the input pair where such ob-
ject is mentioned. To obtain the incorrect object we prompt the language model
using the per-relation template tlm,r where we replace the input subject. We
keep objects appearing in any of the premises for the input pair, that are not
related to the input subject-relation pair in the training set. If we do not find
any object from the language model that satisfies the previous condition, we
look for incorrect objects in the training set for the same relation.

To train the entailment model, we reuse the classification scripts available
in HuggingFace.17 We use the default hyper-parameters: 3 epochs, learning rate
of 2e-5, and maximum sequence length of 128. Due to hardware limitations we
use a batch size of 8, and gradient accumulation steps of 4. Particularly, to
fine-tune the DeBERTa xlarge model, we reduce further the batch size to 1 and
increase gradient accumulation steps to 32, applying gradient checkpointing, and
use ”Adafactor” optimizer instead of the default ”AdamW”.

QA-baseline. A training instance for an extractive QA model includes a
question, an answer and a text from where the answer is extracted. To generate

17 https://github.com/huggingface/transformers/tree/v4.24.0/examples/pytorch/text-
classification
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training instances we first pre-process the training set and obtain for each subject
and relation the complete lists of objects. Next, we get the text passages retrieved
as premises for each subject and relation pair. For entries with empty object lists,
we use the first retrieved passage and also use the empty gold answer.

If there is only one object for the input subject and relation pair, and there
is a text passage where the object appears, we generate a training example with
the passage, the question that we generate using the template tqa,r and the
object as answer. If there is more than one object for the subject and relation
the only way to extract them from a passage using a QA model is if they are
arranged as a list of terms in a contiguous text span. Therefore we look for text
passages containing every object with the condition that they must be located
at most three tokens away from each other. We select the passage with the span
containing the highest number of objects, and generate the training example
with such passage, the question that we generate using the template tqa,r, and
the text span where objects appear as answer.

To train the question answering model we leverage HuggingFace scripts18,
and use the default hyper-parameters: batch size of 12, learning rate of 3e-5, 2
training epochs, and a maximum sequence length of 384.

RE-baseline. Training instances for REBEL consist of a short text, followed
by the triples that can be extracted from that text. Triples are described in a
REBEL-specific format using special tokens. Relations in triples are indicated
using their text descriptions. To transform instances from the LB KBC22 dataset
into REBEL training instances we first obtain for each subject and relation the
complete lists of objects. Next, we get the text passages retrieved as premises for
each subject and relation pair. If we find a text passage containing some of the
objects related to subject and relation pair we create a REBEL training instance
with such text, and the triples for the subject, relation and objects found in the
text. To train the model we use the script19 provided by the REBEL authors.
We use the default training parameters in the script.

5 Evaluation results

Table 1 shows evaluation results in the object prediction task for SATORI and
baselines using pretrained models and models further trained on the different
training regimes. Note that SATORI is evaluated using different RTE models
for triple validation and also using different sources of candidate objects.

5.1 Language model prompting and triple validation

Let us start with Q1 (does candidate triple validation through textual entailment
improve object prediction results over pretrained language model prompting?).
We compare SATORI using RTE for triple validation and a pretrained language

18 https://github.com/huggingface/transformers/tree/v4.24.0/examples/pytorch/question-
answering

19 https://github.com/Babelscape/rebel/blob/main/src/train.py
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model as source of candidate objects (Table 1: first three rows in the Pretrained
column) against the LM baseline using only a pretrained language model.

Results show that in such scenario triple validation using any RTE model
improves the LM baseline in all evaluation metrics. The largest gain is in preci-
sion, with an improvement that ranges from 14 to 15.5 points depending on the
RTE model. Recall is also improved, although to a lesser extent, in the range of
1.9 to 3.2. Improvement in precision shows that triple validation using RTE is ef-
fective to filter out non-relevant objects predicted by the language model. Since
the system is more precise, the threshold limiting the number of objects pre-
dicted per relation Tlm,r is actually lower in SATORI than in the LM baseline.
A lower Tlm,r allows obtaining more candidates from the language model, thus
the improvement on recall. Overall, triple validation using RTE improves over
the LM baseline with a margin ranging between 4.7 and 5.4 F1 points and re-
search question Q1 is therefore satisfactorily addressed.

Table 1: Object prediction using pretrained models vs. such models additionally
trained in different scenarios. The models include the LM from where we get objects
and the entailment model that we use for triple validation. The SATORI versions eval-
uated include three sources of candidate objects (Language Model LM, Knowledge
Graph KG, Named Entities NER) and three entailment models (DeBERTa xs, BERT
large, DeBERTa xl).

SATORI Pretrained
Training Data

5% 10% 20% 100%

RTE Model Obj. Source P R F P R F P R F P R F P R F

DeBERTa xs LM 83.6 48.6 47.9 80.5 51.7 47.9 81.9 51.5 48.4 84.1 51.3 50.3 91.3 44.7 46.8
BERT large LM 82.1 49.9 48.6 79.9 52.2 48.1 81.7 51.8 48.7 84.8 51.2 50.6 89.3 46.0 47.1
DeBERTa xl LM 83.0 49.5 48.5 82.4 51.9 48.5 84.3 52.1 50.1 87.0 52.0 51.4 91.1 47.8 48.4
DeBERTa xs KG+NER 67.7 61.8 55.2 67.0 60.9 52.1 69.5 60.1 52.6 71.0 60.8 53.8 73.5 60.4 54.7
BERT large KG+NER 67.0 62.9 55.2 68.2 61.8 52.2 70.0 61.1 52.9 69.9 63.0 54.9 66.9 64.8 55.1
DeBERTa xl KG+NER 70.0 62.5 55.9 71.4 62.2 54.9 72.6 62.3 55.1 70.7 63.6 56.5 68.3 64.0 54.8
DeBERTa xs LM+KG+NER 66.6 62.0 54.4 65.4 61.2 51.5 67.1 60.8 51.8 69.1 61.5 53.4 73.3 60.5 54.6
BERT large LM+KG+NER 64.5 63.2 54.7 65.7 62.6 51.5 68.2 61.6 52.7 68.6 63.5 54.8 67.2 65.1 55.7
DeBERTa xl LM+KG+NER 63.5 64.3 53.9 69.4 62.6 54.2 70.6 63.1 54.8 69.5 64.2 56.5 70.0 64.3 56.6

LM-baseline 68.1 46.7 43.2 59.9 50.8 43.3 63.6 49.0 44.3 67.2 49.6 46.9 52.2 48.1 41.4
QA-baseline 67.1 42.3 40.9 54.1 45.2 38.5 57.9 45.4 40.6 57.6 46.5 41.7 57.4 52.7 47.3
RE-baseline 85.5 33.3 31.8 83.8 41.8 40.6 81.3 43.0 42.0 78.6 44.7 43.2 70.0 54.9 48.2

5.2 Additional pretraining and fine-tuning scenarios

To address research question Q2 (how do further pretraining the language model
and fine-tuning for entailment-based triple validation under different data regimes
impact object prediction?) we analyse evaluation results when models are further
trained. In Fig. 2c we can see that triple validation using any RTE model im-
proves F1 across all training scenarios compared to LM baseline. Interestingly
the LM baseline F1 is lower in full training than the pretrained version and
the other low data training regimes. Pending further experimentation, this can
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indicate a case of catastrophic forgetting [28, 15, 38], where, upon further pre-
training, language models might lose some of the (in this case, factual) knowledge
previously acquired during pretraining.

(a) Precision: LM baseline and SATORI
using different RTE models and objects
from LM.

(b) Recall: LM baseline and SATORI us-
ing different RTE models and objects
from LM.

(c) F1: LM baseline and SATORI using
different RTE models and objects from
LM

(d) F1: best SATORI getting objects
from LM, vs. using other knowledge
sources and the QA and RE baselines.

Fig. 2: Object prediction evaluation on the LM KBC22 dataset.

The more training data available, the more precise the predicted objects
using triple validation are (see Fig. 2a). Triple validation also improves recall,
although in a narrower margin, across most training scenarios except in full
training (see Fig. 2b). Nevertheless, the use of more training data does not imply
an improvement in recall for SATORI. Such recall pattern reflects the higher



Textual Entailment for Effective Triple Validation in Object Prediction 15

precision the system achieves when more training data is used. That is, the triple
validation filter becomes more and more strict, thus accepting less predicted
objects. In low data regimes (5% of the training data) the LM baseline precision
decreases compared to results achieved with pretrained models. However, the
precision using triple validation does not fall at the same rate. This shows that
the triple validation component is effective in low data regimes to filter out non
relevant predicted objects.

5.3 Language models vs structured knowledge sources and
information extraction methods

To answer research question Q3 (how do language models compare to other
potential sources of structured knowledge, as well as to methods based on ex-
tracting information from text, for the generation of candidate triples?) we first
start comparing the evaluation results of LM baseline and the QA and RE base-
lines, which in addition leverage text passages. Table 1 shows that in pretrained
and most training regimes, except in full training, the QA and RE baselines
achieve worse F1 than retrieving objects from the language models. Neverthe-
less, in a full training scenario the QA and RE baselines achieve an F1 score that
is higher than the one obtained with LM baseline and similar to the one that we
obtained with SATORI, using triple validation (see Fig. 2d). Therefore, when
enough training data is available extractive methods relying on state-of-the art
QA and Relation Extraction are better for object prediction than relying only
on LM as source of objects, and comparable to using triple validation to curate
candidate objects retrieved from a LM.

Nevertheless, the best performance in object prediction is achieved when we
use KG and NER as source of candidate objects along with triple validation (see
Fig. 2d). Using KG and NER plus triple validation is the best option for object
prediction in low data training regimes (5%, 10% and 20%). Enhancing the
list of candidate objects from KG and NER including objects from LM slightly
enhances F1 in full training. Manual inspection shows that in full training, the
number of candidate objects obtained from the LM is 794, from the KG it is 2338
and from NER it is 3506. While the number of objects from LM is lower due to
the thresholds on the LM score and filters, such objects contribute to slightly
increase the overall performance when combined with objects from KG and NER.
The large number of objects obtained from KG+NER and the evaluation results
shows that triple validation is effective to filter out non-relevant objects. In fact,
if we remove the triple validation component and use objects from LM, NER
and KG in the full training scenario we get 0.276 precision, 0.761 recall, and
0.327 F1. Such training scenario without triple validation is even worse than the
LM baseline in terms of F1.

6 Conclusions

In this paper we posit that object prediction relying on prompting language
models can be enhanced through triple validation using textual entailment. Our
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experiments show that triple validation provides a boost in object prediction
performance using pretrained models and when such models are further fine-
tuned under different training regimes. In addition, we compare language models
with other sources of knowledge including existing knowledge graphs and relevant
text passages where techniques such as named entity recognition NER, question
answering QA and relation extraction RE can be applied for object prediction.

We find that in low data regimes, getting objects using language model
prompting with or without triple validation is better than using extractive QA
and RE models. However in full training the performance of the QA and RE
models surpass language model prompting and reach the performance achieved
when we validate the triples proposed by the language model. Moreover, using
existing knowledge graphs and NER on text passages as source of candidate
objects along with triple validation shows the overall best performance when
pretrained models and models fine-tuned in low data regimes are evaluated.
Adding candidate objects from language models to the ones found on KG and
using NER is the best option in full training.

The results presented in this paper are limited to the language model that we
use, particularly BERT large, as primary source of candidate objects. Further
research is needed to understand whether triple validation will continue having
a positive effect in the object prediction task using a language model with a
larger number of parameters and if this could balance the current gap between
LMs and KGs when it comes to proposing candidate objects that we identified
here. As future work, we think Entailment Graphs [17, 10] could be useful to
get better per-relation templates or to improve the entailment model used in
triple validation. In addition, we plan to assess how triple classification [20]
compares to textual entailment for triple validation, and whether fact checking
techniques [13] applied to triple validation brings new improvements. Finally,
another research avenue is to use triple validation along with the QA and RE
models given the good results that we obtained in full training when we use
them for object prediction.

Supplemental Material Statement: All necessary resources to reproduce the ex-
periments presented in section 5 are available in Github.20 The repository in-
cludes code, templates and text passages that we use as premises in triple vali-
dation, and as input in the QA and RE baselines.
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20 https://github.com/expertailab/Textual-Entailment-for-Effective-Triple-
Validation-in-Object-Prediction
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