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Abstract. The event detection (ED) task aims to extract structured
event information from unstructured text. Recent works in ED rely heav-
ily on annotated training data and often lack the ability to construct
semantic knowledge, leading to a significant dependence on resource. In
this paper, we propose a hierarchy-aware model called HAEE by con-
structing event graph embeddings. We utilize two relations (cause and
subevent) to help model events on two dimensions of polar coordinates,
so as to distinguish events and establish event-event relations. Specifi-
cally, events under the cause relation are constructed at the same level
of the hierarchy through rotation, while events under the subevent rela-
tion are constructed at different levels of the hierarchy through modulus.
In this way, coexistence and interactions between relations in time and
space can be fully utilized to enhance event representation and allow
the knowledge to flow into the low-resource samples. The experiments
show that HAEE has high performance in low-resource ED task, and the
analysis of different dimensions of embeddings proves that HAEE can
effectively model the semantic hierarchies in the event graph.

Keywords: Event detection · Low resource · Hierarchy-aware · Event
graph.

1 Introduction

Event detection [14] (ED) is an important task in natural language processing,
as it aims to extract structured event information from unstructured text to
support downstream tasks such as question answering systems [12,2], information
retrieval [33,11], knowledge graph construction [28,1] and so on. For example,
in the sentence “Stewart’s first marriage to Alana Hamilton lasted about five
years.”, the event detection task requires identifying the event type “marry”
where the word “marriage” triggers the event.

There are two major challenges in practical applications of ED. One such
challenge is the problem of data scarcity [4]. ED requires a large amount of
labeled data to train models. However, in real-world scenarios, some event types
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have limited samples, which can hinder models from effectively extracting event
information. Therefore, there is a need to explore techniques that can facilitate
learning knowledge from limited or even absent data.

On the other hand, learning existing knowledge is no longer a difficult prob-
lem due to the development of large-scale language models. Instead, constructing
knowledge with semantic features is a more challenging problem [34]. Training
models to capture profound semantic associations and extract potential informa-
tion can enhance ED model performance. Therefore, it is necessary to investigate
hierarchy-aware approaches for ED task.

Using more abstract event relations as an extra knowledge is a promising
direction in low-resource ED scenarios. By learning event-event relations, it can
provide a higher-level understanding of events that can be used to build better
event representations and guide ED models. OntoED [5] is a classic and impor-
tant model that formulates ED as an event ontology population task. By in-
troducing three types of relations (temporal, cause, and subevent), it establishes
associations between events to let the information flow into the low-resource
events. To some extent, it addresses the problem of data scarcity. However, On-
toED still has some limitations. Event relations can coexist and interact simul-
taneously in time and space, but 1) OntoED only considers and calculates each
relation separately without discussing whether there are interactions between
them. Additionally, 2) OntoED only involves one level of subevent without con-
sidering whether it has multi-level feature, which may result in the loss of relation
knowledge.

Fig. 1: Event graph with cause and subevent, potential relations are invisible in
the knowledge set, but are real and can be mined. Color zones indicate events
that are in the same time and space and are related through subevent.

To tackle these problems, we build a knowledge set with the cause and
subevent relations and consider their characteristics of correlation. We do not
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consider temporal because it is relatively weak in terms of logical correlation. As
illustrated in Figure 1, Cause (e.g., Attack

cause−−−→ Death) means head events lead

to the occurrence of tail events, and subevent (e.g., Attack
subevent−−−−−−→ Destroying)

indicates that child events are components of parent events, note that it can be
a multi-level relation due to the transitivity of subevent. By modeling both cause
and subevent together, we can observe the coexistence and interaction between
relations: Events occurring in the same time and space may have an effect on
events that occur in another time and space. Building cause-subevent relations
not only makes the correlation closer but also helps to explore potential connec-
tions between events.

In this paper, we propose a novel hierarchy-aware model called HAEE
(Hierarchy-Aware with Event graph Embedding) by combining cause-subevent
relations and event graph embeddings. HAEE is expected to distinguish events
and establish event-event relations by rotation and modulus, which operate at
the same level and different levels of the hierarchy, respectively. For cause, we
adopt a rotation-based approach [23] in which the event pairs are set at op-
posite positions on the circle. For subevent, we adopt a contrastive learning
approach [20] where the distance between child events is as close as possible
compare to the distance from child events to their parents. We perform convolu-
tion operations on embeddings to enhance the representation of events. In this
way, further and hierarchical relation knowledge between events can be learned.
We calculate multiple loss functions using Uncertainty to Weigh Losses [9] to
obtain the final loss, which helps us balance the importance of each loss in the
final ED task.

Applying these ideas, HAEE can start from a tiny amount of labeled samples
and gradually discover more and more potential knowledge contained in event

graph (e.g., Destroying
relation−−−−−→ Death), thereby improving the performance

of low-resource ED task. The experiments demonstrate that HAEE outperforms
existing models in data-scarce scenarios. To further analyze the effectiveness of
our model, we conduct a module-wise analysis that examines each component
of the model and its contribution to the overall performance. We find that our
model has good modeling and semantic hierarchies on event embeddings, which
is a key factor in accurately extracting events from text.

In summary, our contributions are as follows:

– We propose a novel hiearchy-aware model called HAEE. By constructing
the knowledge set with cause and subevent, it can discover more potential
information and allow the knowledge to flow into the low-resource events to
solve the problem of ED in low-resource scenarios.

– To fully utilize coexistence and interactions between relations in time and
space, we leverage cause-subevent relations by learning event embedding in
the polar coordinates, which lead to a hierarchical event graph on dimensions
of rotation and modulus.

– The experiments demonstrate that HAEE can achieve better performance
in low-resource ED task. We conduct a module-wise analysis that examines
each component of the model and its contribution to the overall performance,
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showing that our model has good modeling and semantic hierarchies on event
graph.

2 Related Work

In low-resource scenarios, exploiting stronger models and data augmentation
are two main directions to improve the ED task [4]. Exploiting stronger models
is to design a model that can improve its learning ability, thereby making full
use of a small amount of samples and reducing its dependence on data. Data
augmentation is expected to enhance the quality of samples as well as contribute
more semantic representations.

Compare to traditional machine learning methods that have difficulty han-
dling complex event structures and semantic relations, most recent ED works are
based on neural networks [16,18], which can automatically learning useful fea-
tures from data. DMCNN [3] is designed with a vocabulary expression model for
capturing sentence-level clues by extracting lexical and sentence-level features us-
ing CNNs. Nguyen et al. [19] propose an improved non-continuous CNN that uses
a joint-based paradigm to learn potential feature representations. JRNN [21] is
presented with a bidirectional RNNs to link grammar-related vocabulary without
using vocabulary itself. Feng et al. [8] use LSTM’s long-term memory to capture
text sequence information at the document level. However, both RNN-based and
CNN-based models only consider the semantic information of individual samples
without considering their relations with other samples. The powerful text learn-
ing ability enables the pre-training models [31,36] to win a widely attention and
achieve a rapid development. ED tasks have shifted from constructing lexical
representations for identifying triggers to representing samples as a whole. For
example, CLEVE [27] is designed with a contrastive learning method based on
pre-training frameworks that makes full use of event knowledge in large amounts
of unsupervised data to construct semantic structures. While these techniques
have shown promise, they encounter obstacles such as the requirement for sig-
nificant quantities of annotated data and the inability to explore more suitable
strategies for learning with limited data.

Another research direction to improve model performance is through data
augmentation [17]. PathLM [13] provides an event pattern representation seman-
tic framework that connects events together through multiple paths. OntoED [5]
uses an ontology-based event construction method to enhance data by introduc-
ing multiple event relations. K-HPN [6] embeds cause into a knowledge-aware
hypersphere prototype network. Ye et al. [32] use external knowledge graphs to
transform structured knowledge into text to address the problem of knowledge
scarcity. However, these techniques have primarily focused on enhancing samples
at a local level, without improving sample quality from a higher-level perspec-
tive. Recent works [35,30] on entity graphs provide the possibility of constructing
event knowledge in a higher-dimensional space. By doing so, it may facilitate the
investigation of events from a more abstract and holistic perspective.
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3 Methodology

In this section, we formally present the proposed model HAEE.We first introduce
a) Event Detection as the main task of our model. Afterwards, we introduce b)
Graph Embedding including rotation and modulus part for hierarchy-aware event
graph modeling. Finally, we introduce c) Embedding Convolution and d) Loss
Function to complete the rest of our model.

3.1 Problem Formulation

For an ED task, the given input includes a sample set T = {Xi|i = 1, . . . , N}
and an event type set E = {ei|i = 1, . . . ,M}. Each sample Xi in T is a token
sequence {x1

i , . . . , x
L
i } with trigger xk

i , where L is the maximum length of the
sequence, and k is the position of the trigger in the sequence. The event type
set E consists of different event types e, and each Xi belongs to an event type
label ei. The goal of the event detection task is to predict the event type label
corresponding to each sample.

Event relation refer to the higher-level knowledge and more abstract con-
nections between events. The relation set R includes the cause set Rc and the
subevent set Rs. The cause set Rc includes cause rcause and caused by rcausedby,
while the subevent set Rs includes subevent rsubevent and superevent rsuperevent.

Based on the event type set E and the relation set R, the knowledge set
K about events and relations is constructed, consisting of triples (eh, r, et) ∈
E × R × E , where eh and et respectively refer to the head event and tail event
under the relation r.

3.2 Model Overview

In this paper, we propose a general model called HAEE with three modules: event
detection, graph embedding and embedding convolution. The key information
for each module is shown in Fig. 2. Graph embedding contains rotation part and
modulus part, and each part including event detection can be divided into three
steps: graph modeling, score mapping, and loss calculation.

For event detection, we obtain the contextual representation of the sample
from BERT and calculate the probability between sample and its event to form
the event detection loss.

For graph embedding, we model event embeddings in the polar coordinates,
find events that are in the cause or subevent relation with the query event from
the knowledge set and calculate corresponding distance scores to form the loss
function.

For embedding convolution, we convolve distant events in a certain weight
to learn further and hierarchical relation knowledge.
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Fig. 2: Detailed example for the process of HAEE. Green zone represent the event
detection. Yellow zone represent the rotation part in graph embedding. Blue
zone represent the modulus part in graph embedding. Each space contains three
steps: Step 1 (Graph Modeling) form sample representation and model event
embedding to graph. Step 2 (Score Mapping) calculate event probability,
rotation distance and modulus distance. Step 3 (Loss Calculation) form three
loss functions and combine them to obtain the final loss.

3.3 Event Detection

To obtain the representation of each Xi, We use a pre-trained BERT model [7].
Specifically, we take the average of the word embeddings from the first and last
layers of BERT’s transformer to form the sentence representation. This approach
maximally preserves semantic information for words and sentences in original
samples, ultimately enhancing event representation [29,22].

We share the same formula to that of OntoED [5] for the calculation of event
probability. For a given token sequence Xi, the probability of it belonging to
event type ek is

P (y = ek) =
exp(−||Xi − vk||)∑|E|
j=1 exp(−||Xi − vj ||)

, (1)

and the event detection loss is

Le = −
|E|∑
k=1

ylogP (y = eq). (2)

where eq is the ground-truth label for Xi.
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3.4 Graph Embedding

Based on the characteristics of cause and subevent, we choose two dimensions
of polar coordinates to model them. Polar coordinates [35] is a position system
in a two-dimensional space, consisting of rotation and modulus. By determining
the rotation and modulus of a point, we can determine its position in the two-
dimensional space.

To map event type to polar coordinates, we divide the embedding v of an
event type e into rotation embedding vr, modulus embedding vm, and confuse
embedding vmix of equal size. The addition of the confuse embedding is to syn-
thesize the characteristics of both dimensions and enhance the generalization
ability of event representation. Specifically, we map [vr,vmix] to the rotation as
the cause representation and [vm,vmix] to the modulus as the subevent repre-
sentation. This modeling approach enhances interactions between two relations,
helps discover potential relations between events, and ultimately enhances the
model’s semantic understanding ability.

Rotation Part Cause refer to the occurrence of head events leading to the
occurrence of tail events, indicating a obvious cause between them. Through the
cause set Rc, we model events on the rotation of polar coordinates. Specifically,
to represent cause between two events, we learn their opposite positions on the
circle.

Given a query event e and cause rc, we find all events ec in the knowledge
set K that satisfy (e, rc, ec) to form an event type set Ec. For embeddings v and
vc of event types e and ec, respectively, we have

(v − vc)mod 2π = π, (3)

where v,vc ∈ [0, 2π). We define the distance between events as

D(eh, et) = ∥sin((vh − vt + π)/2)∥1 . (4)

The rotation loss [23] is then defined as

Lr =
∑
ec∈Ec

−logσ(λ−D(e, ec)), (5)

where σ(·) represents the sigmoid function and λ is a fixed threshold under
rotation.

Modulus Part Subevent means head events contain tail events in time and
space, where tail events are components of head events. For the subevent set
Rs, we assume that subevent have multi-level feature, meaning that events at
the same level should have similar properties, while there is a certain distance be-
tween events and their parents. The subevent has transitivity, i.e., (a, r, b), (b, r, c),
then(a, r, c). We model this on the modulus of polar coordinates to represent
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events level. To achieve this goal, we use contrastive learning [20] to make events
at the same level closer and events at different levels farther apart.

Given a query event e and subevent rs, we find all events es in the knowledge
set K that satisfy (e, rs, es) to form an event type set Es. We define the different-
level event pairs set Pd = {(e, ei)|ei ∈ Es} and the same-level event pairs set
Ps = {(ei, ej)|ei, ej ∈ Es, i ̸= j}. The distance between events as

D(eh, et) = ∥vh − vt∥2 . (6)

Then the modulus loss is defined as

Lm =
∑

(e,ei)∈Pd

∑
(ei,ej)∈Ps

max(D(e, ei)−D(ei, ej) + γ, 0). (7)

where γ represents an interval threshold under modulus.

3.5 Embedding Convolution

For an event relation chain (a, r, b), (b, r, c) ∈ K, and (a, r, c) /∈ K, the event c
may play a role in learning the relation (a, r, b) for the event a. To enhance the
representation of events, obtain further and hierarchical knowledge in relation
learning, given a query event e, a relation r, and the event relation knowledge
(e, r, er), we find all events e∗ in the knowledge set K that satisfy (er, r, e

∗) to
form an event set E∗. We then calculate embedding of er as

v = αv + (1− α)
1

|E∗|
∑

e∗∈E∗

v∗, (8)

where v∗ is a embedding of e∗ and α ∈ [0, 1] is the weight for distant events.
Through this approach, when calculating relations between events e and er, more
knowledge can be learned.

3.6 Loss Function

For each event that undergoes relation calculation, its relation distribution may
not be uniform, resulting in some events having many relations while others have
few. To balance three losses, we introduce the Uncertainty to Weigh Losses multi-
task optimization strategy [9]. By introducing weight coefficients into losses and
adjusting their weights based on the prediction uncertainty of different module,
we can express the final loss function as

L =
1

2σ2
1

Le +
1

2σ2
2

Lr +
1

2σ2
3

Lm + logσ1σ2σ3, (9)

where σ1, σ2, σ3 are learnable parameters.
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4 Experiments

In this section, we first introduce two datasets (OntoEvent and MAVEN-Few)
and the baseline methods. Then we report the experimental results on ED task
in different scenarios including a) Overall Evaluation and b) Low-resource Eval-
uation.

4.1 Datasets

Two datasets are used for the model evaluation: the OntoEvent dataset and the
selected MAVEN-ERE dataset, called MAVEN-Few. Both of these datasets are
composed of English samples. OntoEvent [5] is an event dataset with event rela-
tions, used to demonstrate that introducing ontology helps with event detection.
MAVEN-ERE [24] is a unified large-scale dataset for event relation detection
based on the original MAVEN [26] dataset, containing a large number of event
types and their relations. To facilitate comparison with OntoED, we select event
types from MAVEN-ERE that exist in OntoEvent, which has 71 event types, and
their corresponding samples to conduct MAVEN-Few dataset for the evaluation.
For the construction of knowledge set, we selected all involved events relations
from MAVEN-ERE, which has 277 cause and 83 subevent for experiment. Com-
pared to OntoEvent’s 9 cause and no multi-level subevent involved, relations in
MAVEN-Few are richer and it may be much more easier to mine more potential
associations between events. In this paper, we will use these two datasets and
the knowledge set to evaluate the performance of HAEE.

Table 1: Statistics of OntoEvent and MAVEN-Few datasets. (Doc: document,
Train: training set, Valid: validation set, Test: test set, Class: event types, Caus-
Rel: cause relations, Sub-Rel: muti-level subevent relations.)

Dataset #Doc #Train #Valid #Test #Class #Caus-Rel #Sub-Rel

OntoEvent [5] 4115 48436 6055 6055 100 9 -
MAVEN-Few - 4416 552 551 71 277 83

4.2 Experiments Settings

We test the results of the validation set under different dimensions in {50,100,200,
500}, and finally choose 100 as the dimension of event embedding. The maximum
token sequence length of the training sample is set to 128, and a dropout ratio
of 0.2 is set to prevent overfitting. The learning rate is 1 × 103, and the initial
values of uncertainty values σ1, σ2, σ3 are set to -0.5. In terms of hyperparameter
selection, we use a grid search on the validation set. Specifically, convolution
weight α ∈ [0.2, 0.8] with a step size of 0.2, rotation threshold λ ∈ [0.06, 0.12]
with a step size of 0.02, and modulus threshold γ ∈ [0.06, 0.12] with a step
size of 0.02 are searched on the validation set to find optimal values for α, λ, γ,
which are ultimately set to 0.4, 0.08, and 0.08 respectively for testing purposes.
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We randomly divide dataset into training set (80%), validation set (10%), and
test set (10%), using the SGD optimizer [10] with the batch size of 42 samples
per training iteration for a total of 5000 iterations to obtain the final result.
We evaluate the performance of model with Precision, Recall and F1 Score for
sample classification to the correct event label [5].

4.3 Baselines

For overall evaluation, we compare the proposed model with the following base-
line methods in ED task.

– AD-DMBERT [25] is an adversarial training model that enhances distantly
supervised event detection models and automatically constructs more diverse
and accurate training data for semi-supervised event detection models.

– OneIE [15] is a joint neural model for information extraction. It explicitly
models cross-subtask and cross-instance inter-dependencies and predicts the
result as a unified graph instead of isolated knowledge elements.

– PathLM [13] is an auto-regressive language model and is designed to induce
graph schemas that connect two event types through multiple paths involving
entities.

– OntoED [5] formulates ED as an event ontology population task, and inferred
more enriched samples and event-event relations with ontology learning.

For low-resource evaluation, we simply select OntoED [5] model for compari-
son due to its superior performance compared to other models and its utilization
of event relations as extra knowledge, similar to HAEE.

4.4 Results

Overall Evaluation From Table 2, it can be seen that on the OntoEvent
dataset, HAEE obtains a better result than other models on all three indica-
tors, such as BERT-based AD-DMBERT. This indicates the effectiveness of the
HAEE framework built on BERT, which can better establish the connection
between events. It also has a better performance than graph-based OneIE and
PathLM, which only convert sentences into instance graphs and ignore potential
relations between events. For ontology-based OntoED, it only explains event re-
lations at the semantic level without considering whether there are interactions
between relations and has weak modeling of cause and subevent. It is due to the
comprehensive consideration of both cause and subevent between events and the
implicit associations in the whole event graph in HAEE.

Low-resource Evaluation In low-resource scenarios, HAEE still maintains
better performance. From Table 3, it can be seen that when the training samples
of the OntoEvent dataset are reduced to 50%, OntoED’s F1 score drops by 6.5%
while HAEE only drops by 1.3%. When the training set is reduced to 25%,
OntoED’s F1 score drops by 16% while HAEE only drops by 2.4%. Even when
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Table 2: Evaluation of event detection with overall OntoEvent dataset. †: results
are produced with codes referred to Deng et al.[5]; ‡: results are produced with
official implementation.

Model Precision Recall F1 Score

AD-DMBERT† [25] 0.6735 0.7346 0.7189

OneIE† [15] 0.7194 0.6852 0.7177

PathLM† [13] 0.7351 0.6874 0.7283

OntoED‡ [5] 0.7756 0.7844 0.78

HAEE 0.8882 0.8868 0.8875

the training set is reduced to 10%, HAEE only drops by 7.6%, with an F1 score of
0.831, which is much higher than OntoED’s F1 score of 0.78 on the full training
set.

Table 3: F1 Score of event detection on different ratios of OntoEvent and
MAVEN-Few training data.

Model
OntoEvent MAVEN-Few
Full 50% 25% 10% Full 50% 25% 10%

OntoED [5] 0.78 0.7154 0.6198 0.4989 0.7725 0.6034 0.5195 0.2534
HAEE 0.8875 0.8747 0.8634 0.831 0.8722 0.8577 0.8165 0.5993

In the low-resource MAVEN-Few dataset, HAEE still performs well. The F1
values in each scenario are higher than those of OntoED. In terms of model
stability, OntoED has already shown a significant decline when the training set
is reduced to 50%, while for HAEE, when the training set is reduced to 50% and
25%, F1 only decreases by 2.5% and 5.6%, respectively. Only when it is reduced
to 10%, does F1 show a significant decrease of 27%. However, compared with
OntoED, HAEE still has a significant advantage at this point as its F1 value at
a data ratio of 25% is higher than that of OntoED on the full dataset by 4.4%.

It can be seen that HAEE can maintain great and stable performance in low-
resource scenarios while OntoED relies solely on semantic relations, which means
that explicit event relations are not enough to support event representation in
low-resource scenarios due to not considering implicit interactions between rela-
tions. Owing to modeling events in graph, HAEE can fully utilize event relations
to enhance event representation in low-resource scenarios, thereby helping the
model perform better in event detection task and enhancing its robustness.

5 Analysis

In this section, we analysis the semantic hierarchies and performance of HAEE
from different perspectives including a) Cause Representation, b) Subevent Rep-
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resentation and c) Ablation Studies. We also provide possible explanations for
our findings.

5.1 Cause Representation

(a) 100 dimension.

(b) 500 dimension.

Fig. 3: Rotation distance density of two events (Arrest and Attack) in different
embedding dimensions. Blue lines represent distance to other events. Red lines
represent distance to blank control group.

Due to complex one-to-many and many-to-one cause, event pairs in relation
may not fully reflect opposite position in polar coordinates modeling. To study
the effect of cause representation on rotation, we select two events, Attack and
Arrest, to calculate their cause distance density to other events and set up 30
blank events as a control group. The blank events are only established during
model initialization and do not participate in relation calculations. By comparing
the distance to other events and the distance to the blank group, it can not
only reflect the effect of cause calculation on events but also reflect the cause
information of events themselves based on the blank control group.

Fig. 3 shows the cause distance density of Attack and Arrest at 100 and 500
dimensions. It can be seen that as the dimension increases, the variance of blank
control group tends to be more similar, indicating that cause representation
becomes more stable, while event cause features become more prominent, means
the distinction between events becomes obvious. This proves that the model does
have an effect on modeling cause.
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To further analyze the semantic hierarchy of cause representation, we select
20 positive events and 20 negative events from 100 events, as well as the afore-
mentioned 30 blank control events, to form their respective event groups. We
calculate the average distance from each event to the positive group, negative
group, and blank control group and test the model’s clustering effect on positive
and negative events in cause modeling.

Table 4: The average rotation distance from each event to different groups. (p.g:
positive group, b.g: blank control group, n.g:negative group. The bold numbers
represent groups with a greater distance.)

Positive Events
Distance

Negative Events
Distance

p.g b.g n.g p.g b.g n.g

come together 0.45 0.55 0.59 destroying 0.34 0.23 0.24
elect 0.34 0.42 0.47 kidnapping 0.30 0.22 0.23
committing crime 0.19 0.21 0.28 violence 0.28 0.21 0.22
employment 0.19 0.19 0.23 theft 0.45 0.32 0.33
award 0.27 0.20 0.21 robbery 0.18 0.19 0.24
arriving 0.31 0.38 0.44 hostile encounter 0.18 0.20 0.26
contact 0.51 0.36 0.35 killing 0.23 0.29 0.37
recovering 0.21 0.19 0.22 terrorism 0.28 0.37 0.45
commerce sell 0.28 0.34 0.40 conquering 0.26 0.20 0.22
exchange 0.19 0.20 0.26 arrest 0.19 0.19 0.23
marry 0.37 0.46 0.51 divorce 0.18 0.19 0.25
cure 0.25 0.30 0.37 bodily harm 0.38 0.23 0.25
breathing 0.18 0.20 0.25 military operation 0.26 0.20 0.22
communication 0.20 0.19 0.22 catastrophe 0.19 0.19 0.23
education teaching 0.18 0.19 0.24 prison 0.58 0.47 0.46
traveling 0.19 0.21 0.28 use firearm 0.72 0.60 0.59
resolve problem 0.20 0.19 0.22 confronting problem 0.35 0.23 0.25
be born 0.24 0.20 0.21 death 0.41 0.53 0.60
placing 0.19 0.20 0.24 damaging 0.27 0.36 0.44
sending 0.57 0.42 0.40 revenge 0.36 0.24 0.26

From the Table 4, it can be seen that positive events have a more unified
clustering tendency, with 16 positive events tending to be far from negative
events, and only 4 positive events showing the opposite result. This means that if
an event shows obvious positivity, the model’s accuracy in predicting the polarity
of the event can reach up to 80%. For negative events, the clustering tendency
is not particularly obvious, but it can be observed from the data in the table
that compared with the blank control group, the clustering effect of events is
significant. This means that the farther away an event’s cause distance is from
negative events, the more obvious its unified positivity or negativity is.

Compared with distant event groups, close event groups do not have partic-
ularly distinction from blank control group, but for some specific events, they
can also effectively distinguish close groups. For example, Death has a distance
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difference of 0.12 between close group and blank group while that of only 0.07
between distant group and blank group.

Cause representation calculated through rotation can cluster event polar-
ity. One possible explanation for this phenomenon is that cause representation
carry subevent information through confuse embedding, and subevent have ob-
vious clustering effects on events of the same type through learning distant re-
lation of events. On the other hand, learning through a large number of samples
also affects event representation. This ultimately leads to cause having polarity
clustering effects as well. This means that the model can fully combine the char-
acteristics of cause-subevent relations and event samples to enhance event rep-
resentation, ultimately enhance semantic understanding of events by the model.

5.2 Subevent Representation

(a) 100 dimension.

(b) 500 dimension.

Fig. 4: Modulus distance of two event pairs (Death, Use firearm) and (Death,
Hostile encounter) in different embedding dimensions. Note that the modulus
in 100 dimension does not start from 0.

To demonstrate the hierarchy of subevent representation, we model other
events based on the modulus of Attack. Specifically, we calculate the subevent
distance between Attack and other events as the modulus of each event, while
compressing the rotation to better demonstrate the effect of representation mod-
eling. We select three events for graph embedding mapping: Death, Use firearm
and Hostile encounter. It should be noted that Death and the other two events
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do not have a direct subevent in the knowledge set and can only indirectly reflect
their subevent through Attack.

As shown in Fig. 4, in different dimensions, it can be seen that Death has a
clear hierarchical distinction from the other two events. This proves that through
cause information in confuse embedding, model can utilize cause to learn more
event knowledge in subevent and ultimately enhance event representation.

5.3 Ablation Studies

To study the effect of each module on the model, we remove modulus part,
rotation part, and use only the basic architecture of the model for testing in dif-
ferent resource scenarios on the OntoEvent [5] dataset. As shown in the Table 5,
when there is sufficient data, the improvement of modules on accuracy is not
significant. This may be because the sample set itself already contains enough
information, which makes it difficult to demonstrate the effects of rotation and
modulus. However, when resources are limited, combining rotation and modulus
can effectively improve F1 score. It can be observed that under extremely low-
resource conditions (10%), using only rotation can increase F1 score by 2.2%
compared to not using graph embedding at all. But if we combine rotation and
modulus, it can increase F1 score by 7.3%. Also, it can be observed that modulus
provides more gain when there is sufficient data, while rotation provides more
gain under low-resource conditions. By combining rotation and modulus, HAEE
can fully utilize the relations between events to enhance representation.

Table 5: Effect of different modules of HAEE in low-resource scenarios. (rot:
rotation part, mod: modulus part.)

Model Full 50% 25% 10%

HAEE 0.8875 0.8747 0.8634 0.831
HAEE w/o mod 0.8696 0.8593 0.8477 0.7808
HAEE w/o rot 0.8801 0.8641 0.8495 0.7578
HAEE w/o mod & rot 0.8741 0.8637 0.8474 0.7579

6 Conclusions and Future Work

This paper proposes a new hierarchy-aware model HAEE, which establishes
cause-subevent relations by rotation and modulus, and maps event embeddings
to polar coordinates to enhance event representation. To learn further and hi-
erarchical relation knowledge, we convolve distant events together. We combine
three loss functions by balance the importance of each loss in the final ED task.
Through experiments, we demonstrate that HAEE has high performance under
low-resource conditions, and analyze the modeling effects of each module, prov-
ing that the model has good modeling and semantic effects on event graph. In
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the future, we intend to enhance our work by more event relations and more
complicated structures, and extend it to other information extraction tasks.

Supplemental Material Statement: Source code for HAEE and the MAVEN-
Few dataset is available from Github at https://github.com/cdmelon/HAEE.
Source code for OntoED and the OntoEvent dataset is available from Github at
https://github.com/231sm/Reasoning In EE.
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