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Abstract. We propose a set of optimizations that can be applied to a given
SPARQL query, and that guarantee that the optimized query has the same answers
under bag semantics as the original query, provided that the queried RDF graph
validates certain SHACL constraints. Our optimizations exploit the relationship
between graph patterns in the SPARQL queries and the SHACL constraints that
describe those patterns in the RDF graph. We prove the correctness of these opti-
mizations and show how they can be propagated to larger queries while preserving
answers. Further, we prove the confluence of rewritings that employ these opti-
mizations, guaranteeing convergence to the same optimized query regardless of
the rewriting order.

1 Introduction

The Resource Description Framework (RDF) [37] has seen increasing adoption in recent
years, prompting the W3C standardization of the SPARQL [46,24] query language
for RDF. Since the W3C standardization in 2008, SPARQL has been recognised as
a key technology for the Semantic Web and the current version SPARQL 1.1 [24] is
well-adopted in both academia and industries, e.g., query engines for AllegroGraph [22],
Apache Jena [16], Sesame [11] and OpenLink Virtuoso [21].

The RDF model, as an abstract knowledge representation, doesn’t explicitly dis-
tinguish between data and metadata, such as schema and constraints. To address this,
the W3C has recommended the SHACL [32] constraint language for RDF. SHACL
validation relies on ”shapes,” which define a set of constraints and indicate which nodes
in an RDF graph should be validated against these constraints. Since its recommendation
in 2017, SHACL has been widely used to verify compliance of RDF datasets w.r.t.
certain policies, such as GDPR requirements [39], and to generate guarantees for data
transformation [53,54], facilitating data repairs [4] and others [40]. Additionally, a set
of SHACL constraints can function as a “schema” for RDF datasets that satisfy these
constraints, enhancing the understandability and usability of the data represented in
RDF.

However, the potential of utilizing SHACL to optimize SPARQL queries, similar to
how relational constraints optimize queries in relational databases [3], remains largely
unexplored. While hand-written SPARQL queries are often tailored to the structure of
the RDF graph being queried, queries generated by user interfaces [31,38] or query
translators [28,57] and rewriting engines [26,52,36] may contain redundant parts that are
not necessary for a specific graph. SHACL can capture information about the structure
of an RDF graph, similar to relational database constraints. As a result, triple stores
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that have built-in support for SHACL can then use this information to enforce SHACL
constraints as well as incorporate them into query processing to optimize queries. To
address this issue, we propose a set of optimizations that maintain the correctness of
query results and can be applied to a SPARQL query prior to processing, provided that
the RDF graph conforms to a specified set of SHACL shapes.

SPARQL queries consist of three main components: (a) pattern matching, which in-
cludes optional parts, unions, joins, nesting, and filtering values to find possible matches,
(b) solution modifiers, which allow for modifying matched values using operators such
as projection and distinct, and (c) output mode, which can be a boolean answer or
selections of values from variables that match the patterns, constructing new values, or
describing existing data through constraints. To optimize SPARQL queries, we focus
on those containing semantically redundant graph patterns that can be minimized or
restructured in the query definition based on SHACL descriptions of these patterns in
RDF.

The optional operator is a crucial feature in SPARQL queries, commonly used to
handle missing or unavailable information [6]. By using optional, query answers can
include available information instead of failing to give an answer when parts of the
pattern do not match. This feature is particularly important in semantic web applications,
where partial knowledge about data is often assumed. However, optional is also a source
of complexity in query answering, as it is PSPACE-hard for optional alone [43,50].
As a result, it has been actively studied [34,29] and optimized [56,15] in various query
circumstances. In this work, we focus on the Left-Join intuition applied by Xiao et
al. [56] for the treatment of optional. However, instead of relying on SQL not null
constraint information in their SPARQL-to-SQL translation, we use SHACL constraints
to reduce optional patterns to joins. We illustrate this approach using an example below.

Example 1 Consider an RDF graph on the left that validates a SHACL shape s on the
right, written in Turtle syntax:

:Ida a :Student;

:hasID "001"ˆˆxsd:int;

:hasAddress "Oslo".

:Ingrid a :Student;

:hasID "002"ˆˆxsd:int;

:hasAddress "Bergen".

:StudentNode a sh:NodeShape;

sh:targetClass :Student;

sh:property [ sh:path :hasAddress;

sh:nodeKind sh:Literal;

sh:maxCount 1; sh:minCount 1 ; ];

sh:property [ sh:path :hasID;

dash:uniqueValueForClass

:Student ; ].

The node shape, ‘:StudentNode’ declares (a) a class-based target, indicating that all
the members of Student class are target nodes, (b) cardinality path constraint requiring
all students to have exactly one address, and (c) dash:uniqueValueForClass 1 path
constraint stating that no two students can share the same id. Instances of Student
validate against the shape if they satisfy both stated constraints.

Consider an information need to retrieve the ids of students including their ad-
dresses if available, which could be expressed as the following SPARQL query Q,

SELECT ?y ?z WHERE {?x a Student . ?x :hasID ?y . Optional {?x :hasAddress ?z } } .

1 https://datashapes.org/constraints.html

https://datashapes.org/constraints.html
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Q retrieves ids of students including their addresses if possible from the graph, i.e.,
in the absence of address, ids are still retrieved with variable ?z left undefined in the
answer. Observe a scenario, where Q is to be evaluated over a graph that satisfies the
shape s. Since the shape s guarantees that for each student ?x, irrespective of their ids
?y, variable ?z will always bind to an address (i.e., will never be left unbound), the query
Q can be rewritten as follows without the Optional,

SELECT ?y ?z WHERE {?x a Student . ?x :hasID ?y . ?x :hasAddress ?z . }

Similarly, consider finding the ids of those students who have addresses, such as,

SELECT ?y WHERE {?x a Student . ?x :hasID ?y . ?x :hasAddress ?z . }

Since shape s guarantees an address ?z for every student ?x, the original query can be
rewritten as follows without changing the solutions,

SELECT ?y WHERE {?x a Student . ?x :hasID ?y . }

Consider the query SELECT DISTINCT ?y WHERE {?x a Student . ?x :hasID ?y . }. Then,
the distinct operator can be removed from the query definition since the shape s guaran-
tees a unique id ?y for every student ?x.

Our approach to optimizing joins in SPARQL is similar to that of query containment
concerning inclusion dependencies [27] in relational databases. In particular, when deal-
ing with two query patterns P1 and P2 under set (resp., bag) semantics, we can simplify
their join by reducing it to P2 if the answers to P1 are included in the answers to P2 for
any graph. To achieve this, we draw on intuitions from previous literature [49,33,13,51,9]
on join optimization. Specifically, we focus on the task of pruning join patterns that
do not affect the output of a query, resulting in reduced query execution costs. Finally,
eliminating distinct patterns can also improve query performance significantly as it can
be a bottleneck in SPARQL processing, requiring substantial resources to eliminate
duplicate rows, particularly with large datasets [7]. We remove distinct if the original
query’s result is guaranteed to be free of duplicate rows by SHACL. For instance, when
joining two triple patterns with a unique one-to-one (resp., one to at most one) relation,
applying distinct over the join may not have any effect. An example of this optimization
is illustrated in Example 1.

The rest of the paper is organized as follows: In Section 2, we review fundamental
concepts of SPARQL algebra and SHACL constraints. Query optimizations are presented
in Section 3. Section 4 contains a discussion of our results, and Section 5 concludes the
paper. Due to space constraints, the paper includes only partial proofs of the results. For
details proofs, we refer the reader to [55].

2 Preliminaries

We next recapitulate the SPARQL algebra and SHACL constraints that we deal with in
this paper.
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RDF Graph. Assume that I, B and L are countably infinite disjoint sets of Internation-
alized Resource Identifiers (IRIs), Blank nodes and Literals, respectively. The set of RDF
terms T is I∪B∪L. An RDF triple is an element 〈s, p, o〉 of (I∪B)× I×T, where s is
called the subject, p the predicate and o the object. An RDF graph G ⊆ (I ∪ B) × I × T
is a finite set of RDF triples. We assume that all RDF graphs are non-empty, which we
do not see as a limitation in practice since querying empty graphs has no use in most
applications. For simplicity, we represent RDF triples as binary relations in first-order
logic, except the triple of the form 〈s, rdf:type,C〉. We write P(s, o) (resp., C(s)) for the
RDF triple 〈s, P, o〉 (resp., 〈s, rdf:type,C〉) and P−(s, o) for the inverse of triple P(o, s).

Definition 1 The setNG of nodes of an RDF graph G is the union of sets of subjects and
objects of triples of the form 〈s, P, o〉 and subjects of triples of the form 〈s, rdf:type,C〉
in the graph, i.e., {s, o | P(s, o) ∈ G or C(s) ∈ G}.

SPARQL Algebra. We formally adopt the bag-based (rather than the set-based [43])
semantics for SPARQL as in the W3C specification [46,24] and studied in the litera-
ture [5,30].

Assume a countably infinite set V of variables disjoint from T. A triple pattern is
defined as a triple in (I∪L∪V)× (I∪V)× (I∪L∪V). We use the same notations P(x, y),
P−(x, y), C(x) for triple patterns as we do for RDF triples. A basic graph pattern (BGP)
is a finite set of triple patterns. For simplicity, we only consider project and distinct
solution modifiers and treat SPARQL query as a graph pattern P, defined by the grammar

PF B | FilterF (P) | Union(P1,P2) | Join(P1,P2) | Minus(P1,P2) |
DiffF (P1,P2) | OptF (P1,P2) | Proj L(P) | Dist(P) ,

where B is a BGP, L ⊆ V and F , called filter, is a formula constructed using the logical
connectives ∧ and ¬ from atoms of the form bound(v), (v = c), (v = v′) for v, v′ ∈ V and
c ∈ T. Let var(P) (resp., var(F )) be the set of variables occurring in a graph pattern P
(resp. filter F ). In the rest of the article, we assume that all filter constraints are safe, i.e.,
var(F ) ⊆ var(P) for every pattern FilterF (P).

Given a SPARQL query Q and graph pattern P, we write P E Q if either P is Q or
P appears in Q. Similarly, we denote by QP7→P

′

the rewriting of P E Q to graph pattern
P′ in Q, QX 7→Y the renaming of X ⊆ var(Q) to a set Y of variables in Q (i.e., renaming
ρ : X → Y s.t. ∀y ∈ Y , ∃x ∈ X and ρ(x) = y ), var(Q\P) the set of variables that occur in
Q excluding the pattern P E Q and var(Q ∪ P) := var(Q) ∪ var(P). For readability, we
also write nested Join expressions as concatenation whenever required, e.g., the graph
pattern P = Join(. . . Join(P1,P2), . . .Pn) may be written as P1P2 . . .Pn, and the Pi are
called inner graph patterns of P.

The semantics of graph patterns is defined in terms of (solution) mappings, partial
functions, µ : V → T with (possibly empty) domain domµ. Let µ|L (resp., µ|L̄) be the
restriction of mapping µ to L ⊆ V (resp. V \ L) . Two mappings µ1 and µ2 are called
compatible, denoted by µ1 ∼ µ2, if µ1(v) = µ2(v), for all v ∈ domµ1∩domµ2 , in which case
µ1 ⊕ µ2 denotes a solution mapping with domain domµ1 ∪ domµ2 s.t. µ1 ⊕ µ2 : v→ µ1(v)
for v ∈ domµ1 , and µ1 ⊕ µ2 : v → µ2(v) for v ∈ domµ2 . The truth-value F µ ∈ {>,⊥, ε}
(i.e., ε stands for “error”) of a filter F under a mapping µ is defined inductively,
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� (bound(v))µ =

{
>, if v ∈ domµ,
⊥, otherwise.

� (v = c)µ =


>, if µ(v) = c,
⊥, if µ(v) , c,

ε (error), if v < domµ,
and (v = v′)µ =


>, if µ(v) = µ(v′),
⊥, if µ(v) , µ(v′),
ε, if {v, v′} * domµ .

� (¬F )µ =


>, if F µ = ⊥,
⊥, if F µ = >,
ε, if F µ = ε,

and (F1 ∧ F2)µ =


>, if F1

µ = F2
µ = >,

⊥, if F1
µ = ⊥ or F2

µ = ⊥,
ε, if F1

µ = ε or F2
µ = ε .

The evaluation of a SPARQL graph pattern P over an RDF graph G, denoted by PG,
returns a multiset (i.e., bag) of mappings. Let |µ,PG | be the multiplicity of a mapping
µ in the multiset PG. In this sense, we also write µ ∈ PG when |µ,PG | > 0 and µ < PG

when |µ,PG | = 0. Then, the |µ,PG | is defined recursively as follows:

1. Let P be a BGP. Then, |µ,PG | = 1 for every µ if domµ = var(P) and µ(P) ⊆ G, and
0 otherwise;

2. |µ,Proj L(P)G | =
∑
µ=µ′

|L
|µ′,PG |;

3. |µ,Dist(P)G | =

{
1, if |µ,PG | > 0,
0, otherwise;

4. |µ,FilterF (P)G | =

{
|µ,PG |, if F µ = >,

0, otherwise;
5. |µ,Union(P1,P2)G | = |µ,P1

G | + |µ,P2
G |;

6. |µ1 ⊕ µ2, Join(P1,P2)G | =
∑
µ1∈P1

G , µ2∈P2
G with µ1∼µ2

|µ1,P1
G | × |µ2,P2

G |;

7. |µ,Minus(P1,P2)G | =

{
|µ,P1

G |, if ∀µ2 ∈ P2
G.(µ / µ2 or domµ ∩ domµ2 = ∅),

0, otherwise;

8. |µ,DiffF (P1,P2)G | =

{
|µ,P1

G |, if ∀µ2 ∈ P2
G.(µ / µ2 or F µ⊕µ2 , >),

0, otherwise;
9. |µ,OptF (P1,P2)G | = |µ,FilterF (Join(P1,P2))G | + |µ,DiffF (P1,P2)G | .

The support of a multiset M is the underlying set sup(M) = {µ | |µ,M| > 0}. The domain
of a multiset M of mappings is defined as domM =

⋃
µ∈M domµ. We denote by M|X̄ the

multiset of mappings µ ∈ M restricted toV \ X, i.e., |µ,M|X̄ | =
∑
µ=µ′

|X̄
|µ′,M|.

Finally, Proj and Dist operators capture the query nesting functionality, called
subqueries [30, Sect. 3], in SPARQL, which can be arbitrarily deep and may lead to a
complex layered structure. We thus adopt the simple normal form (SNF) of SPARQL
queries from [30, Defn. 3.8] that is suitable for optimizations presented in Sect. 3.

Definition 2 A SPARQL query is in SNF if it has the form Dist(Proj X(P)) with subquery-
free pattern P or the form Proj X(P), where all subquery patterns in P are of the form
Dist(Proj X′ (P′)) with P′ subquery-free.

Any SPARQL query Q can be brought into SNF by following two steps of normalisation
as illustrated below, where n ≥ i ≥ 1:

1. If Q is a query of the form Dist(Proj X(P)) s.t. P is subquery Dist(P′), then Q can
be simplified to Dist(Proj X(P′)) .



6 R. B. Thapa and M. Giese

2. If Q is a query of the form Proj X(P) s.t. P = {P1 . . . ProjY (Pi) . . .Pn}, then Q can
be simplified to Proj X(P′), where P′ = {P1 . . .Pi

W 7→W′ . . .Pn} s.t. W = (var(Pi) \
Y) ∩ var(Q \ Pi) and w′ < var(Q) for all w′ ∈ W ′.

Step 1 removes redundant Dist from inner graph pattern P′ since the outermost Dist
already guarantees a duplicate-free result. To avoid conflicts with variables outside of Pi

in Q, step 2 renames variables in inner graph pattern Pi before removing the inner Proj.
Henceforth, we assume that all SPARQL queries are in their SNF.

Example 2 Consider a SPARQL query that retrieves the name of employees and their
office addresses, such as,

Proj yz(Join(hasName(x, y),Proj xz(Join(hasOffice(x, y), hasAddress(y, z))))),

which can be brought into SNF by renaming the variable y of subquery to n, thus
removing clashes with any variables outside of the subquery, as follows,

Proj yz(hasName(x, y) hasOffice(x, n) hasAddress(n, z)) .

SHACL Constraint. We adopt the abstract syntax for the core constraints of SHACL [32]
introduced by Corman et al. [19]. In addition, we incorporate a non-standard SPARQL-
based constraint component called dash:uniqueValuesForClass. Let S, C and P be
countably infinite and mutually disjoint sets of SHACL shape, class and property names,
respectively. Each SHACL constraint is a set of conditions, usually referred to as shape,
defined as a triple 〈s, τs, φs〉 consisting of:

� name s,
� target definition τs is a SPARQL query with a single output variable, which retrieves

the target entities of s from the RDF graph G that is being validated. There are two
types of τs that we consider:
• The first type corresponds to the ‘sh:targetClass’ of the SHACL specification.

In this case, τs is a SPARQL query of the form:

“SELECT ?x WHERE ?x rdf:type/subClassOf* C ”.

• The second type corresponds to the ‘sh:targetSubjectOf’ or ‘sh:targetObjectOf’
of the SHACL specification, as shown in Example 3. In this case, τs is a SPARQL
query of the form:

“SELECT ?x WHERE ?x P ?y ” or “SELECT ?x WHERE ?y P ?x ”.

In abstract syntax, we express τs using the following grammar:

τs F C | ∃P | ∃P−

where τs being C,∃P and ∃P− represent ‘sh:targetClass C’, ‘sh:targetSubjectOf P’,
and ‘sh:targetObjectOf P’ in the SHACL specification, respectively. Given a target
expression τs, we say that n ∈ NG is a target of the shape s, written G |= τs(n), iff
∃µ ∈ τs

G s.t. n ∈ µ(var(τs)).
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� constraint definition φs, which can be represented as a boolean SPARQL query as
described in [18,17,10], indicating whether the target node under validation violates
the graph pattern defined by the φs or not. The constraint φs is an expression defined
according to the following grammar:

φs F ≥n α. β | ≤n α. β | Bτs α | α1 = α2 | φs ∧ φs

βF > | C | s′ | ¬β

where > stands for the Boolean true value, α, α1, α2 ∈ (P ∪ {P− | P ∈ P}), C ∈ C,
s′ ∈ S, ¬ stands for negation, n ∈ N, (≥n α. β) requires that there must be at least
n α-successors verifying β, (Bτs α) that the value node of α-successor must be
unique among target nodes defined by the τs, e.g., dash:uniqueValueForClass
constraint for the class-based target, and (α1 = α2) means equality of the sets of
nodes reachable via the respective properties α1 and α2. As syntactic sugar, we
write φ1 ∨ φ2 for ¬(¬φ1 ∧ ¬φ2) and =n α.φ for (≥n α.φ) ∧ (≤n α.φ). For a constraint
expression φs and a node n ∈ NG, we say that n validates against φs, written
G |= φs(n), iff n does not violate the graph pattern, aka constraints, defined by φs.
For any constraints φ and φ′, we say that φ implies φ′, rewritten φ −→ φ′, iff for all
graphs G and nodes n ∈ NG, if G |= φ(n) then G |= φ′(n).

A SHACL document is a set of SHACL shapes. An RDF graph G validates against a
shape 〈s, τs, φs〉, if G |= φs(n) for all n ∈ NG with G |= τs(n). An RDF graph G validates
against a SHACL document S, written G |= S, iff G validates against all shapes in S.

Example 3 Assume an RDF graph on the left that validates a shape with a ‘property-
based target,’ i.e., sh:targetSubjectOf :hasID, on the right written in Turtle syntax:

:Ida a :Student;

:hasID "001"ˆˆxsd:int;

:hasAddress "Oslo".

:Nora a :Student;

:hasAddress "Oslo".

:Ingrid a :Student;

:hasID "002"ˆˆxsd:int;

:hasAddress "Bergen".

:TargetSubjectShape a sh:NodeShape;

sh:targetSubjectOf :hasID;

sh:property [ sh:path :hasAddress;

sh:nodeKind sh:Literal;

sh:minCount 1; ];

sh:property [ sh:path :hasID;

dash:uniqueValueForClass

:Student ; ].

Observe that ‘Nora’ is not subject of a ‘hasID’ triple, and therefore, is not a target
node of the shape ‘TargetSubjectShape’. Since the target nodes, i.e., ‘Ida’ and

‘Ingrid’, of the shape have an address and unique ids, they validate against the shape.

3 Optimizations

The goal is to optimize a SPARQL query with respect to a SHACL document, by
identifying smaller or more efficient queries that have the same answers for all RDF
graphs that satisfy the SHACL document.

Next we will present SPARQL query optimizations that resemble SQL query rewrit-
ing using relational constraints. They only differ in how SPARQL graph patterns interact
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with SHACL constraints describing these graph patterns in the RDF graph. For instance,
when property path cardinality constraints imply that the first argument of an Opt-pattern
will always find at least one solution on the second, we can substitute Opt with a more
straightforward join operator, as shown in Lemmas 1.1, 3.1 and 6.1. In the case of
a distinct projection, with an ‘at least one’ property path cardinality constraint, we
can infer that every solution mapping from the first argument of the join expression is
guaranteed to find at least one solution on the second argument. This guarantee on the
graph patterns allows us to reduce the entire joint expression to the first argument, as
shown in Lemmas 1.2 and 3.2. In the case of an ‘exactly one’ property path cardinality
constraint, the described optimization of join patterns occurs even in the absence of
distinct projection, as shown in Lemmas 2 and 4. If all possible mappings for the
first argument of the optional pattern can find a compatible solution with the second
argument, and if the variables used in filter are limited to the first argument, then it is
possible to replace the entire optional pattern with the filter expression applied to the
first argument, as shown in Lemma 5.2, Corollaries 2.2, 4.2 and 5.2.

LetU andV be two graph patterns and S a SHACL document.

Definition 3 U ≡S V iffUG = VG for all graphs G with G |= S.

Definition 4 U ≡S,y V iff, for all graphs G with G |= S,

1. UG
|ȳ = VG

|ȳ and
2. (µ|ȳ = µ′|ȳ) −→ (µ = µ′) for all µ, µ′ ∈ UG and µ, µ′ ∈ VG.

Definition 5 U �S,y V iff sup(UG
|ȳ) = sup(VG

|ȳ) for all graphs G with G |= S.

In Theorem 1, we will prove that an ≡S equivalence is applicable to all queries, while
≡S,y is restricted to the placement of variable y within the query, and �S,y is exclusive
to the distinct graph patterns with restrictions on the placement of variable y. In the
subsequent lemmas 1 to 7, we will establish these equivalences under various constraints,
and illustrate their application along with counterexamples when restrictions on the
placement of variables are violated in the query.

Let B and B′ be two BGPs and P a graph pattern. Then, we write B J P (resp.,
B,B′ J P) ifP = B orP = BP1 . . .Pn (resp.,P = BB′ orP = BB′P1 . . .Pn), wherePi

s.t. n ≥ i ≥ 1 are inner graph patterns. Let C,C′ ∈ C and P,R ∈ (γ ∪ {γ− | γ ∈ P}). Then,
in the lemmas that follow, given an arbitrary shape 〈s, τs, φs〉 with target τs definition,
let T be a triple pattern s.t.,

T =


C(x), if τs = C,

R(x, z), if τs = ∃R,
R−(x, z), if τs = ∃R− .

Lemma 1. Let 〈s, τs, φs〉 ∈ S with (≥n P.>) ∈ φs s.t. n ≥ 1, and P a graph pattern s.t.
T J P. If y < var(P), then

1. OptF (P, P(x, y)) ≡S FilterF (Join(P, P(x, y)))
2. Join(P, P(x, y)) �S,y P
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Proof. Assuming T J P w.r.t. the target τs of the shape 〈s, τs, φs〉 ∈ S, we know that
x is the only variable shared between P and P(x, y), and y is not in var(P). Let G be a
graph s.t. G |= S.

Clause 1: Using the definition of Opt, we can split the solutions of OptF (P, P(x, y))
into two parts: finding solutions that satisfy both P and P(x, y), and finding solutions
that satisfy only P. For any mapping in the first part PG, we can find at least n mappings
in the second part P(x, y)G, where n ≥ 1 is guaranteed by the constraint (≥n P.>) ∈ φs.
Therefore, any solution that satisfies P and P(x, y) will also be part of the solutions
that satisfy only P w.r.t. G and vice-versa, which means that |µ,OptF (P, P(x, y))G | =

|µ,FilterF (Join(P, P(x, y)))G |. Thus, OptF (P, P(x, y)) ≡S FilterF (Join(P, P(x, y))) by
Defn. 3 if y < var(P).

Clause 2: Starting from the left-hand side Join(P, P(x, y)), we have y < var(P).
Using the definition of Join, the problem is to find all possible combinations of solutions
that satisfy P and P(x, y). Since constraint (≥n P.>) ∈ φs together with conditions
T J P and y < var(P) guarantees that there exist least n mappings µ2 ∈ P(x, y)G

for ∀µ1 ∈ P
G s.t. µ1 ∼ µ2, we can deduce that any solution that satisfies P will also

satisfy Join(P, P(x, y)) w.r.t. G. Thus, we can claim that sup(Join(P, P(x, y))G
|ȳ ) is equal

to sup(PG
|ȳ ), i.e., Join(P, P(x, y)) �S,y P by Defn 4.

Corollary 1 follows from Lemma 1.

Corollary 1 Let 〈s, τs, φs〉 ∈ S with (≥n P.>) ∈ φs s.t. n ≥ 1, and P a graph pattern s.t.
T J P. If y < var(P ∪ F ), then

1. FilterF (Join(P, P(x, y))) �S,y FilterF (P)
2. OptF (P, P(x, y)) �S,y FilterF (P)

Example 4 Let G be a graph such that G |= 〈Student, τStudent, φStudent〉 with (≥n

:hasAddress.>) ∈ φStudent s.t. n ≥ 1. Then, let Q be a query that asks for all students
who do not have a postal address, where > denotes the tautological filter (true),

Proj x(Filter¬bound(y)(Opt>(Student(x), hasAddress(x, y))))

over G. As per the constraint φStudent, all students in G have a postal address. Hence,
the optimal solution would be to replace the entire query with an empty query. However,
in our setting, the Opt-pattern of Q can be reduced to an equivalent Join-pattern by
following the clause 1 of Lemma 1 since y does not appear in the first part of the
Opt-pattern,

Proj x(Filter¬bound(y)(Join(Student(x), hasAddress(x, y)))).

In a scenario where y also appears in the first part of the Opt-pattern, such as

Proj x(Filter¬bound(y)(Opt>(Student(x) enrolledIn(x, y), hasAddress(x, y)))).

A counter-example G = {Student(a), enrolledIn(a, b), hasAddress(a, d)} s.t. G |=
〈Student, τStudent, φStudent〉 can be constructed, where a solution can be found that
yields ”Student(a)” for the Opt pattern but none when Opt is reduced to Join-pattern.

Similarly, assume a query that asks for students who have postal addresses, such as
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Dist(Proj x y(Join(Student(x) hasName(x, y), hasAddress(x, z))))

over the graph G. Then, clause 2 of Lemma 1 allows us to safely remove the pattern
hasAddress(x, z) from the ’Dist’ query, given that variable z only appears in this
pattern and all students in the graph G satisfying 〈Student, τStudent, φStudent〉 have at
least n postal addresses.,i.e.,

Dist(Proj x y(Student(x) hasName(x, y))) .

However, a counter-example can be found for the �S,y equivalence when variable z
appears outside of the pattern hasAddress(x, z) in the Dist query above, such as

Dist(Proj x y(Filter¬bound(z)(Join(Student(x) hasName(x, y), hasAddress(x, z))))).

Finally, assume a query scenario over the G as per required by the ‘if-condition’ in
Corollary 1,

Dist(Proj x z(Opt z=‘A’(Student(x) hasGrade(x, z), hasAddress(x, y)))).

Then, the equivalent “Dist(Proj x z(Filter z=‘A’(Student(x) hasGrade(x, z))))” query
can be deduced by using Corollary 1.2, which reduces the entire ‘Opt’-pattern to the
first part of the pattern with the filter applied (i.e., �S,y equivalence).

Lemma 2 follows from the same reasoning as Lemma 1.

Lemma 2. Let 〈s, τs, φs〉 ∈ S with (=1 P.>) ∈ φs and P a graph pattern s.t. T J P. If
y < var(P), then Join(P, P(x, y)) ≡S,y P.

Corollary 2 follows from Lemma 1 and Lemma 2.

Corollary 2 Let 〈s, τs, φs〉 ∈ S with (=1 P.>) ∈ φs s.t. n ≥ 1, and P a graph pattern s.t.
T J P. If y < var(P ∪ F ), then

1. FilterF (Join(P, P(x, y))) ≡S,y FilterF (P)
2. OptF (P, P(x, y)) ≡S,y FilterF (P)

Example 5 consider a SPARQL query that asks for the names of those who have postal
addresses, such as

Proj y(Join(hasName(x, y), hasAddress(x, z))) ,

over a graph G s.t. G |= 〈∃hasName, τ∃hasName, φ∃hasName〉 and (=1 :hasAddress.>) ∈
φ∃hasName. Since the constraint φ∃hasName ensures that individuals with names have exactly
one postal address, we can deduce the following equivalent query based on Lemma 2:

Proj y(hasName(x, y)) .

In Lemmas 3 to 5,

• let β be either C′ or s′ s.t. s′ ∈ S, and
• let P′ be a graph pattern s.t. P′ is either P(x, y) or P(x, y)C′(y) if β = s′, and

P(x, y)C′(y) if β = C′.



Optimizing SPARQL Queries with SHACL 11

Lemma 3. Let 〈s, τs, φs〉 ∈ S with (≥n P. β) ∈ φs s.t. n ≥ 1, and P a graph pattern s.t.
T J P. If y < var(P), then

1. OptF (P,P′) ≡S FilterF (Join(P,P′))
2. Join(P,P′) �S,y P

In contrast to Lemma 1, Lemma 3 also handles type constraints on the value node of a
property predicate P. Corollary 3 follows from Lemma 3.

Corollary 3 Let 〈s, τs, φs〉 ∈ S with (≥n P. β) ∈ φs s.t. n ≥ 1, and P a graph pattern s.t.
T J P. If y < var(P ∪ F ), then

1. FilterF (Join(P,P′)) �S,y FilterF (P)
2. OptF (P,P′) �S,y FilterF (P)

Example 6 Suppose we have a SPARQL query that asks the names of individuals who
have valid addresses, such as

Dist(Proj y(Join(hasName(x, y), hasAddress(x, z) Address(z)))) ,

over a graph G s.t. G |= 〈∃hasName, τ∃hasName, φ∃hasName〉 and (≥1 :hasAddress. Address) ∈
φPeople. Then, we can use Lemma 3, specifically clause 2, to simplify the query to:

Dist(Proj y(hasName(x, y))) .

Lemma 4. Let 〈s, τs, φs〉 ∈ S with (=1 P. β) ∈ φs, and P a graph pattern s.t. T J P. If
y < var(P), then Join(P,P′) ≡S,y P.

Lemma 4 follows from the same reasoning as Lemma 3, and Corollary 4 follows from
Lemma 3 and Lemma 4.

Corollary 4 Let 〈s, τs, φs〉 ∈ S with (=1 P. β) ∈ φs s.t. n ≥ 1, and P a graph pattern s.t.
T J P. If y < var(P ∪ F ), then

1. FilterF (Join(P,P′)) ≡S,y FilterF (P)
2. OptF (P,P′) ≡S,y FilterF (P)

Lemma 5. Let 〈s, τs, φs〉 ∈ S with (≥n P. β) ∈ φs s.t. n ≥ 1 or (≤0 P.¬β) ∈ φs, and P a
graph pattern s.t. T, P(x, y) J P. Then,

1. Join(P,C′(y)) ≡S P
2. OptF (P,C′(y)) ≡S FilterF (P)

Proof. Assuming T, P(x, y) J P w.r.t. the target τs of the shape 〈s, τs, φs〉 ∈ S, we have
var(P) ∩ var(C′(y)) = {y}. Let G be a graph s.t. G |= S. Then,

Clause 1: Starting from the left-hand side pattern Join(P,C′(y)), the constraint
(≥n P.β) ∈ φs (resp., (≤0 P.¬β) ∈ φs) s.t. n ≥ 1 together with the condition P(x, y) J P
guarantees that there exists exactly one mapping µ2 ∈ C′(y)G for ∀µ1 ∈ P

G s.t. µ1 ∼ µ2.
Thus, we can deduce |µ, Join(P, P(x, y))G | = |µ,PG |, which implies Join(P, P(x, y)) ≡S P
by Defn 3.
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Clause 2: For the pattern OptF (P,C′(y)), constraint (≥n P. β) ∈ φs (resp., (≤0
P.¬β) ∈ φs) together with the condition P(x, y) J P guarantees that for any mapping in
the first part PG, we can find exactly one mapping in the second part C′(y)G. Thus, any
solution that satisfiesP and C′(y) will also be part of the solutions that satisfy onlyPw.r.t.
G and vice-versa, which means that |µ,OptF (P,C′(y))G

| = |µ,FilterF (Join(P,C′(y)))G
|,

i.e., OptF (P,C′(y)) ≡S FilterF (Join(P,C′(y))) by Defn. 3.
Further, the restriction of solutions to F µ = > is identical for both Join(P,C′(y))G

and PG since var(F ) ⊆ var(P) can be deduced from the fact var(C′(y)) ⊆ var(P). Then,
using clause 1, i.e., Join(P,C′(y)) ≡S P, we can infer that FilterF (Join(P,C′(y))) ≡S
FilterF (P). Thus,

OptF (P,C′(y)) ≡S FilterF (Join(P,C′(y))) ≡S FilterF (P) .

Example 7 Let G be a graph that satisfies the shapes 〈∃hasName, τ∃hasName, φ∃hasName〉
and 〈Program, τProgram, φProgram〉, where (≤0 :enrolledIn.¬, Program) ∈ φ∃hasName.
Consider the query,

Proj x z(Opt >(hasName(x, y) enrolledIn(x, z), Program(z)))

over the G. According to the constraint φ∃hasName, all enrollments are only in the
‘Program’. Hence, using clause 1 and 2 of Lemma 5, we can obtain the following
equivalent query:

Proj x z(hasName(x, y) enrolledIn(x, z)) .

Given a shape 〈s, τs, φs〉 ∈ S, letK be a graph pattern s.t.,K =


C(x)R(x, z), if τs = C,

R(x, z), if τs = ∃R,
R−(x, z), if τs = ∃R− .

Lemma 6. Let 〈s, τs, φs〉 ∈ S with (R = P) ∈ φs, and P a graph pattern s.t. K J P. If
y < var(P), then

1. OptF (P, P(x, y)) ≡S FilterF (Join(P, P(x, y)))
2. Join(P, P(x, y)) �S,y P

Proof. Assuming K J P w.r.t. the target τs of the shape 〈s, τs, φs〉 ∈ S, we have
var(P) ∩ var(P(x, y)) = {x} since R(x, z) J K . Let G be a graph s.t. G |= S.

Clause 1: For OptF (P, P(x, y)) s.t. y < var(P), the constraint (R = P) ∈ φs together
with the condition R(x, z) J P guarantees that for any mapping in the first part PG, we
can find exactly one mapping in the second part P(x, y)G. Thus, any solution that satisfies
P and P(x, y) will also be part of the solutions that satisfy only P w.r.t. G and vice-versa,
which means that |µ,OptF (P, P(x, y))G | = |µ,FilterF (Join(P, P(x, y)))G | if y < var(P),
i.e.,

OptF (P, P(x, y)) ≡S FilterF (Join(P, P(x, y))) by Defn. 3.

Clause 2: Consider the left-hand side Join(P, P(x, y)) s.t. y < var(P). Then, the
constraint (R = P) ∈ φs together with the condition R(x, z) J P guarantees that there
exists exactly one mapping µ2 ∈ P(x, y)G for ∀µ1 ∈ P

G s.t. µ1 ∼ µ2. From this, we can
deduce that sup(Join(P, P(x, y))G) = sup(PG), which in turn implies Join(P, P(x, y)) �S,y
P by Defn. 5, if y < var(P).
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Corollary 5 follows from Lemma 6.

Corollary 5 Let 〈s, τs, φs〉 ∈ S with (R = P) ∈ φs, and P a graph pattern s.t. K J P. If
y < var(P ∪ F ), then

1. FilterF (Join(P, P(x, y))) �S,y FilterF (P)
2. OptF (P, P(x, y)) �S,y FilterF (P)

Example 8 Consider a SPARQL query,

Dist(Proj x y(Join(Employee(x) insuredBy(x, y), employedBy(x, z))))

over G s.t. G |= 〈Employee, τEmployee, φEmployee〉 with (insuredBy = employedBy) ∈
φEmployee. Then, using clause 2 of Lemma 6, we can obtain the following equivalent
query:

Dist(Proj x y(Employee(x) insuredBy(x, y))) .

Similarly, assume an optional query scenario where variable z only occurs within the
pattern ‘employedBy(x, z),’ such as

Dist(Proj x y(Opt>(Employee(x) insuredBy(x, y), employedBy(x, z)))) .

Using Corollary 5.2, which applies �S,y equivalence to reduce the entire ‘Opt’-pattern
to the first part of the Opt-pattern with the filter applied, we can deduce the following
equivalent query:

Dist(Proj x y(Filter>(Employee(x) insuredBy(x, y)))) .

In lemma 7, let φ′ =

{
>, if P = T,∧n

i=1(≤1 Pi.>), if P = (T P1(x, z1) . . . Pi(x, zi) . . . Pn(x, zn)).

Lemma 7. Let 〈s, τs, φs〉 ∈ S with {(Bτs P), φ′} ⊆ φs and P a graph pattern s.t. P = T
or P = (T P1(x, z1) . . . Pi(x, zi) . . . Pn(x, zn)) for n ≥ i ≥ 1. Then,

Dist(Proj X(Join(P, P(x, y)))) ≡S Proj X(Join(P, P(x, y))).

Proof. For the pattern Proj X(Join(P, P(x, y))), we can observe that var(P)∩var(P(x, y)) =

{x} because: (a) P = T or T J P, and (b) T is either C(x) or R(x, z) or R−(x, z) based
on the target τs of a shape 〈s, τs, φs〉 ∈ S. Using the definition of Join and Proj, the
solution of Proj X(Join(P, P(x, y))) is all possible combinations of solutions that satisfy
P and P(x, y), and restricted to variable set X. Let G be a graph s.t. G |= S. Then,
constraint (Bτs P) ∈ φs ensures that all P-successors binding to y are unique (i.e.,
distinct) among the target nodes τs over G. Therefore, for each mapping in PG, we
can only find at most one corresponding mapping in P(x, y)G when P = T . This im-
plies |µ,Proj X(Join(P, P(x, y)))G | = 1 for ∀µ ∈ sup(Proj X(Join(P, P(x, y)))G) . Hence,
Dist(Proj X(Join(P, P(x, y)))) ≡S Proj X(Join(P, P(x, y))).

In the case of P = {T P1(x, z1) . . . Pi(x, zi) . . . Pn(x, zn)} s.t. n ≥ 1, the constraint
component

∧n
i=1(≤1 Pi.>) ∈ φs guarantees the absence of duplicate mappings µ ∈

Proj X(Join(P, P(x, y)))G that could have originated from the join operations with the
(inner) patterns P1(x, z1) . . . Pi(x, zi) . . . Pn(x, zn). Thus, equivalence ≡S holds.
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Example 9 Consider the SPARQL query,
Dist(Proj y z(Employee(x) hasName(x, y) hasID(x, z)))

over a graph G |= 〈Employee, τEmployee, φEmployee〉 such that {(BEmployee hasID), (≤1
hasName.>)} ⊆ φEmployee (resp., G |= 〈∃hasName, τ∃hasName, φ∃hasName〉 s.t. {(BEmployee
hasID), (≤1 hasName.>)} ⊆ φ∃hasName). Then, ‘Dist’ modifier of the query can be re-
moved by using Lemma 7,

Proj y z(Employee(x) hasName(x, y) hasID(x, z)) .

Definition 6 Let Q be a SPARQL query, and let P andU be two graph patterns. Then,
we write U C∼ Q if Dist(Proj X(P)) E Q andU E P.

Theorem 1 specifies query rewriting, outlining the necessary conditions for applying
and propagating the established equivalences from Lemmas 1 to 7 to a larger query.

Theorem 1. Let Q be a SPARQL query and S a SHACL document. Let U and V be
two graph patterns. Then,

1. Q ≡S QU7→V ifU ≡S V
2. Proj X(Q) ≡S Proj X(Q)U7→V ifU E Q,U ≡S,y V and y < var(Proj X(Q) \ U)
3. Q ≡S QU7→V ifU C∼ Q,U �S,y V and y < var(Q \ U)

Example 10 Consider a query that asks for all distinct combinations of student ids and
their corresponding advisors (if available), for those who are currently enrolled in a
university program, such as

Dist(Proj z k(Opt>(Student(x) enrolledIn(x, y) Program(y) hasID(x, z),
hasAdvisor(x, k))))

over a graph G s.t. G |= 〈Student, τStudent, φStudent〉with {(≥1 enrolledIn. Program),
(BStudent hasID), (=1 hasAdvisor.>)} ⊆ φStudent. Then, using clause 1 of Lemma 1
(i.e., ≡S), we can reduce ‘Opt’ to ‘Join’ pattern as follows,

Dist(Proj z k(Join(Student(x) enrolledIn(x, y) Program(y) hasID(x, z),
hasAdvisor(x, k)))) .

Similarly, using clause 2 of Lemma 3 (i.e., �S,y), we can remove the join clause
‘enrolledIn(x, y) Program(y)’ from the query,

Dist(Proj z k(Join(Student(x) hasID(x, z), hasAdvisor(x, k)))) .

Finally, ‘Dist’ modifier can be removed by using Lemma 7 (i.e., ≡S),
Proj z k(Join(Student(x) hasID(x, z), hasAdvisor(x, k))) .

Theorems 2 and 3 state the confluence [8, Chapter 6] property, which guarantees
that the query rewriting, defined by employing equivalences from Lemmas 1-7, is
deterministic and results in the same optimized query, regardless of the order in which
the rewriting rules (i.e., replacing left-hand-side of equivalences with the right-hand-side)
are applied. In this context, the query rewriting defined by Lemmas 1-6 (resp., 1-7)
freely employs equivalence ≡S for rewriting graph patterns anywhere within a query,
permits the use of equivalence ≡S,y when y is confined within the joint (or optional)
triples pattern to be removed (or transformed into a join), and exclusively employs
equivalence �S,y for rewriting distinct patterns, as described in Theorem 1.
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Theorem 2. Query rewriting defined by Lemmas 1 to 6 is a confluent reduction.

Proof. The main point of the proof is to establish that all overlapping rewriting rules
(i.e., application of equivalences) defined by Lemmas 1 to 6 always yield the same
uniquely simplified pattern when applied to a graph pattern. Taking P′ = P(x, y) into
account, observe that satisfying the constraint φ = (≥n P. β) with β = s′ in Lemma 3.1
also satisfies (≥n P.>) in Lemma 1.1, and applying either lemma to an optional pattern
of the form OptF (P, P(x, y)) where y < var(P) results in the same pattern, namely
FilterF (Join(P, P(x, y))). Similarly, fulfilling (=1 P. β) s.t. β = s′ in Lemma 4 satisfies
(=1 P.>) in Lemma 2, and applying either lemma leads to the same optimized join pattern.
This property also applies to the implied constraint case, e.g., (=1 P.>) −→ (≥1 P.>).
Likewise, satisfying φ in Lemma 3.2 satisfies the condition (≥n P.>) in Lemma 1.2, and
applying either lemma produces the same optimized joint pattern.

Due to the implication (=1 P.>) −→ (≥1 P.>), when the condition of Lemma 2 is
fulfilled, the rewriting of Lemma 1.2 also applies. As Lemma 2 can be applied to all
patterns (Clause 1 of Theorem 2), applying both rewritings to a distinct query pattern
leads to the same optimized pattern. A similar situation arises for Lemmas 2.2 and 4
due to the implication (=1 P. β) −→ (≥1 P. β), and they also lead to the same optimized
pattern.

Theorem 3. Query rewriting defined by Lemmas 1 to 7 is a confluent reduction iff

φ′ =

{
>, if P = T,∧n

i=1(=1 Pi.>), if P = (T P1(x, z1) . . . Pi(x, zi) . . . Pn(x, zn)) in Lemma 7.

The rewriting employing equivalence supported by Lemma 7 transforms a distinct
pattern into a distinct-free pattern. However, certain rewritings, such as as Lemmas 1.2,
3.2 and 6.2, are exclusive to distinct patterns. Hence, the introduction of constraint∧n

i=1(=1 Pi.>) in Theorem 3 becomes necessary to ensure the application of comple-
mentary rewritings, particularly based on equivalences supported by Lemmas 2 and 4,
when the aforementioned rewritings cannot be directly applied after Lemma 7.

Example 11 Consider a SPARQL query,

Dist(Proj x y(employeeID(x, y) hiredBy(x, k) insuredBy(x, z)))

over a graph G s.t. G |= 〈∃employeeID, τ∃employeeID, φ∃employeeID〉 with {(B∃employeeID
employeeID), (=1 insuredBy.>), (hiredBy = insuredBy)} ⊆ φ∃employedID. Subse-
quently, the constraint (=1 hiredBy.>) can be inferred from the (=1 insuredBy.>)
and (hiredBy = insuredBy). Based on Theorem 1, the query is subject to optimization
using the lemmas 1.2 ( i.e., �S,y), 2 ( i.e., ≡S,y), 6.2 (i.e., �S,y) and 7 (i.e., ≡S). Then,
there are seven possible rewriting combinations that can be applied using the lemmas
mentioned above: (lemmas(1.2,1.2,7), lemmas(1.2,2,7), lemmas(2,1.2,7), lemmas(2,2,7),
lemmas(6.2,1.2,7), lemmas(6.2,2,7), and lemmas(7,2,2)). All these combinations result
in a uniquely optimized query, which is

Proj x y(employeeID(x, y)) .

Note that lemmas 1.2 and 6.2 cannot be applied after lemma 7. This information is
further useful in determining the cheapest order in complex query optimization, which is
a topic related to our future goals.
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4 Discussion

We have presented a set of query rewriting rules that exploit the relation between the
SPARQL queries containing graph patterns and SHACL constraints describing these
graph patterns in the RDF. By treating each lemma as a set of rules under distinct
constraints, we emphasized the significance of each constraint-enabled rule and made it
easier to track and analyze their order and individual contributions to the overall robust
query rewriting process, see Exam. 10. They also offer a clearer understanding of the
different orders and strategies that can be employed while rewriting complex queries,
see Exam. 11.

Constraints, known for restricting data to useful relations [23], can be used to rewrite
queries into more efficient equivalents [50]. Leveraging constraints for optimizing queries
has become a well-established practice in knowledge graphs [13,20,56], deductive
databases [14], relational databases [25,3] and other fields [48]. Regarding SHACL,
Rabbani et al. [47] were the first to propose shapes as global statistics for estimating
cardinality and optimizing SPARQL query plans for the RDF graph under query. Further,
Abbas et al. [1] studied the containment of restricted classes of SPARQL queries under
set semantics, while considering ShEx constraints [45]. They also leveraged information
obtained from ShEx schemas to optimize the execution of SPARQL queries [2]. In their
work [2] (resp., [1]), a notion of well-formed ShEx schemas (resp., query patterns),
especially suitable for query optimization (resp., containment), was first introduced, then
subsequently used to reorganise execution orders (resp., to determine subsumption) of
triple patterns in a SPARQL query. In contrast to previous studies [47,1,2], we have
prioritized optimizing a much larger class of queries, and subsequently, introduced an
explicit set of core rewriting rules for optimizing SPARQL queries under bag semantics
when SHACL constraints are satisfied, and proved their correctness. We have further
shown that our proposed query rewriting rules are confluent and always lead to a
unique simplified form. We plan to investigate the potential benefits of integrating these
rewriting rules into a query processing engine to enhance query execution in the near
future. Additionally, we intend to extend our results to cover the broader expressivity
and more general cases of SPARQL queries.

5 Conclusion

In this paper, we have proposed a set of optimizations for SPARQL query constructed
from core operators of SPARQL 1.1 under the SHACL constraints. We believe that the
proposed optimizations could play a crucial role in simplifying and answering SPARQL
queries over large-scale RDF triples when SHACL descriptions of the underlying RDF
dataset are available. In future, we aim to investigate an optimal normal form of SPARQL
1.1 [24] queries studied in [30,12] (which includes nesting, assignment, construct [35,44]
and aggregation as in online analytical processing cube and window-based queries) with
respect to (full) SHACL constraints [32] formalized in [19,42,41] that should allow us
to introduce a confluent set of query rewriting [50, Sect. 5] rules.
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SHACL Constraints over a SPARQL Endpoint. In International Semantic Web Conference,
pages 145–163. Springer, 2019.

19. Julien Corman, Juan L Reutter, and Ognjen Savković. Semantics and validation of recursive
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