
Dense Re-Ranking with Weak Supervision for
RDF Dataset Search

Qiaosheng Chen, Zixian Huang, Zhiyang Zhang, Weiqing Luo, Tengteng Lin,
Qing Shi, and Gong Cheng[0000−0003−3539−7776]

State Key Laboratory for Novel Software Technology, Nanjing University, China
{qschen,zixianhuang,zhiyangzhang}@smail.nju.edu.cn

{wqluo,tengtenglin,qingshi}@smail.nju.edu.cn
gcheng@nju.edu.cn

Abstract. Dataset search aims to find datasets that are relevant to
a keyword query. Existing dataset search engines rely on conventional
sparse retrieval models (e.g., BM25). Dense models (e.g., BERT-based)
remain under-investigated for two reasons: the limited availability of la-
beled data for fine-tuning such a deep neural model, and its limited input
capacity relative to the large size of a dataset. To fill the gap, in this pa-
per, we study dense re-ranking for RDF dataset search. Our re-ranking
model encodes the metadata of RDF datasets and also their actual RDF
data—by extracting a small yet representative subset of data to accom-
modate large datasets. To address the insufficiency of training data, we
adopt a coarse-to-fine tuning strategy where we warm up the model with
weak supervision from a large set of automatically generated queries and
relevance labels. Experiments on the ACORDAR test collection demon-
strate the effectiveness of our approach, which considerably improves the
retrieval accuracy of existing sparse models.

Keywords: Dataset search · Dense re-ranking · Data augmentation

1 Introduction

As data plays an increasingly crucial role in many domains, the capability to
search for relevant datasets has become critical [5]. To satisfy this need, dataset
search engines such as Google Dataset Search [2,3] have emerged. The Semantic
Web community is particularly interested in RDF dataset search, and has also
developed a few such solutions [6, 24,30] and made benchmarking efforts [18].

Motivation. Existing RDF dataset search solutions employ conventional
sparse models (e.g., BM25 [26]) to retrieve lexically relevant datasets, which can-
not capture the semantic relationships between query and dataset. By contrast,
building on the semantic matching capability of pre-trained language models
(e.g., BERT [10]) to understand text, dense ranking models (e.g., DPR [12])
have achieved remarkable performance in document retrieval [33]. It inspires us
to study dense models for RDF dataset search and investigate their effectiveness.

2 Q. Chen et al.

Challenges. Applying dense models to RDF dataset search is a nontrivial
task. Indeed, we identify the following two challenges. Note that these difficulties
also face dataset search in general, not limited to RDF dataset search.

– Unlike documents, (RDF) datasets are structured and commonly very large,
e.g., containing thousands or millions of RDF triples. It remains unclear how
to effectively feed such a huge amount of data into a dense ranking model
which typically allows a maximum input length of only 512 tokens, and we
should not simply drop the data but rely solely on the metadata of a dataset
since this has been proven to hurt accuracy [6, 18].

– Unlike document retrieval which is an established research task with many
large test collections, (RDF) dataset search is relatively new and is now ac-
companied by only a few relatively small test collections [13,18]. The limited
labeled data in these test collections is insufficient for tuning a dense ranking
model having at least hundreds of millions of trainable parameters.

Our Work. We propose to study dense ranking models for RDF dataset
search and address the above two challenges. Our approach adopts a popular
retrieval-then-reranking architecture, and we use dense models in the re-ranking
step. To feed the metadata and content of an RDF dataset into the model, we
concatenate metadata fields as well as a small subset of RDF triples extracted
from the data as a representative data sample. To tune the model, besides the
limited labeled data provided by existing test collections, we adopt a coarse-to-
fine tuning strategy and we propose two methods for automatically generating
a large amount of possibly noisy labeled data to weakly supervise the model in
the preliminary coarse-tuning phase. We refer to our approach as DR2, short
for Dense Rdf Dataset Re-ranking. To summarize, our contributions include

– the first research attempt to adapt dense ranking models to RDF dataset
search, by encoding representative RDF triples extracted from large datasets,

– two methods for automatically generating labeled data to coarse-tune the
model, one based on distant supervision and the other based on self-training,

– experiments on a public test collection, empirically comparing a variety of
triple extraction methods, dense ranking models, and tuning strategies.

Outline. The remainder of the paper is organized as follows. Section 2 intro-
duces our retrieval-then-reranking approach for RDF dataset search. Section 3
details our coarse-to-fine tuning strategy. Section 4 presents evaluation results.
Section 5 discusses related work. Section 6 concludes the paper with future work.

2 Dense Re-Ranking for RDF Dataset Search

In this section, we describe our retrieval-then-reranking approach for RDF dataset
search. We begin with an overview of the approach. Then we detail its two major
steps: compact document representation and dense re-ranking.

Dense Re-Ranking with Weak Supervision for RDF Dataset Search 3

Fig. 1: Our retrieval-then-reranking approach for RDF dataset search.

2.1 Overview

Fig. 1 presents an overview of our approach for RDF dataset search. We follow
best practice [17] to adopt a retrieval-then-reranking design. Specifically, given a
keyword query q and a collection D of RDF datasets, the first step is to perform
a normal retrieval by using a conventional off-the-shelf method for RDF dataset
search to retrieve k top-ranked RDF datasets from D that are the most relevant
to q, denoted by Ds = ⟨d1, . . . , dk⟩. For each retrieved RDF dataset di ∈ Ds, the
second step is to construct its compact document representation to be fed into
the downstream dense re-ranking model. We construct two pseudo documents
in this step: pmi representing the metadata of di, and pci representing the content
of di, i.e., the actual RDF data in di. The last step is to employ a dense ranking
model to re-rank each RDF dataset di ∈ Ds based on the relevance of pmi and pci
to q, and output the re-ranked results denoted by Dr = ⟨d′1, . . . , d′k⟩.

The retrieval model in the first step is out of our research focus. In the
experiments we will use existing implementations provided in the literature [18].
In the following we will focus on the second and the third steps.

2.2 Compact Document Representation

An RDF dataset contains RDF data and typically has metadata description.
Both metadata and RDF data are structured. They need to be linearized into
pseudo documents so that they can be processed by the downstream dense re-
ranking model. We call them compact documents because, relatively to the pos-
sibly large size of an RDF dataset (e.g., millions of RDF triples), the length of
such a document has to be bounded to fit the maximum input length of the
downstream dense model which is usually a small number (e.g., 512 tokens).

Metadata Document For a retrieved RDF dataset di ∈ Ds, we construct its
metadata document pmi , i.e., a pseudo document representing its metadata.

Specifically, recall that metadata commonly consists of a set of fields. Follow-
ing [18], we choose four fields that should contain human-readable information
and hence are used in the computation of query relevance: title, description,
tags, and author. The values of these fields are concatenated into pmi as illus-
trated in Fig. 2, where [CLS] and [SEP] are standard separating tokens used

4 Q. Chen et al.

Fig. 2: Compact document representation for an RDF dataset.

in BERT-based models [10]. They can be replaced by their counterparts when
other families of language models are used as a substitute for BERT.

Metadata is usually short enough to fit the maximum input length of a dense
model. If exceeded, the metadata document will be truncated to the maximum
input length in a normal way, i.e., its end will be cut off.

Data Document For a retrieved RDF dataset di ∈ Ds, we construct its data
document pci , i.e., a pseudo document representing its RDF data content.

Specifically, recall that RDF data consists of a set of RDF triples. An RDF
dataset may easily contain too many triples to fit the maximum input length of
a dense model. Indeed, a median of 2k RDF triples was observed in the liter-
ature [18]. Instead of performing arbitrary truncation, we want to identify and
keep the most important information in RDF data by extracting a representa-
tive subset of RDF triples. This resembles the research objective of RDF dataset
snippet generation [29]. Therefore, we choose and implement two state-of-the-art
solutions to this research problem: IlluSnip [8,19] and PCSG [28]. In a nutshell,
IlluSnip computes a ranking of the RDF triples in an RDF dataset such that
the top-ranked triples cover the most frequent classes, properties, and entities
in the data. PCSG relies on entity description pattern (EDP) which is a set of
classes and properties used to describe an entity in an RDF dataset. It selects a
smallest number of subsets of RDF triples—each subset covering an EDP—such
that the selected subsets of triples cover all the EDPs in the data. We further
rank these subsets by the frequency of covered EDP.

From a possibly large RDF dataset di, subject to the maximum input length
of a dense model, we extract the largest possible number of top-ranked RDF
triples returned by IlluSnip, or the largest possible number of top-ranked subsets

Dense Re-Ranking with Weak Supervision for RDF Dataset Search 5

of triples returned by PCSG, depending on which algorithm is used. We will
compare IlluSnip and PCSG in the experiments. We concatenate the human-
readable forms of the subject, predicate, and object in each extracted RDF
triple into pci as illustrated in Fig. 2, separated by [CLS] and [SEP]. The human-
readable form of an IRI or blank node refers to its rdfs:label (if available) or
local name, and the human-readable form of a literal refers to its lexical form.

Moreover, a single RDF triple may occasionally be very long, e.g., containing
a long literal. We need to find a trade-off between the number of extracted
RDF triples and the maximum allowed length of a triple. Our implementation
empirically truncates each RDF triple to at most 45 tokens because, by sampling
RDF datasets used the literature [18], we find that more than 99% of the sampled
RDF triples contain at most 45 tokens, i.e., truncation would be very rare in our
setting so that the completeness of most triples could be guaranteed.

2.3 Dense Re-Ranking

Given a keyword query q and a set of retrieved k top-ranked RDF datasets Ds,
we employ a dense ranking model to re-rank each dataset di ∈ Ds based on the
relevance of its metadata document pmi and data document pci to q.

Specifically, we consider using dense models for re-ranking because, com-
pared with normal sparse models which rely on lexical features for measuring
query relevance, dense models are expected to extract semantic features from
queries and documents to more accurately compute their relevance. We choose
and adapt two dense ranking models, DPR [12] and ColBERT [14], because they
have been widely used in information retrieval research. In a nutshell, DPR and
ColBERT both based on BERT [10] perform sentence-level and token-level se-
mantic matching, respectively. We will compare them in the experiments. They
can also be substituted by other dense ranking models [33].

Let DenseRel(·, ·) be a dense ranking model, i.e., DPR or ColBERT, which
computes the relevance of a document to a keyword query. We calculate the re-
ranking score of an RDF dataset di by computing the relevance of its metadata
document pmi to q and the relevance of its data document pci to q, and then take
their maximum value:

Score(di) = max{DenseRel(q, pmi), DenseRel(q, pci)} . (1)

3 Coarse Tuning with Weak Supervision

Dense ranking models are supervised. Although they are based on pre-trained
language models such as BERT, it is still expected to fine-tune them with task-
specific training data to achieve better performance. However, RDF dataset
search is a relatively new research problem. The labeled data provided by exist-
ing test collections such as [18] may be sufficient for testing but not sufficient for
fine-tuning a deep neural model. Therefore, we propose to warm up our dense
re-ranking model with weak supervision, i.e., with a large set of automatically
generated labeled data which, however, possibly contains some noise.

6 Q. Chen et al.

Fig. 3: Our coarse-to-fine strategy for tuning our dense re-ranking model.

In this section, we begin with an overview of our coarse-to-fine tuning strat-
egy. Then we detail two methods for generating labeled data for coarse-tuning:
one based on distant supervision, and the other based on self-training.

3.1 Overview

Fig. 3 presents an overview of our strategy for tuning our dense re-ranking model.
We adopt a coarse-to-fine design which has been popularly used in other tasks
but not yet in RDF dataset search. Specifically, given a raw (i.e., untuned) model,
in the first step, we employ a large set of automatically generated labeled data to
tune the model. Such labeled data is generated by two methods: Lds generated by
distant supervision, and Lst generated by self-training. They are automatically
generated and hence may contain noise, i.e., incorrect labels. Therefore, we refer
to this step as coarse-tuning. In the second step, we employ the labeled data Ltc

provided by the training and validation sets of a test collection for RDF dataset
search to fine-tune the model in a normal way.

Each L ∈ {Lds, Lst, Ltc} is a set of query-document-label triples {⟨q, pi, l⟩}
where q is a keyword query, pi is a pseudo document, i.e., the metadata docu-
ment pmi or the data document pci constructed for an RDF dataset di according
to Section 2.2, and l is a Boolean label indicating whether di is relevant to q. Note
that for Lds and Lst, we will only focus on the generation of positive labels, i.e.,
⟨q, pi, true⟩. It is then common practice to automatically generate negative la-
bels by randomly pairing keyword queries with pseudo documents. For example,
DPR [12] is associated with such a built-in generator called in-batch negatives.

3.2 Coarse-Tuning Based on Distant Supervision

Our first method for generating labeled data is inspired by the concept of distant
supervision, which was originally applied to the task of relation extraction [22].
The idea is that by treating the title of a dataset di as a query q, the metadata
document pci for di should be relevant to q. Therefore, although the availability
of labeled data for training RDF dataset search is limited, it is relatively easy
to collect metadata for a large number of datasets from the Web, and they are
not even restricted to RDF datasets since only their metadata will be used. In
this way, a large number of labeled data can be automatically generated.

Dense Re-Ranking with Weak Supervision for RDF Dataset Search 7

Fig. 4: An example of generating labeled data by distant supervision.

Specifically, with the metadata of each collected dataset di, as illustrated in
Fig. 4, we take di’s title as a query q, and construct di’s metadata document pmi
according to Section 2.2. In particular, we mask the title field in pmi because
otherwise the relevance of pmi to q would be too explicit to be useful when being
used in tuning. We mask the title field by replacing each token in this field with
[MASK] which is a standard masking token used in BERT-based models [10].
Finally, we add the triple ⟨q, pmi , true⟩ to Lds.

To use Lds to coarse-tune our dense re-ranking model, we randomly split Lds

into 90% for training and 10% for validation.

3.3 Coarse-Tuning Based on Self-Training

Our second method for generating labeled data adopts a self-training design.
The idea is to exploit both the labeled and unlabeled data in a test collection for
RDF dataset search, by training a document-to-query generator on the labeled
data and then applying it to generate a query q from the metadata document pmi
or the data document pci for each unlabeled RDF dataset di; these two documents
should be relevant to q. Since unlabeled data is often in large amounts in a test
collection, e.g., 80% of the RDF datasets in [18] are unlabeled (i.e., not involved
in any query-document-label triple in Ltc), a large number of labeled data can
be automatically generated in this way.

Specifically, recall that Ltc denotes the set of labeled data in the training and
validation sets of a test collection for RDF dataset search. Let Ltc/t/m, Ltc/v/m ⊆
Ltc be the subsets of labeled data in the training and validation sets, respec-
tively, where query-document-label triples are about metadata documents. Let
Ltc/t/c, Ltc/v/c ⊆ Ltc be the subsets of labeled data in the training and validation
sets, respectively, where query-document-label triples are about data documents.
We separately train two document-to-query generators: Gm for metadata docu-
ments and Gc for data documents. We reduce document-to-query generation to
a text-to-text generation task. We train Gm by employing Ltc/t/m as the training
set and Ltc/v/m as the validation set to fine-tune a T5 model [25], which is a
pre-trained text-to-text model. Model selection based on the validation set relies
on the ROUGE score, i.e., the mean of ROUGE-1, ROUGE-2, and ROUGE-L,
which are standard metrics for evaluating text generation. Then we apply the
fine-tuned T5 model as Gm to the metadata document pmi constructed for each

8 Q. Chen et al.

Fig. 5: An example of generating labeled data by a document-to-query generator.

unlabeled RDF dataset di in the test collection to generate a query q, as illus-
trated in Fig. 5, and add the triple ⟨q, pmi , true⟩ to Lst. Analogously, we train Gc

on Ltc/t/c and Ltc/v/c, and apply it to the data documents of unlabeled RDF
datasets to expand Lst.

To use Lst to coarse-tune our dense re-ranking model, we use Lst as the
training set and use the original validation set Ltc/v/m ∪ Ltc/v/c in the test
collection as the validation set.

4 Evaluation

4.1 Test Collection

We conducted experiments on ACORDAR [18], the currently largest test collec-
tion for RDF dataset search, providing 493 queries and 10,671 labeled relevance
judgments over 31,589 RDF datasets. Following [18], we conducted five-fold
cross-validation using the official train-valid-test splits provided by ACORDAR.1

4.2 Labeled Data for Coarse-Tuning

We implemented the method for generating labeled data Lds based on distant
supervision described in Section 3.2 by collecting metadata of datasets from open
data portals (ODPs). Specifically, to collect metadata for as many datasets as
possible, inspired by [18], we found ODPs by looking up five large catalogues:
CKAN,2 DKAN,3 DataPortals.org,4 Open Data Portal Watch,5 and Socrata.6
We collected all the ODPs listed in these catalogues, and additionally took the

1 https://github.com/nju-websoft/ACORDAR
2 https://ckan.org/
3 https://getdkan.org/
4 http://dataportals.org/
5 https://data.wu.ac.at/portalwatch/
6 https://dev.socrata.com/

https://github.com/nju-websoft/ACORDAR
https://ckan.org/
https://getdkan.org/
http://dataportals.org/
https://data.wu.ac.at/portalwatch/
https://dev.socrata.com/

Dense Re-Ranking with Weak Supervision for RDF Dataset Search 9

Linked Open Data Cloud7 into account as an ODP. We identified a total of
570 ODPs that were accessible at the time of experimentation. For each ODP,
we used its API to download the metadata for all the datasets registered in
the ODP. We successfully collected metadata for 704,370 datasets, but had to
remove 354 due to their empty titles. We constructed metadata documents for
the remaining 704,016 datasets to generate query-document-label triples as Lds.

We implemented the method for generating labeled data Lst based on self-
training described in Section 3.3 by exploiting the labeled and unlabeled data in
ACORDAR. Specifically, we trained document-to-query generators on the train-
ing and validation sets in ACORDAR, and applied them to the metadata and
data documents constructed for the 25,380 unlabeled RDF datasets in ACOR-
DAR to generate queries and form query-document-label triples in Lst.

4.3 Implementation Details

Our document-to-query generators were implemented based on the T5-Base
model.8 We searched batch size in {8, 16}, learning rate in {1e−6, 5e−6, 1e−5},
and trained 10 epochs. We used the Adam optimizer [15]. We ran T5 on an
NVIDIA GeForce RTX 3090 GPU with 24GB memory.

For DPR and ColBERT in our dense re-ranking model, we used their open-
source code.910 For DPR, we trained 1 epoch in the coarse-tuning phase and
10 epochs in the fine-tuning phase, considering the different sizes of training
data for different phases. We searched batch size in {2, 4} and learning rate in
{1e−5, 2e−5}. For ColBERT, we followed [14] to train 1 epoch in each phase.
We searched batch size in {8, 16} and learning rate in {1e−6, 3e−6, 7e−6}. We
used the Adam optimizer. We ran DPR and ColBERT on eight NVIDIA Tesla
V100 GPUs with 32GB memory. Based on Faiss indexes,11 the mean re-ranking
time used by DPR and ColBERT for a query was 62ms and 139ms, respectively.

4.4 Experimental Settings

We evaluated with the following settings of our approach.
For normal retrieval, we directly reused the 10 top-ranked RDF datasets

outputted by each of the four sparse retrieval models provided by ACORDAR:
TF-IDF, BM25, LMD, and FSDM. TF-IDF (Term Frequency—Inverse Docu-
ment Frequency) is a weighting scheme giving large weights to locally frequent
(i.e., within the current dataset) but globally infrequent (across all datasets)
words; based on TF-IDF vector representations, datasets are ranked by their
cosine similarity with the query. BM25 is a ranking function that combines
term frequency, inverse document frequency, and document length normaliza-
tion. LMD (Language Model with Dirichlet Smoothing) is a retrieval model that
7 http://cas.lod-cloud.net/
8 https://huggingface.co/t5-base
9 https://github.com/facebookresearch/DPR

10 https://github.com/stanford-futuredata/ColBERT
11 https://github.com/facebookresearch/faiss

http://cas.lod-cloud.net/
https://huggingface.co/t5-base
https://github.com/facebookresearch/DPR
https://github.com/stanford-futuredata/ColBERT
https://github.com/facebookresearch/faiss

10 Q. Chen et al.

estimates the probability of generating a query given a document, incorporating
smoothing techniques to handle unseen terms. FSDM (Fielded Sequential De-
pendence Model) is a retrieval model for structured document retrieval which
considers term dependencies and optimizes document field weights.

For RDF triple extraction in compact document representation, we compared
Illusnip and PCSG.

For the dense ranking model in re-ranking, we compared DPR and ColBERT.
For tuning the dense re-ranking model, we compared coarse-tuning based on

distant supervision (denoted by ds), coarse-tuning based on self-training (de-
noted by st), and normal fine-tuning (denoted by ft).

4.5 Evaluation Metrics

Following [18], we used Normalized Discounted Cumulative Gain (NDCG) and
Mean Average Precision (MAP). We calculated and reported the mean NDCG@5,
NDCG@10, MAP@5, and MAP@10 scores over all the queries.

4.6 Evaluation Results

In the presented results tables, we highlight the best result in each setting in
bold, and underline the second best result.

Effectiveness of Re-Ranking As shown in Table 1, re-ranking brings im-
provements in all the settings, and the improvements in most settings are statis-
tically significant. The best results are achieved with PCSG and ColBERT. Com-
pared with the original sparse retrieval model, this dense re-ranking model raises
NDCG@5 by 0.0218–0.0610 (4%–11%), NDCG@10 by 0.0088–0.0326 (1%–6%),
MAP@5 by 0.0175–0.0476 (5%–17%), and MAP@10 by 0.0132–0.0363 (3%–9%).
In particular, by re-ranking the outputs of FSDM with this model, we obtain
the current state-of-the-art results on ACORDAR. The second best results are
mostly achieved with IlluSnip and ColBERT. These results demonstrate the ef-
fectiveness of our dense re-ranking for RDF dataset search.

Effectiveness of Coarse-Tuning For space reasons, Table 2 and Table 3 only
show the results obtained with ColBERT. The results with DPR are similar.

As shown in Table 2, compared with fine-tuning (ft), adding coarse-tuning
brings improvements in almost all the settings. In particular, such improvements
are not an effect of longer training since naively increasing the number of epochs
in the fine-tuning phase from 1 to 3 (ft3) only brings marginal differences.
In some settings, adding coarse-tuning based on distant supervision (ds+ft)
or self-training (st+ft) brings larger improvements than adding both of them
(ds+st+ft). However, the latter is more robust as it achieves the first or second
best result in most settings. Interestingly, for IlluSnip-based re-ranking models,
self-training (st+ft) generally brings larger improvements than distant supervi-
sion (ds+ft), whereas for PCSG-based re-ranking models, opposite results are

Dense Re-Ranking with Weak Supervision for RDF Dataset Search 11

Table 1: Effectiveness of Re-Ranking (∗ indicating a significant improvement
after re-ranking according to paired t-test under p < 0.05)

Retrieval Re-Ranking Tuning NDCG@5 NDCG@10 MAP@5 MAP@10

TF-IDF

before re-ranking - 0.5088 0.5452 0.2871 0.3976
Illusnip+DPR ds+st+ft 0.5579∗ 0.5720∗ 0.3295∗ 0.4319∗
Illusnip+ColBERT ds+st+ft 0.5610∗ 0.5749∗ 0.3329∗ 0.4339∗
PCSG+DPR ds+st+ft 0.5521∗ 0.5704∗ 0.3234∗ 0.4280∗
PCSG+ColBERT ds+st+ft 0.5659∗ 0.5753∗ 0.3347∗ 0.4339∗

BM25

before re-ranking - 0.5538 0.5877 0.3198 0.4358
Illusnip+DPR ds+st+ft 0.5888∗ 0.6082∗ 0.3481∗ 0.4592∗
Illusnip+ColBERT ds+st+ft 0.6028∗ 0.6136∗ 0.3553∗ 0.4623∗
PCSG+DPR ds+st+ft 0.5880∗ 0.6065∗ 0.3462∗ 0.4567∗
PCSG+ColBERT ds+st+ft 0.6079∗ 0.6173∗ 0.3625∗ 0.4680∗

LMD

before re-ranking - 0.5465 0.5805 0.3266 0.4324
Illusnip+DPR ds+st+ft 0.5959∗ 0.6055∗ 0.3563∗ 0.4571∗
Illusnip+ColBERT ds+st+ft 0.5963∗ 0.6083∗ 0.3564∗ 0.4585∗
PCSG+DPR ds+st+ft 0.5908∗ 0.6003∗ 0.3498∗ 0.4509∗
PCSG+ColBERT ds+st+ft 0.6075∗ 0.6131∗ 0.3671∗ 0.4654∗

FSDM

before re-ranking - 0.5932 0.6151 0.3592 0.4602
Illusnip+DPR ds+st+ft 0.6088 0.6204 0.3709 0.4713
Illusnip+ColBERT ds+st+ft 0.6121 0.6184 0.3677 0.4645
PCSG+DPR ds+st+ft 0.6061 0.6149 0.3655 0.4637
PCSG+ColBERT ds+st+ft 0.6150 0.6239 0.3767 0.4734

observed. These results demonstrate the effectiveness of our two coarse-tuning
methods which complement fine-tuning and also complement each other.

As shown in Table 3, coarse-tuning alone based on self-training without fine-
tuning (st) is generally comparable with fine-tuning (ft), which demonstrates
the quality of our augmented labeled data via self-training. However, there are no-
ticeable gaps between fine-tuning (ft) and coarse-tuning alone based on distant
supervision without fine-tuning (ds), which shows difficulty in dense re-ranking
for RDF dataset search solved as a zero-shot learning task.

Comparison between Triple Extraction Methods Table 4 aggregates the
results in Table 1 by IlluSnip and PCSG. There is no clear winner between them.
In fact, according to Table 1, IlluSnip outperforms PCSG when accompany-
ing DPR, whereas opposite results are observed when accompanying ColBERT,
suggesting that extracting representative RDF triples in the context of dataset
search deserves to be further studied in the future.

Comparison between Dense Ranking Models Table 5 aggregates the re-
sults in Table 1 by DPR and ColBERT. ColBERT consistently outperforms DPR
in all the settings, showing its relative suitability for RDF dataset search.

12 Q. Chen et al.

Table 2: Effectiveness of Coarse-Tuning in Complementing Fine-Tuning
Retrieval Re-Ranking Tuning NDCG@5 NDCG@10 MAP@5 MAP@10

TF-IDF

Illusnip+ColBERT

ft 0.5530 0.5696 0.3287 0.4307
ft3 0.5558 0.5703 0.3320 0.4320
ds+ft 0.5632 0.5754 0.3343 0.4343
st+ft 0.5625 0.5746 0.3368 0.4355
ds+st+ft 0.5610 0.5749 0.3329 0.4339

PCSG+ColBERT

ft 0.5621 0.5738 0.3372 0.4356
ft3 0.5578 0.5716 0.3345 0.4336
ds+ft 0.5688 0.5784 0.3379 0.4368
st+ft 0.5566 0.5687 0.3294 0.4297
ds+st+ft 0.5659 0.5753 0.3347 0.4339

BM25

Illusnip+ColBERT

ft 0.5976 0.6113 0.3522 0.4603
ft3 0.6027 0.6137 0.3581 0.4640
ds+ft 0.6022 0.6124 0.3544 0.4605
st+ft 0.6081 0.6163 0.3602 0.4658
ds+st+ft 0.6028 0.6136 0.3553 0.4623

PCSG+ColBERT

ft 0.6045 0.6163 0.3602 0.4671
ft3 0.5961 0.6099 0.3534 0.4608
ds+ft 0.6103 0.6195 0.3636 0.4694
st+ft 0.6047 0.6154 0.3608 0.4672
ds+st+ft 0.6079 0.6173 0.3625 0.4680

LMD

Illusnip+ColBERT

ft 0.5918 0.6037 0.3514 0.4544
ft3 0.5978 0.6068 0.3574 0.4574
ds+ft 0.5989 0.6064 0.3582 0.4569
st+ft 0.6096 0.6121 0.3666 0.4637
ds+st+ft 0.5963 0.6083 0.3565 0.4585

PCSG+ColBERT

ft 0.6029 0.6077 0.3596 0.4578
ft3 0.5933 0.6051 0.3562 0.4572
ds+ft 0.6067 0.6122 0.3656 0.4636
st+ft 0.6035 0.6104 0.3642 0.4625
ds+st+ft 0.6075 0.6131 0.3671 0.4654

FSDM

Illusnip+ColBERT

ft 0.5981 0.6119 0.3615 0.4608
ft3 0.6058 0.6187 0.3695 0.4673
ds+ft 0.6030 0.6134 0.3610 0.4592
st+ft 0.6090 0.6182 0.3704 0.4673
ds+st+ft 0.6121 0.6184 0.3677 0.4645

PCSG+ColBERT

ft 0.6152 0.6195 0.3766 0.4695
ft3 0.6064 0.6181 0.3690 0.4662
ds+ft 0.6133 0.6223 0.3732 0.4703
st+ft 0.6128 0.6224 0.3755 0.4725
ds+st+ft 0.6150 0.6239 0.3767 0.4734

Dense Re-Ranking with Weak Supervision for RDF Dataset Search 13

Table 3: Effectiveness of Coarse-Tuning in Replacing Fine-Tuning
Retrieval Re-Ranking Tuning NDCG@5 NDCG@10 MAP@5 MAP@10

TF-IDF

Illusnip+ColBERT
ft 0.5530 0.5696 0.3287 0.4307
ds 0.4928 0.5344 0.2757 0.3878
st 0.5589 0.5708 0.3276 0.4284

PCSG+ColBERT
ft 0.5621 0.5738 0.3372 0.4356
ds 0.5095 0.5416 0.2844 0.3937
st 0.5538 0.5680 0.3209 0.4236

BM25

Illusnip+ColBERT
ft 0.5976 0.6113 0.3522 0.4603
ds 0.5376 0.5752 0.3031 0.4211
st 0.5998 0.6108 0.3517 0.4597

PCSG+ColBERT
ft 0.6045 0.6163 0.3602 0.4671
ds 0.5495 0.5849 0.3087 0.4275
st 0.5948 0.6115 0.3484 0.4594

LMD

Illusnip+ColBERT
ft 0.5918 0.6037 0.3514 0.4544
ds 0.5332 0.5692 0.2993 0.4115
st 0.6001 0.6072 0.3551 0.4552

PCSG+ColBERT
ft 0.6029 0.6077 0.3596 0.4578
ds 0.5477 0.5805 0.3128 0.4243
st 0.5980 0.6087 0.3541 0.4560

FSDM

Illusnip+ColBERT
ft 0.5981 0.6119 0.3615 0.4608
ds 0.5380 0.5807 0.3103 0.4221
st 0.6033 0.6168 0.3667 0.4645

PCSG+ColBERT
ft 0.6152 0.6195 0.3766 0.4695
ds 0.5505 0.5878 0.3158 0.4269
st 0.6079 0.6212 0.3666 0.4670

Table 4: Comparison between Triple Extraction Methods
Retrieval Re-Ranking NDCG@5 NDCG@10 MAP@5 MAP@10

TF-IDF Illusnip+∗ 0.5594 0.5734 0.3312 0.4329
PCSG+∗ 0.5590 0.5729 0.3290 0.4309

BM25 Illusnip+∗ 0.5958 0.6109 0.3517 0.4608
PCSG+∗ 0.5979 0.6119 0.3543 0.4624

LMD Illusnip+∗ 0.5961 0.6069 0.3564 0.4578
PCSG+∗ 0.5992 0.6067 0.3585 0.4582

FSDM Illusnip+∗ 0.6105 0.6194 0.3693 0.4679
PCSG+∗ 0.6106 0.6194 0.3711 0.4686

14 Q. Chen et al.

Table 5: Comparison between Dense Ranking Models
Retrieval Re-Ranking NDCG@5 NDCG@10 MAP@5 MAP@10

TF-IDF ∗+DPR 0.5550 0.5712 0.3264 0.4299
∗+ColBERT 0.5659 0.5753 0.3347 0.4339

BM25 ∗+DPR 0.5884 0.6074 0.3471 0.4580
∗+ColBERT 0.6053 0.6154 0.3589 0.4652

LMD ∗+DPR 0.5934 0.6029 0.3531 0.4540
∗+ColBERT 0.6019 0.6107 0.3618 0.4620

FSDM ∗+DPR 0.6074 0.6177 0.3682 0.4675
∗+ColBERT 0.6136 0.6211 0.3722 0.4690

Table 6: An Example of Top-Ranked RDF Datasets Before and After Re-Ranking
(bold: highly relevant; underlined: partially relevant)
Keyword Query: nitrogen reduction plan in MaryLand

Top-Ranked RDF Datasets by TF-IDF Re-Ranked by PCSG+ColBERT

1 [ID-46561] Plan Review [ID-42421] Percent of required nitrogen reduc-
tion achieved: Line Chart

2 [ID-11683] Plan Review [ID-41757] Chesapeake Bay Pollution Loads - Nitro-
gen

3 [ID-86273] January Water Reduction Chart [ID-03531] Chesapeake Bay Pollution Loads - Nitro-
gen

4 [ID-08199] Class Size Reduction Projects [ID-86273] January Water Reduction Chart
5 [ID-03531] Chesapeake Bay Pollution Loads - Nitro-

gen
[ID-40742] Watershed Contaminant Reduction In-
dex

6 [ID-41757] Chesapeake Bay Pollution Loads - Nitro-
gen

[ID-08199] Class Size Reduction Projects

7 [ID-07248] 2019 NYC Open Data Plan: Removed
Datasets

[ID-79232] Open Publishing Plan Dataset

8 [ID-79232] Open Publishing Plan Dataset [ID-46561] Plan Review
9 [ID-40742] Watershed Contaminant Reduction In-

dex
[ID-11683] Plan Review

10 [ID-42421] Percent of required nitrogen reduc-
tion achieved: Line Chart

[ID-07248] 2019 NYC Open Data Plan: Removed
Datasets

4.7 Case Study

Table 6 illustrates and compares the top-ranked RDF datasets before and af-
ter re-ranking for the keyword query “nitrogen reduction plan in MaryLand”
which is sampled from our experiments. Before re-ranking, the four top-ranked
datasets retrieved by a sparse model (i.e., TF-IDF) are actually irrelevant to the
query, although in their metadata, the query keyword “plan” or “reduction” has
a misleadingly very high lexical frequency. After re-ranking by our dense model
(i.e., PCSG+ColBERT), these datasets fall noticeably, while the three relevant
datasets rise to the top. It is expected since they exhibit better semantic match-
ing with the query, which is satisfyingly captured by the dense model.

Dense Re-Ranking with Weak Supervision for RDF Dataset Search 15

5 Related Work

5.1 Dataset Search

Researchers have explored various principles and methods for dataset search [5].
For example, Koesten et al. [16] studied the user behavior of seeking structured
data on the Web, based on interviews with participants and analyses of search
logs. Google Dataset Search [3] is a dataset search engine providing keyword
search over reconciled metadata of datasets discovered on the Web.

The Semantic Web community is interested in RDF dataset search, and has
developed several prototype systems. LODAtlas [24] allows users to search for
RDF datasets and browse a retrieved dataset through a summary visualization.
CKGSE [30] supports full-text search over RDF datasets and presents extracted
data snippets and summaries. All these systems employ a sparse retrieval model
such as BM25. Moreover, Lin et al. [18] constructed the ACORDAR test collec-
tion for RDF dataset search and evaluated a set of retrieval methods—all based
on sparse models. By contrast, our work is distinguished by studying dense rank-
ing models for RDF dataset search and addressing the encountered challenges.

5.2 Dense Ranking

Benefiting from the progress of pre-trained language models like BERT [10],
dense ranking models have exhibited higher accuracy than sparse models in
document retrieval [12, 14]. However, one factor that restricts the application
of dense models to boarder tasks is their limited input length of 512 tokens.
ANCE [31] addressed it by splitting a document into segments and then pool-
ing segment-level scores, where the semantic dependency among segments was
ignored. SeDR [7] used segment interaction to capture document-level repre-
sentations, but only extended the maximum input length to 2,048 tokens. This
capacity still cannot fit the possibly large size of an RDF dataset. Differently,
we addressed this challenge by extracting a subset of representative RDF triples.

Another factor affecting the performance of dense models is the availability of
labeled data for training. Indeed, as reported in [12], accuracy dropped largely af-
ter reducing training samples from 59k to 1k. To alleviate this challenge, [11] fine-
tuned on a large set of out-of-domain labeled data such as MS MARCO [23],
and then transferred the model to the target domain. However, existing labeled
data is mainly for document retrieval which differs greatly from RDF dataset
search, and our preliminary experiments have confirmed this concern. There-
fore, we chose a different direction partially inspired by self-training [21], i.e., we
adopted a coarse-to-fine tuning strategy and devised two methods for generating
in-domain (i.e., task-specific) labeled data for coarse tuning.

6 Conclusion and Future Work

Our exploration of applying dense ranking models to RDF dataset search has
brought an improvement of up to 11% in NDCG@5 and 17% in MAP@5 com-
pared with conventional sparse retrieval, considerably pushing the state of the

16 Q. Chen et al.

art on the ACORDAR test collection. It represents an encouraging start to con-
nect the task of RDF dataset search with recent advances in pre-trained language
models and dense text retrieval. Our empirical findings are expected to expand
the understanding of dense dataset search as a promising research pathway, and
our code and generated labeled data are shared to facilitate future studies.

As for future work, we identify the following three research directions. First,
for compact document representation, it remains unknown whether our selected
IlluSnip or PCSG is most suitable for sampling RDF data in the context of
dataset search. There are other snippet extraction and data summarization
methods [4, 9, 20, 27, 29] which deserve to be investigated, and a new special-
ized method may be more helpful. Besides, beyond simple concatenation, a bet-
ter way of verbalizing RDF data into a document may also be helpful. Second,
contrastive learning is known to be useful for enhancing dense ranking mod-
els [31]. However, to boost training, it relies on high-quality (i.e., hard) negative
samples [32]. Their generation in the scenario of dataset search is still an open
problem. Third, we plan to extend our approach to a more general setting of
dataset search going beyond RDF datasets. One major challenge to be overcome
is how to encode different formats of data in a universal way. A possible solution
is to convert all types of data into graphs [1].

Supplemental Material Statement: Source code for all the dense re-ranking mod-
els, their outputs, and all the generated labeled data are available from GitHub
at https://github.com/nju-websoft/DR2.

Acknowledgements This work was supported by the NSFC (62072224).

References

1. Anadiotis, A.G., Balalau, O., Conceição, C., Galhardas, H., Haddad, M.Y.,
Manolescu, I., Merabti, T., You, J.: Graph integration of structured, semistruc-
tured and unstructured data for data journalism. Inf. Syst. 104, 101846 (2022).
https://doi.org/10.1016/j.is.2021.101846

2. Benjelloun, O., Chen, S., Noy, N.F.: Google dataset search by the num-
bers. In: ISWC 2020. vol. 12507, pp. 667–682 (2020). https://doi.org/10.1007/
978-3-030-62466-8_41

3. Brickley, D., Burgess, M., Noy, N.F.: Google dataset search: Building a search
engine for datasets in an open Web ecosystem. In: WWW 2019. pp. 1365–1375
(2019). https://doi.org/10.1145/3308558.3313685

4. Cebiric, S., Goasdoué, F., Kondylakis, H., Kotzinos, D., Manolescu, I., Troullinou,
G., Zneika, M.: Summarizing semantic graphs: a survey. VLDB J. 28(3), 295–327
(2019). https://doi.org/10.1007/s00778-018-0528-3

5. Chapman, A., Simperl, E., Koesten, L., Konstantinidis, G., Ibáñez, L., Kacprzak,
E., Groth, P.: Dataset search: a survey. VLDB J. 29(1), 251–272 (2020). https:
//doi.org/10.1007/s00778-019-00564-x

6. Chen, J., Wang, X., Cheng, G., Kharlamov, E., Qu, Y.: Towards more usable
dataset search: From query characterization to snippet generation. In: CIKM 2019.
pp. 2445–2448 (2019). https://doi.org/10.1145/3357384.3358096

https://github.com/nju-websoft/DR2
https://doi.org/10.1016/j.is.2021.101846
https://doi.org/10.1016/j.is.2021.101846
https://doi.org/10.1007/978-3-030-62466-8_41
https://doi.org/10.1007/978-3-030-62466-8_41
https://doi.org/10.1007/978-3-030-62466-8_41
https://doi.org/10.1007/978-3-030-62466-8_41
https://doi.org/10.1145/3308558.3313685
https://doi.org/10.1145/3308558.3313685
https://doi.org/10.1007/s00778-018-0528-3
https://doi.org/10.1007/s00778-018-0528-3
https://doi.org/10.1007/s00778-019-00564-x
https://doi.org/10.1007/s00778-019-00564-x
https://doi.org/10.1007/s00778-019-00564-x
https://doi.org/10.1007/s00778-019-00564-x
https://doi.org/10.1145/3357384.3358096
https://doi.org/10.1145/3357384.3358096

Dense Re-Ranking with Weak Supervision for RDF Dataset Search 17

7. Chen, J., Chen, Q., Li, D., Huang, Y.: Sedr: Segment representation learning for
long documents dense retrieval. CoRR abs/2211.10841 (2022). https://doi.org/
10.48550/arXiv.2211.10841

8. Cheng, G., Jin, C., Ding, W., Xu, D., Qu, Y.: Generating illustrative snippets for
open data on the Web. In: WSDM 2017. pp. 151–159 (2017). https://doi.org/10.
1145/3018661.3018670

9. Cheng, G., Jin, C., Qu, Y.: HIEDS: A generic and efficient approach to hierarchical
dataset summarization. In: IJCAI 2016. pp. 3705–3711 (2016)

10. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidi-
rectional transformers for language understanding. In: NAACL-HLT 2019, Volume
1. pp. 4171–4186 (2019). https://doi.org/10.18653/v1/n19-1423

11. Izacard, G., Caron, M., Hosseini, L., Riedel, S., Bojanowski, P., Joulin, A., Grave,
E.: Unsupervised dense information retrieval with contrastive learning. CoRR
abs/2112.09118 (2021). https://doi.org/10.48550/arXiv.2112.09118

12. Karpukhin, V., Oguz, B., Min, S., Lewis, P.S.H., Wu, L., Edunov, S., Chen, D.,
Yih, W.: Dense passage retrieval for open-domain question answering. In: EMNLP
2020. pp. 6769–6781 (2020). https://doi.org/10.18653/v1/2020.emnlp-main.550

13. Kato, M.P., Ohshima, H., Liu, Y., Chen, H.: A test collection for ad-hoc dataset
retrieval. In: SIGIR 2021. pp. 2450–2456 (2021). https://doi.org/10.1145/3404835.
3463261

14. Khattab, O., Zaharia, M.: ColBERT: efficient and effective passage search via
contextualized late interaction over BERT. In: SIGIR 2020. pp. 39–48 (2020).
https://doi.org/10.1145/3397271.3401075

15. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: ICLR 2015
(2015)

16. Koesten, L.M., Kacprzak, E., Tennison, J.F.A., Simperl, E.: The trials and tribula-
tions of working with structured data - a study on information seeking behaviour.
In: CHI 2017. pp. 1277–1289 (2017). https://doi.org/10.1145/3025453.3025838

17. Lin, J., Nogueira, R.F., Yates, A.: Pretrained Transformers for Text Rank-
ing: BERT and Beyond. Synthesis Lectures on Human Language Tech-
nologies, Morgan & Claypool Publishers (2021). https://doi.org/10.2200/
S01123ED1V01Y202108HLT053

18. Lin, T., Chen, Q., Cheng, G., Soylu, A., Ell, B., Zhao, R., Shi, Q., Wang, X., Gu,
Y., Kharlamov, E.: ACORDAR: A test collection for ad hoc content-based (RDF)
dataset retrieval. In: SIGIR 2022. pp. 2981–2991 (2022). https://doi.org/10.1145/
3477495.3531729

19. Liu, D., Cheng, G., Liu, Q., Qu, Y.: Fast and practical snippet generation for
RDF datasets. ACM Trans. Web 13(4), 19:1–19:38 (2019). https://doi.org/10.
1145/3365575

20. Liu, Q., Cheng, G., Gunaratna, K., Qu, Y.: Entity summarization: State of the
art and future challenges. J. Web Semant. 69, 100647 (2021). https://doi.org/10.
1016/j.websem.2021.100647

21. Luo, H., Li, S., Gao, M., Yu, S., Glass, J.R.: Cooperative self-training of machine
reading comprehension. In: NAACL 2022. pp. 244–257 (2022). https://doi.org/10.
18653/v1/2022.naacl-main.18

22. Mintz, M., Bills, S., Snow, R., Jurafsky, D.: Distant supervision for relation ex-
traction without labeled data. In: ACL 2009. pp. 1003–1011 (2009)

23. Nguyen, T., Rosenberg, M., Song, X., Gao, J., Tiwary, S., Majumder, R., Deng,
L.: MS MARCO: A human generated machine reading comprehension dataset. In:
CoCo 2016. vol. 1773 (2016)

https://doi.org/10.48550/arXiv.2211.10841
https://doi.org/10.48550/arXiv.2211.10841
https://doi.org/10.48550/arXiv.2211.10841
https://doi.org/10.48550/arXiv.2211.10841
https://doi.org/10.1145/3018661.3018670
https://doi.org/10.1145/3018661.3018670
https://doi.org/10.1145/3018661.3018670
https://doi.org/10.1145/3018661.3018670
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.48550/arXiv.2112.09118
https://doi.org/10.48550/arXiv.2112.09118
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.1145/3404835.3463261
https://doi.org/10.1145/3404835.3463261
https://doi.org/10.1145/3404835.3463261
https://doi.org/10.1145/3404835.3463261
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1145/3397271.3401075
https://doi.org/10.1145/3025453.3025838
https://doi.org/10.1145/3025453.3025838
https://doi.org/10.2200/S01123ED1V01Y202108HLT053
https://doi.org/10.2200/S01123ED1V01Y202108HLT053
https://doi.org/10.2200/S01123ED1V01Y202108HLT053
https://doi.org/10.2200/S01123ED1V01Y202108HLT053
https://doi.org/10.1145/3477495.3531729
https://doi.org/10.1145/3477495.3531729
https://doi.org/10.1145/3477495.3531729
https://doi.org/10.1145/3477495.3531729
https://doi.org/10.1145/3365575
https://doi.org/10.1145/3365575
https://doi.org/10.1145/3365575
https://doi.org/10.1145/3365575
https://doi.org/10.1016/j.websem.2021.100647
https://doi.org/10.1016/j.websem.2021.100647
https://doi.org/10.1016/j.websem.2021.100647
https://doi.org/10.1016/j.websem.2021.100647
https://doi.org/10.18653/v1/2022.naacl-main.18
https://doi.org/10.18653/v1/2022.naacl-main.18
https://doi.org/10.18653/v1/2022.naacl-main.18
https://doi.org/10.18653/v1/2022.naacl-main.18

18 Q. Chen et al.

24. Pietriga, E., Gözükan, H., Appert, C., Destandau, M., Cebiric, S., Goasdoué, F.,
Manolescu, I.: Browsing linked data catalogs with LODAtlas. In: ISWC 2018. pp.
137–153 (2018). https://doi.org/10.1007/978-3-030-00668-6_9

25. Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li,
W., Liu, P.J.: Exploring the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res. 21, 140:1–140:67 (2020)

26. Robertson, S., Zaragoza, H.: The probabilistic relevance framework: Bm25 and
beyond. Found. Trends Inf. Retr. 3(4), 333–389 (2009). https://doi.org/10.1561/
1500000019

27. Wang, X., Cheng, G., Kharlamov, E.: Towards multi-facet snippets for dataset
search. In: PROFILES & SEMEX 2019. pp. 1–6 (2019)

28. Wang, X., Cheng, G., Lin, T., Xu, J., Pan, J.Z., Kharlamov, E., Qu, Y.: PCSG:
pattern-coverage snippet generation for RDF datasets. In: ISWC 2021. pp. 3–20
(2021). https://doi.org/10.1007/978-3-030-88361-4_1

29. Wang, X., Cheng, G., Pan, J.Z., Kharlamov, E., Qu, Y.: BANDAR: benchmarking
snippet generation algorithms for (RDF) dataset search. IEEE Trans. Knowl. Data
Eng. 35(2), 1227–1241 (2023). https://doi.org/10.1109/TKDE.2021.3095309

30. Wang, X., Lin, T., Luo, W., Cheng, G., Qu, Y.: CKGSE: A prototype search engine
for Chinese knowledge graphs. Data Intell. 4(1), 41–65 (2022). https://doi.org/10.
1162/dint_a_00118

31. Xiong, L., Xiong, C., Li, Y., Tang, K., Liu, J., Bennett, P.N., Ahmed, J., Over-
wijk, A.: Approximate nearest neighbor negative contrastive learning for dense text
retrieval. In: ICLR 2021 (2021), https://openreview.net/forum?id=zeFrfgyZln

32. Zhan, J., Mao, J., Liu, Y., Guo, J., Zhang, M., Ma, S.: Optimizing dense retrieval
model training with hard negatives. In: SIGIR 2021. pp. 1503–1512 (2021). https:
//doi.org/10.1145/3404835.3462880

33. Zhao, W.X., Liu, J., Ren, R., Wen, J.: Dense text retrieval based on pretrained
language models: A survey. CoRR abs/2211.14876 (2022). https://doi.org/10.
48550/arXiv.2211.14876

https://doi.org/10.1007/978-3-030-00668-6_9
https://doi.org/10.1007/978-3-030-00668-6_9
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.1007/978-3-030-88361-4_1
https://doi.org/10.1007/978-3-030-88361-4_1
https://doi.org/10.1109/TKDE.2021.3095309
https://doi.org/10.1109/TKDE.2021.3095309
https://doi.org/10.1162/dint_a_00118
https://doi.org/10.1162/dint_a_00118
https://doi.org/10.1162/dint_a_00118
https://doi.org/10.1162/dint_a_00118
https://openreview.net/forum?id=zeFrfgyZln
https://doi.org/10.1145/3404835.3462880
https://doi.org/10.1145/3404835.3462880
https://doi.org/10.1145/3404835.3462880
https://doi.org/10.1145/3404835.3462880
https://doi.org/10.48550/arXiv.2211.14876
https://doi.org/10.48550/arXiv.2211.14876
https://doi.org/10.48550/arXiv.2211.14876
https://doi.org/10.48550/arXiv.2211.14876

	Dense Re-Ranking with Weak Supervision for RDF Dataset Search

