
Abstract.

Link Traversal Query Processing over Decentralized
Environments with Structural Assumptions

Ruben Taelman, Ruben Verborgh

IDLab, Department of Electronics and Information Systems, Ghent University – imec,
Ghent, Belgium

ruben.taelman@ugent.be

To counter societal and economic problems caused by data silos on the
Web, efforts such as Solid strive to reclaim private data by storing it in permis-
sioned documents over a large number of personal vaults across the Web.
Building applications on top of such a decentralized Knowledge Graph involves
significant technical challenges: centralized aggregation prior to query processing
is impossible for legal reasons, and current federated querying techniques cannot
handle this large scale of distribution at the expected performance. We propose an
extension to Link Traversal Query Processing (LTQP) that incorporates structural
properties within decentralized environments to tackle their unprecedented scale.
In this article, we analyze the structural properties of the Solid decentralization
ecosystem that are relevant for query execution, we introduce novel LTQP algo-
rithms leveraging these structural properties, and evaluate their effectiveness. Our
experiments indicate that these new algorithms obtain correct results in the order
of seconds, which existing algorithms cannot achieve. This work reveals that
a traversal-based querying method using structural assumptions can be effective
for large-scale decentralization, but that advances are needed in the area of query
planning for LTQP to handle more complex queries. These insights open the door
to query-driven decentralized applications, in which declarative queries shield de-
velopers from the inherent complexity of a decentralized landscape.

Canonical version: https:/ / comunica.github.io/Article-ISWC2023-SolidQuery/

1 Introduction

Despite transforming our world to be more interconnected than ever before, the Web
has become increasingly centralized in recent years, contrary to its original vision [1].
The majority of data on the Web today is flowing towards data silos, which are in the
hands of large companies. This siloization of data leads to various problems, ranging
from issues with cross-silo interoperability and vendor lock-in, to privacy breaches
and individuals’ data being controlled by companies instead of themselves.
Because of increasing awareness and user-empowering legislation such as the GDPR
and CCPA, decentralization initiatives [2, 3, 4, 5] are gaining popularity. Their com-
mon goal is to give people back control over their own data by guarding it in chosen
locations on the Web instead of aggregated in silos. Initiatives such as Solid [2] and
Bluesky [3] achieve this by allowing users to store any kind of data in their own per-
sonal data vault, which they fully control. In Solid, these data vaults form personal

https://www.rubensworks.net/
https://ruben.verborgh.org/
https://comunica.github.io/Article-ISWC2023-SolidQuery/
https://ruben.verborgh.org/articles/redecentralizing-the-web/
https://ruben.verborgh.org/articles/redecentralizing-the-web/
https://blueskyweb.xyz/

Knowledge Graphs [6, 7], represented as collections of Linked Data documents [8]
containing RDF triples [9]. The presence of such data vaults results in a large-scale
distribution of data, where applications involving multiple individuals’ data will re-
quire accessing thousands or even millions of access-controlled data items in
data vaults across the Web.
The state of the art in RDF query processing does not support such applications, as it
is unprepared to handle large-scale decentralization. The RDF querying research of
the past two decades has focused on data that either is or can be centralized. Some
datasets would be in a private or public quadstore [10], specifically designed to enable
efficient query processing. Other datasets would be Linked Open Data with a permis-
sive license, making it possible to copy or cache data in a local quadstore. This per-
manent option to centralize limited the need for decentralized query techniques that
allow data to remain at its source. After all, downloading and aggregating datasets
would nearly always be more efficient. Yet when we use Linked Data for permis-
sioned or sensitive data, it becomes impossible to download datasets in their entirety.
While federated query execution approaches do exist [11, 12, 13, 14], they currently
handle a small number (~) of large sources, whereas decentralized environments
such as Solid are characterized by a large number (>) of small sources.
Furthermore, federated query execution techniques assume sources to be known prior
to query execution, which is not feasible in decentralized environments due to the
lack of a central index. Hence, existing techniques are ill-suited for the envisaged
scale of decentralization.
Link Traversal Query Processing (LTQP) [15, 16] is an alternative query execution
paradigm that is more promising for uncharted decentralized environments. LTQP al-
lows querying over a continuously growing selection of source documents that are
discovered during query execution, by following hyperlinks between Linked Data
documents using the follow-your-nose principle [8]. Although LTQP has been theoret-
ically interesting, it has not seen any practical use so far, in particular because of per-
formance concerns.
Fortunately, decentralized ecosystems such as Solid exhibit additional structural prop-
erties in addition to the Linked Data principles, allowing us to improve query perfor-
mance through assumptions about data, documents, and their organization. For exam-
ple, Solid makes use of Linked Data Platform [17] containers to provide completeness
guarantees when finding data within vaults, and provides a Type Index [18] to enable
type-based document discovery.
In this work, we prove that LTQP can be an effective paradigm for the structured re-
trieval of data from unindexed decentralized Knowledge Graphs. The key is to exploit
the aforementioned structural properties for more effective source discovery and
query optimization. While we apply our research to the Solid ecosystem, these con-
cepts may be generalizable to other decentralization initiatives [3, 4, 5].
This article is structured as follows. In the next section, we discuss related work, after
which we provide an analysis of the structural properties of Solid data vaults in
Section 3. In Section 4, we introduce LTQP algorithms that make use of these struc-
tural properties, which are evaluated in Section 5. Finally, we conclude in Section 6.

10
103

https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/
https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/TR/ldp/
https://solid.github.io/type-indexes/
https://blueskyweb.xyz/
Ruben Taelman
2 R. Taelman et al.

2 Related Work

The Link Traversal Query Processing (LTQP) paradigm was introduced more than a
decade ago [19] as a way to query over the Web of Linked Open Data as if it was a
globally distributed dataspace, without having to first index it in a single location.
LTQP does this by employing the follow-your-nose principle of Linked Data [8] dur-
ing query execution, in which new RDF are continuously added to a local dataset
while discovering new sources by following links between documents. An iterator-
based pipeline [19] allows execution to take place without waiting until all links have
been followed.
In contrast to two-phase approaches [20, 21] that perform data retrieval and indexing
before query execution, LTQP is thus an integrated approach [22] with parallel source
discovery and query execution. As a one-phase approach, LTQP cannot rely on tradi-
tional pre-execution optimization algorithms that require prior dataset statistics. A
zero-knowledge query planning technique [23] instead orders triple patterns in a
query based on link traversal-specific heuristics. LTQP is related to the idea of SQL-
based query execution over the Web [24, 25] and to the concept of focused crawl-
ing [26, 27]. While LTQP considers the Web of Linked Open Data a large database us-
ing the RDF data model, SQL-based approaches focus on querying attributes or con-
tent within Web pages. Focused crawlers search for Web pages of specific topics to
populate a local database or index, using a two-phase approach where a preprocessing
step precedes execution. While two-phase approaches in general are able to produce
better query plans using traditional cardinality-based planning techniques, waiting for
data retrieval to be completed may be impractical or even impossible for certain
queries.
The number of potential links to be followed within the Web of Linked Open Data can
become prohibitively large. In the worst case, a single query could theoretically re-
quire traversing the entire Web. Therefore, the formal LTQP model [16] enables dif-
ferent reachability criteria, which embody strategies for deciding what links to fol-
low, each leading to different result completeness semantics. cNone follows no URLs,
cAll follows all URLs in all encountered triple components, and cMatch only follows
URLs in triple components for those triples that match a triple pattern within the
query. Context-based semantics [28] is an extension of these reachability semantics to
cope with property path expressions in the SPARQL 1.1 language [29]. Next to query-
driven reachability, another extension [30] introduces the ability for data publishers to
express which links should be followed using subweb specifications.
In addition to filtering links via different semantics, a second methodology for lower-
ing query result arrival times is through link prioritization [31]. However, existing
techniques only sometimes result in faster query results compared to no prioritization.
Even though multiple query languages [32, 33, 34] have been introduced specifically
for LTQP, its SPARQL-based execution model [19] is still the most widely used.
Since SPARQL is the only language among these that is a standard, and the fact that it
is more widely known and supported by different tools, we make use of it within this
work. Nevertheless, the concepts within this work can be applied to other languages.

https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/TR/2013/REC-sparql11-query-20130321/
https://www.bartbogaerts.eu/articles/2021/005-RuleML-GuidedLink-SubwebSpec/SubwebSpecifications.pdf
Ruben Taelman
LTQP over Decentralized Environments with Structural Assumptions 3

In general, LTQP has mostly been applied to querying Linked Open Data on the Web.
In contrast, our work applies LTQP to decentralized environments with private per-
sonal data, organized in personal data vaults with specific structural properties.

3 The Solid Ecosystem

In this section, we provide an analysis of the structural properties within the Solid
ecosystem that are relevant for query processing. We start by explaining the concept
of data vaults and their implications on applications. Next, we explain the WebID,
which is used for identifying users. Finally, we discuss the Solid type index; a struc-
tural property that improves data discovery.

3.1 Data Vault

The Solid Protocol [35] supports the concept of a personal data vault (also known as
data pod), which is a user-controlled space in which any kind of public and private
data can be stored. Users can choose where and how their vault is stored on the Web,
by hosting it themselves [36], or obtaining service-provided space by a company [37]
or government [38]. Data vaults are intended to be loosely coupled to applications,
and applications must request explicit access to the user for interacting with specific
data. This loose coupling enables different applications to use the same data in an in-
teroperable way.
Current data vaults are primarily document-oriented, and are exposed on the Web as a
REST API using elements of the Linked Data Platform (LDP) specification [17].
Directories are represented using LDP Basic Containers, which can contain any num-
ber of resources that correspond to RDF or non-RDF resources (via ldp:contains
links), or other nested basic containers. For the remainder of this article, we will only
consider the processing of RDF resources and containers within vaults. Resources
within vaults can be read by sending HTTP GET requests to their URLs, with optional
content negotiation to return the documents in different RDF serializations. Vaults
may also support creation and modification using HTTP PATCH and POST requests. An
example of such a basic container can be found in Listing 1.

Data vaults can contain public as well as private data. Users can configure who can
access or modify files within their vault using mechanisms such as ACL [39] and
ACP [40]. This configuration is usually done by referring to the WebID of users.

PREFIX ldp: <http://www.w3.org/ns/ldp#>

<> a ldp:Container, ldp:BasicContainer, ldp:Resource;
 ldp:contains <file.ttl>, <posts/>, <profile/>.

<file.ttl> a ldp:Resource.
<posts/> a ldp:Container, ldp:BasicContainer, ldp:Resource.

<profile/> a ldp:Container, ldp:BasicContainer, ldp:Resource.

Listing 1: An LDP container in a Solid data vault containing one file and two
directories in the Turtle serialization.

https://solidproject.org/TR/protocol
https://github.com/CommunitySolidServer/CommunitySolidServer
https://docs.inrupt.com/pod-spaces/
https://www.vlaanderen.be/digitaal-vlaanderen/het-vlaams-datanutsbedrijf/the-flemish-data-utility-company
https://www.w3.org/TR/ldp/
https://solid.github.io/web-access-control-spec/
https://solid.github.io/authorization-panel/acp-specification/
Ruben Taelman
4 R. Taelman et al.

3.2 WebID Profile

Any agent (person or organization) within the Solid ecosystem can establish their
identity through a URI, called a WebID. These agents can authenticate themselves us-
ing the decentralized Solid OIDC protocol [41], which is required for authorizing ac-
cess during the reading and writing of resources. Each WebID URI should be derefer-
enceable, and return a WebID profile document. Next to basic information of the
agent such as its name, this document contains links to 1) the vault’s LDP container
(via pim:storage), and 2) public and private type indexes. An example is shown in
Listing 2.

3.3 Type Index

Users are free to organize documents in their vault as they see fit. The Type
Index [18] is a document that enables type-based resource discovery within a vault.
Users may have public or private type indexes, which respectively refer to data that
are and are not publicly discoverable. A type index can contain type registration en-
tries for different classes, where each registration has a link to resources containing
instances of the corresponding class. Listing 3 shows a type index example with type
registrations for posts and comments, where the posts entry refers to a single posts
file, and the comments entry refers to a container with multiple comments files. If an
application wants to obtain all posts of a user, it can follow the link within the type in-
dex entry corresponding to the post class.

PREFIX pim: <http://www.w3.org/ns/pim/space#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX solid: <http://www.w3.org/ns/solid/terms#>
<#me> foaf:name "Zulma";
 pim:storage </>;

 solid:oidcIssuer <https://solidcommunity.net/>;
 solid:publicTypeIndex </publicTypeIndex.ttl>.

Listing 2: A simplified WebID profile in Turtle.

PREFIX ldp: <http://www.w3.org/ns/ldp#>
<> a solid:TypeIndex ;

 a solid:ListedDocument.
<#ab09fd> a solid:TypeRegistration;
 solid:forClass <http://example.org/Post>;

 solid:instance </public/posts.ttl>.
<#bq1r5e> a solid:TypeRegistration;
 solid:forClass <http://example.org/Comment>;
 solid:instanceContainer </public/comments/>.

Listing 3: Example of a type index with entries for posts and comments in Turtle.

https://solid.github.io/solid-oidc/
https://solid.github.io/type-indexes/
Ruben Taelman
LTQP over Decentralized Environments with Structural Assumptions 5

4 Approach

In this section, we introduce techniques for handling Solid’s structural properties dis-
cussed in Section 3. We do not introduce any additional components or structural
properties to the Solid ecosystem; instead, we use what Solid vaults already provide
today, and investigate how to query over them as efficiently as possible. We start by
discussing the preliminaries of the formalizations we will introduce. Next, we discuss
our pipeline-based link queue approach. Then, we discuss two novel discovery ap-
proaches for LTQP. Finally, we discuss their implementations.

4.1 Formal preliminaries

Hereafter, we summarize the semantics of SPARQL querying [42] and LTQP [16, 30].
The infinite set of RDF triples is formalized as , where

, , and respectively denote the disjoint, infinite sets of IRIs, blank nodes, and lit-
erals. Furthermore, is the infinite set of all variables that is disjoint from , , and
. A tuple is called a triple pattern. A finite set of
these triple patterns is called a basic graph pattern (BGP). For the formalization, we
only consider BGPs since they form the foundational building block of a SPARQL
query; our implementation incorporates all of SPARQL 1.1. The query results of a
SPARQL query over a set of RDF triples are called solution mappings, which are
denoted by , consisting of partial mappings . An RDF triple
matches a triple pattern if , where is the triple pattern that is ob-
tained by replacing all variables from in .
Formally, the reachability approaches that were discussed in Section 2 define which
links should be followed during link traversal, and are usually captured as reachabili-
ty criteria [16]. Since these reachability semantics lack expressive power to capture
the structural properties we require, we formalize new reachability criteria in this
work as source selectors within the subweb specification formalization [30]. Within
this formalization, a source selector is defined as , where is a Web of
Linked Data. The Web of Linked Data is a tuple , where is a set of
available documents, a function from to associating each document with its
contained triples, and a partial function from to to dereference documents.
We define the set of all Solid data vaults as , where each vault is defined by
its set of triples [7], where . For a vault exposed through the LDP
interface, the triples contained in such a vault are captured in different documents

. Hereby, .

4.2 Pipeline-based link queue

To execute a query, our approach builds upon the zero-knowledge query planning
technique [23] to construct a logical query plan ahead of query execution. This result-
ing plan produces a tree of logical query operators representing the query execution
order. To execute this plan, the logical operators are executed by specific physical op-

T = (I ∪ B) × I × (I ∪ B ∪ L)
I B L

V I B L

tp ∈ (V ∪ I) × (V ∪ I) × (V ∪ I ∪ L)

P G

[[P]] G μ : V → (I ∪ B ∪ L) t

tp ∃μ : t = μ[tp] μ[tp]
μ tp

σ σ : W → 2I W

W ⟨D, data, adoc⟩ D

data D 2T

adoc I D

Υ υ ∈ Υ

triples(υ) ⊆ T υ LDP

D ⊆υ D triples(υ) =LDP ∪ data(d)d∈D υ

https://www.bartbogaerts.eu/articles/2021/005-RuleML-GuidedLink-SubwebSpec/SubwebSpecifications.pdf
https://solidlabresearch.github.io/WhatsInAPod/
Ruben Taelman
6 R. Taelman et al.

erators. Our physical query execution builds upon the iterator-based pipeline
approach [19], which is the most popular among LTQP implementations [43, 44, 45].
We consider the execution plan as a pipeline [46] of iterator-based physical operators,
where intermediary results flow through chained operators with pull-based results.
Instead of letting operators trigger the dereferencing of URIs [19], we follow a link
queue-based approach [31]. The architecture of this approach is visualized in Fig. 1.
Concretely, we consider a continuously growing triple source as the basis of the pipe-
line tree, which is able to produce a (possibly infinite) stream of RDF triples. This
triple source is fed triples originating from a loop consisting of the link queue, deref-
erencer, and a set of link extractors. The link queue accepts links from a set of link
extraction components, which are invoked for every document that has been derefer-
enced by the dereferencer. The dereferenced documents containing triples are also
sent to the continuously growing triple source. This link queue is initialized with a set
of seed URIs, and the dereferencer continuously dereferences the URIs in the queue
until it is empty. Since the link extractors are invoked after every dereference opera-
tion, this queue may virtually become infinitely long.

This link queue and link extractor approach is generic enough to implement other
LTQP methods [19, 16, 28, 30, 31] for determining and prioritizing links that need to
be followed. For example, one extractor may consider rdfs:seeAlso links, while an-
other extractor may consider URIs of a triple that matches with a triple pattern from
the query. Optionally, operators in the query pipeline may push links into the link
queue, which enables context-based reachability semantics [28]. Link extractors only
consider URIs as links, and ignore matching blank nodes and literals.
The triple source is connected to all tuple-producing SPARQL operators [42] in the
leaves of the query plan, such as triple patterns and property path operators, into
which a stream of triples is sent. The source indexes all triples, to ensure that an oper-
ator that is executed later in the execution process does not miss any triples.

4.3 Discovery of data vault

Below, we introduce a novel discovery approach for traversing over Solid data vaults.

Fig. 1: Link queue, dereferencer, and link extractors feeding triples into a triple
source, producing triples to tuple-producing operators in a pipelined query execution.

Ruben Taelman
LTQP over Decentralized Environments with Structural Assumptions 7

Intuitive description

Formal description

Intuitive description

Formal description

To achieve link traversal within a vault, we assume that the
WebID document is available as seed URI, or is discovered through some other reach-
ability approach. As discussed in Section 3, the root of a vault can be discovered from
a WebID document by dereferencing the object URI referred to by the pim:storage
predicate. Next, all resources within this vault can be discovered by recursively fol-
lowing ldp:contains links from the root container.
We only consider triples for the pim:storage and ldp:contains predicates that
have the current document URI as subject. If subjects contain fragment identifiers, we
only consider them if the current document URI had this fragment identifier as well
before it was dereferenced. For example, if a WebID with fragment identifier #me was
discovered, then we only consider triples with that full WebID as subject.

We can formalize our discovery approach for the roots of data
vaults as a following source selector starting from a given WebID with URI as

. Disjunctively coupled with
this, we can formalize a source selector that can recursively traverse an LDP container
as

4.4 Discovery of type index

As discussed in Section 3, the type index enables class-based resource discovery in a
vault. In this section, we introduce a novel method that follows links in the type in-
dex, with an optional filter that only follows links matching with a class in the query.

As before, we consider a WebID document as the starting
point. From this document, we follow the solid:publicTypeIndex and
solid:privateTypeIndex links. For each discovered type index, we consider all
solid:TypeRegistration resources, and follow their solid:instance and
solid:instanceContainer links.
As an optimization, we can also take into account the type information within the reg-
istrations of the type index, to only follow those links for classes that are of interest to
the current query. Concretely, this involves considering the objects referred to by
solid:forClass on each type registration. To know whether or not a class is rele-
vant to the current query, we explicitly check for the occurrence of this class within
the query as object within triples using the rdf:type predicate. For subjects in the
query without rdf:type predicate, the matching class is unknown, which is why we
consider all type registrations in this case.

To discover and traverse type indexes, we formalize the fol-
lowing source selector from a given WebID with URI when querying a BGP :

i

σ (W) =SolidVault {o ∣ ⟨i pim:storage o⟩ ∈ data(adoc(i))}

σ (W) =LdpContainer {o ∣ ∀s : ⟨s ldp:contains o⟩ ∈ data(adoc(s)}

s B

σ (W) =SolidTypeIndex {o ∣ ∀t, r, c : ϕ(B, c)

∧

∧

∧

(⟨s solid:publicTypeIndex t⟩ ∈ data(adoc(s))
∨⟨s solid:privateTypeIndex t⟩ ∈ data(adoc(s)))
(⟨r rdf:type solid:TypeRegistration⟩ ∈ data(adoc(t))
∧⟨r solid:forClass c⟩ ∈ data(adoc(t)))
(⟨r solid:instance o⟩ ∈ data(adoc(t))
∨⟨r solid:instanceContainer o⟩ ∈ data(adoc(t)))}

Ruben Taelman
8 R. Taelman et al.

Since solid:instanceContainer links to LDP containers, should be
disjunctively combined with .
In this formalization, we consider a filtering predicate function for determin-
ing which classes are considered within the type index. To consider all type registra-
tions within the type index, we can implement as a predicate always returning
true. To only consider type registrations that match with a class mentioned in the
query, we introduce the following filtering function:

4.5 Implementation

We have implemented our system as new components for the Comunica SPARQL
framework [47]. Concretely, we implemented the pipeline-based link queue as a sepa-
rate module, and we provide link extractors corresponding to the source selectors in-
troduced in previous sections. We fully support SPARQL 1.1, and have pipelined im-
plementations of all monotonic SPARQL operators. Pipelining is important for itera-
tive tuple processing in a non-blocking manner, as the link queue and the resulting
stream of triples may become infinitely long.
Our implementation focuses on the SPARQL query language, instead of alternatives
such as LDQL [33] and SPARQL-LD [48] that incorporate link navigation paths into
the query. As discussed in Section 3, different Solid apps or user preferences may lead
to the storage of similar data at different locations within vaults. Hence, link naviga-
tion must be decoupled from the query to make queries reusable for different Solid
users, as link paths to data may differ across different vaults. Our implementation uses
LDP container traversal and the type index to replace explicit navigation links.
To provide a stable reference implementation that can be used for the experiments in
this work and future research, our implementation focuses on extensibility and
reusability. Our implementation builds upon best practices in LTQP and lessons
learned from other implementations [43] including, the use of client-side
caching [49], the different reachability semantics [16], zero-knowledge query plan-
ning [23] applied to arbitrary join operations instead of only triple patterns in BGPs,
and more [19]. Furthermore, our implementation allows users to explicitly pass seed
URIs, but falls back to query-based seed URIs [43] if no seeds were provided. This
fallback considers all URIs within the query as seed URIs.
As Solid performs access control at document-level, we enable users to authenticate
to the client-side query engine. This allows the query engine to perform authenticated
requests on behalf of the user. Since authenticated requests happen purely on the
HTTP layer, other parts of the query engine do not have to be concerned about au-
thentication, and the processing of public and private data can happen together trans-
parently in the client-side query engine.

σ SolidTypeIndex

σ LdpContainer

ϕ(B, c)

ϕ(B, c)

ϕ (B, c) =QueryClass

⎩
⎨
⎧ true

false

if ∃tp ∈ B :
⟨?v rdf:type c⟩ matches tp
or if ∃s : ⟨s ?p ?o⟩ ∈ B

∧{o ∣ ⟨s rdf:type o ∈ B} = ∅
else.

https://comunica.github.io/Article-ISWC2018-Resource/
Ruben Taelman
LTQP over Decentralized Environments with Structural Assumptions 9

As a result, our implementation can query over one or more Solid data vaults. To en-
sure that common HTTP errors that may occur during link traversal don’t terminate
the query execution process, we enable a default lenient mode, which ignores derefer-
ence responses with HTTP status code in ranges 400 and 500.

5 Evaluation

In this section, we tackle the research question “How well does link traversal query
processing perform over decentralized environments with structural properties?”.
Within this work, we apply our experiments to the structural properties of the decen-
tralized environment provided by Solid, but findings may be generalizable to other
decentralized environments. We provide an answer to this research question by evalu-
ating different approaches based on the implementation discussed in Section 4, using
a benchmark that simulates Solid data vaults. We first introduce the design of our ex-
periment, followed by presenting our experimental results, and a discussion of our re-
sults to answer our research question.

5.1 Experimental Design

Our experimental design is based on the SolidBench benchmark that simulates a real-
istic decentralized environment based on the Solid ecosystem. Concretely, the bench-
mark generates a configurable number of data vaults with configurable sizes contain-
ing social networking data, where a variety of fragmentation strategies are used to or-
ganize files in vaults. By default, it generates 158.233 RDF files over 1.531 data
vaults with a total of 3.556.159 triples across all files. Furthermore, it provides
SPARQL query templates that simulate a realistic workload for a social networking
application. The underlying dataset and query templates are derived from the Social
Network Benchmark (SNB) [50]. A full description of all queries can be found on
https:/ / github.com/SolidBench/SolidBench.js/blob/master/templates/queries/
README.md.
We make use of a factorial experiment containing the following factors and values:

Vault discovery combinations: None, LDP, Type Index, Filtered Type Index,
LDP + Type Index, LDP + Filtered Type Index
Reachability semantics: cNone, cMatch, cAll

The LDP strategy corresponds to the disjunction of the source selectors and
, the Type Index to and with always return-

ing true, and the Filtered Type Index to and with .
Our experiments were performed on a 64-bit Ubuntu 14.04 machine with a 24-core
2.40 GHz CPU and 128 GB of RAM. The Solid vaults and query client were executed
in isolated Docker containers on dedicated CPU cores with a simulated network. All
queries were configured with a timeout of two minutes, and were executed three times

σ SolidVault

σ LdpContainer σ LdpContainer σ SolidTypeIndex ϕ(B, c)
σ LdpContainer σ SolidTypeIndex ϕ QueryClass

https://github.com/SolidBench/SolidBench.js
https://github.com/SolidBench/SolidBench.js/blob/master/templates/queries/README.md
Ruben Taelman
10 R. Taelman et al.

to average metrics over. Each query template in the benchmark was instantiated five
times, resulting in 40 discover queries, 35 short queries, and 60 complex queries.
These query templates are available in the supplementary material.
We were unable to compare our implementation to existing LTQP engines, because
those systems (e.g. Lidaq [21]) would either require significant changes to work over
Solid vaults, they depend on a non-standard usage of the SPARQL syntax (e.g.
SPARQL-LD [48]), or insufficient documentation was present to make them work
(e.g. SQUIN [43]). Nevertheless, in order to ensure a fair and complete comparison,
we have re-implemented the foundational LTQP algorithms (cNone, cMatch, cAll),
and compare them against, and in combination with, our algorithms.

5.2 Experimental Results

In this section, we present results that offer insights into our research question.
Table 1 and Table 2 show the aggregated results for the different combinations of our
setup for the discover and short queries of the benchmark, respectively. We omit re-
sults from complex queries, as none of the approaches achieve a level of accuracy sig-
nificantly higher than 0%. Concretely, each table shows the average () and median ()
execution times (ms), the average () and median () time until first result (ms), av-
erage number of HTTP requests per query (), total number of results on average
per query (), average accuracy (), and number of timeouts () across all
queries. The combinations with the highest accuracy value are marked in bold. The
number of HTTP requests is counted across all query executions that did not time out
within each combination. The timeout column represents the number of query tem-
plates that lead to a timeout for a given combination. The accuracy of each query exe-
cution is a percentage indicating the precision and recall of query results to the ex-
pected results.

t t
~

 t1 t
~
1

 req

ans∑ acc to∑

cnone-base 40 0 N/A N/A 8 0.00 0.00% 0
cmatch-base 1,791 0 22,946 24,439 1,275 0.00 0.00% 1
call-base 128,320 127,021 28,448 10,554 0 0.63 3.13% 8
cnone-idx 1,448 842 447 351 243 20.50 74.14% 0
cmatch-idx 12,284 2,210 2,304 1,217 2,567 39.13 99.14% 0
call-idx 124,197 124,811 48,223 9,778 18,022 3.13 17.40% 7
cnone-idx-filt 1,429 755 435 311 230 20.50 74.14% 0
cmatch-idx-filt 12,114 2,312 2,397 1,075 2,554 39.13 99.14% 0
call-idx-filt 124,003 126,093 43,147 29,937 11,023 4.50 29.78% 8
cnone-ldp 1,606 994 563 386 342 20.50 74.14% 0
cmatch-ldp 13,463 2,288 3,660 1,057 3,625 37.88 86.64% 1
call-ldp 123,712 123,479 37,083 13,733 0 2.00 16.25% 8
cnone-ldp-idx 1,560 1,001 482 349 358 20.50 74.14% 0
cmatch-ldp-idx 12,417 2,529 2,333 1,189 2,709 39.13 99.14% 0
call-ldp-idx 127,768 125,103 67,577 13,472 12,466 2.38 16.63% 7
cnone-ldp-idx-filt 1,552 1,006 425 331 357 20.50 74.14% 0
cmatch-ldp-idx-filt 12,483 2,372 2,309 925 2,708 39.13 99.14% 0
call-ldp-idx-filt 123,979 125,235 48,382 10,368 16,623 3.13 17.40% 7

Table 1: Aggregated results for the different combinations across 8 discover queries.

t t
~

 t1 t
~
1 req ans∑ acc to∑

Ruben Taelman
LTQP over Decentralized Environments with Structural Assumptions 11

Intra-vault and inter-vault data discovery

These results show that there are combinations of approaches that achieve a very high
level of accuracy for discover queries, and a medium level of accuracy for short
queries. We will elaborate on these results in more detail hereafter.

5.3 Discussion

The results above show that if we de-
sire accurate results, that the combination of cMatch semantics together with at least
one of the data vault discovery methods is required. This combination is needed be-
cause our workload contains queries that either target data within a single vault (e.g.
D1), or data spanning multiple data vaults (e.g. D8). While the different data vault
discovery methods are able to discover data within vaults, the reachability of cMatch
is required to discover data across multiple vaults.
Due to this, cNone (follow no links) is an ineffective replacement for cMatch (follow
links matching query) even when combined with discovery methods, because link tra-
versal across multiple vaults will not take place, which will lead to too few query re-
sults. Concretely, for discover queries cNone can only achieve a accuracy of 74.14%
for discover queries and 28.57% for short queries, compared to respectively 99.14%
and 42.86% for cMatch. However, for those queries that target a single vault, cNone
can be used instead of cMatch without a loss of accuracy, leading to a lower number
of HTTP requests and lower query execution times.
Since cAll leads to all links being followed, including those followed by cMatch, it is
theoretically a sufficient replacement for cMatch. However, our results show that cAll
follows too many links, which leads to timeouts for nearly all queries.
Our results show that solely using reachability semantics (cMatch or cAll) without a
data discovery method is insufficient for discover queries, where a accuracy of only
up to 3.13% can be achieved for discover queries. However, when looking at the short
queries category, solely using reachability semantics appears to be sufficient, with the
query execution time even being lower. This difference exists because the discover
workload contains queries that discover data related to a certain person or resource,

cnone-base 34,364 70 18 2 12 0.14 14.29% 2
cmatch-base 47,700 987 121 92 592 0.43 42.86% 3
call-base 126,794 125,609 1,547 787 0 0.00 0.00% 7
cnone-idx 34,775 540 676 151 71 0.14 14.29% 2
cmatch-idx 70,142 119,114 6,837 530 263 0.43 42.86% 4
call-idx 109,943 123,227 14,290 19,345 0 0.00 0.00% 7
cnone-idx-filt 34,804 534 527 110 71 0.14 14.29% 2
cmatch-idx-filt 69,808 119,032 7,190 434 263 0.43 42.86% 4
call-idx-filt 116,618 123,312 9,764 6,207 0 0.00 0.00% 7
cnone-ldp 34,975 621 816 46 96 0.29 15.71% 2
cmatch-ldp 70,026 119,586 6,524 636 291 0.57 44.29% 4
call-ldp 127,550 126,587 717 483 0 0.00 0.00% 7
cnone-ldp-idx 34,852 811 521 43 100 0.14 14.29% 2
cmatch-ldp-idx 69,534 119,215 2,936 437 295 0.43 42.86% 4
call-ldp-idx 110,217 122,525 8,841 6,114 0 0.00 0.00% 7
cnone-ldp-idx-filt 34,830 742 402 83 100 0.14 14.29% 2
cmatch-ldp-idx-filt 70,042 119,126 6,246 663 295 0.57 44.29% 4
call-ldp-idx-filt 114,800 123,058 15,075 17,192 0 0.00 0.00% 7

Table 2: Aggregated results for the different combinations across 7 short queries.

t t
~

 t1 t
~
1 req ans∑ acc to∑

Ruben Taelman
12 R. Taelman et al.

Type index and LDP discovery perform similarly

while the short queries target only details of specific resources. Discover queries
therefore depend on an overview of the vault, while short queries only depend on spe-
cific links between resources within a vault. The remainder of this discussion only fo-
cuses on discover queries, since these achieve the highest level of accuracy. As such,
the short and complex queries highlight opportunities for future improvement.

When comparing the number
of HTTP requests and query execution times for different data vault discovery ap-
proaches under cMatch in Table 1, we can observe that using the type index leads to
fewer HTTP requests and faster query execution compared to LDP-based discovery
on average. To explain this behaviour in more detail, Subfig. 2.1 shows the average
query execution times of each discover query separately, for the different combina-
tions of data vault discovery approaches. To simplify comparability, the execution
times within this figure are relative to the maximum query execution time per
query [31]. Furthermore, Subfig. 2.2 shows the average number of HTTP requests for
each of those discover queries, which are also made relative to the maximum number
of requests per query for better comparability.

While Subfig. 2.1 shows that for all queries using just the type index is slightly faster
or comparable to just LDP-based discovery, this difference has no statistical signifi-
cance (p = 0.40). However, Subfig. 2.2 shows that the number of HTTP requests with
the type index is always significantly lower than via LDP (p = 0.01).
When the filter-enabled type index approach is used, five queries (D1, D3, D5, D6,
D7) are made even faster compared to the non-filtered type index approach. This is
because those queries target a possibly empty subset of the type index entries, which
means that a significant range of links can be pruned out, which leads to a major re-
duction in the number of HTTP requests, which is a main bottleneck in link traversal.
For the other queries, the filter-enabled approach becomes slightly slower than (D2,
D4) or is comparable to (D8) the non-filtered type index approach. For those queries,
the processing overhead of type index filtering becomes too high compared to its po-
tential benefit. Statistically, this difference has no significance in terms of execution
time (p = 0.69) and number of HTTP requests (p = 0.68).

Fig. 2: Relative measurements for discover queries with different discovery methods
under cMatch. Bars indicate average values, whiskers indicate the maxima and
minima, and stars indicate average time until first result.

Subfig. 2.1: Execution times. Subfig. 2.2: Number of HTTP requests.

Ruben Taelman
LTQP over Decentralized Environments with Structural Assumptions 13

Zero-knowledge query planning is ineffective

These results show that using the type index together with LDP-based discovery is not
significantly better than the other approaches (p = 0.71), which is primarily caused by
the statistically significantly higher number of HTTP requests (p = 0.02) required for
traversing both the type index and nested LDP containers. Query D8 does however
show that this combination deserves further investigation, because this query has a re-
sult limit that leads to a prioritization of links via the type index, leading to earlier
query termination with fewer requests.
In general, results hint that the LDP-based approach combined with filtered type in-
dex approach performs better than the other approaches, but this difference is too mi-
nor to be significant, hence all approaches can be considered equivalent.

While it may seem obvious to as-
sume that higher query execution times are caused by a higher number of links that
need to be dereferenced, we observe only a weak correlation (= 0.32) of this within
the cMatch-based discovery approaches discussed before. The main bottleneck in this
case appears not primarily to be the number of links to traverse. Instead, our analysis
suggests that query plan efficiency is the primary influencer of execution times. This
is in contrast to earlier research over Linked Open Data [31], where we instead con-
sider structural properties with more selective link traversal.
To empirically prove this finding, we compare the execution times of our default inte-
grated query execution approach (cMatch with filtered type index discovery) with a
two-phase query execution approach that we implemented in the same query engine.
Instead of following links during query execution as in the integrated approach, the
two-phase approach first follows links at the same rate to index all discovered triples,
and processes the query in the traditional optimize-then-execute manner. This two-
phase approach is based on an oracle that provides all query-relevant links, which we
determined by analyzing the request logs during the execution of the integrated ap-
proach. Therefore, this two-phase approach is merely a theoretical case, which delays
time until first results due to prior indexing, and may not always be achievable due to
infinitely growing link queues for some queries. The results of this are in Fig. 3.

These results show that the two-phase approach is on average two times faster for all
queries compared to the integrated approach, even when taking into account time for
dereferencing. The reason for this is that the two-phase approach is able to perform
traditional query planning [51, 52], since it has access to an indexed triple store with
planning-relevant information such as cardinality estimates. Since the integrated ap-

ρ

Query Integrated Two-phase HTTP Requests
D1 1,077.58 403.54 222
D2 1,020.67 567.57 223
D3 1,193.01 821.23 429
D4 3,266.62 505.00 228
D5 522.23 387.24 223
D6 710.16 289.72 122
D7 626.96 340.54 122
D8 2,037.85 1,654.02 420

Fig. 3: Integrated and two-phase execution times (ms) of discover queries, with
number of HTTP requests per query.

Ruben Taelman
14 R. Taelman et al.

proach finds new triples during query execution, it is unable to use them for tradition-
al planning. Instead, our integrated approach makes use of the zero-knowledge query
planning technique [23] that uses heuristics to plan the query before execution.
Since the only difference between the integrated and two-phase implementations is in
how they plan the query, we can derive that the query plan of the integrated approach
is ineffective. Hence, there is a need for better query planning during integrated exe-
cution, where performance could ideally become more than two times better.
Zero-knowledge query planning [23] is ineffective in our experiments because it has
been designed under the assumptions of Linked Open Data, while it does not match
with the structural assumptions of specific decentralized environments such as Solid.
For example, one of the heuristics within this planner deprioritizes triple patterns with
vocabulary terms, such as rdf:type, since they are usually the least selective.
However, when a Solid type index is present, such types may instead become very se-
lective, which means that those would benefit from prioritization. As such, there is a
need for alternative query planners that consider the structural assumptions within
specific decentralized environments.

6 Conclusions

User-oriented decentralized applications require results in the order of seconds or less
to avoid losing the user’s attention [53]. Our work has shown that Link Traversal
Query Processing is able to achieve such timings, especially as it is able to produce
results in an iterative manner, with first results mostly being produced in less than
a second. As such, LTQP with the algorithms introduced in this work is effective for
querying over decentralized environments with specific structural properties, but there
are open research opportunities for optimizing more complex queries as provided by
the benchmark. We have shown this by applying LTQP to simulated Solid environ-
ments, for which we have introduced algorithms to capture these structural properties.
Before this work, LTQP tended to exclusively focus on Linked Open Data, which cen-
tralized quadstores handle better anyway. After all, in addition to major performance
concerns, it was assumed that “we should never expect complete results” [19] with
LTQP because of the unbounded and distributed nature of the Web. Prior aggregation
was therefore always the logical option for efficient queries, limiting the evaluation
space to fixed datasets with a compatible license.
However, LTQP becomes relevant again within decentralized environments such as
Solid, where aggregation is not an option because of permissioning. Performance con-
cerns can be addressed through the usage of additional assumptions during query exe-
cution. For instance, the ability to close the world around Solid vaults, and the data
discovery techniques that Solid vaults provide, create opportunities for query execu-
tion that allow us to guarantee complete results. While we have investigated the spe-
cific case of querying Solid vaults, these concepts may be generalizable to other de-
centralization efforts [3, 4]. This is possible, because our approach solely relies on the
structural properties provided by specifications such as LDP [17] and the Type
Index [18], which can be used outside of the Solid ecosystem.

https://blueskyweb.xyz/
https://www.w3.org/TR/ldp/
https://solid.github.io/type-indexes/
Ruben Taelman
LTQP over Decentralized Environments with Structural Assumptions 15

LTQP research over Linked Open Data is exploring the direction of finding query-rel-
evant documents as early as possible [31] due to the possibility of incomplete results.
In the context of Solid, we have shown that finding all query-relevant documents is
not the main bottleneck during query execution anymore. Instead, the effectiveness of
the query plan has become the new bottleneck. While finding query-relevant docu-
ments is still relevant for specific decentralized environments, we show the need for
more research towards better query planning techniques. Since LTQP leads to data be-
ing discovered during query execution, adaptive query planning [54] techniques are
highly promising. So far, these techniques have only seen limited adoption within
LTQP [31] and SPARQL query processing [55, 56, 57].
Our findings indicate that discovery approaches such as the Solid Type Index harbor
a great potential for improving query performance, and future work in the direction of
implicit type knowledge within queries (e.g., through RDFS reasoning) and query de-
composition over different type index entries could be relevant. Furthermore, alterna-
tive structural properties could offer more expressivity, such as characteristics
sets [58] and other summarization techniques [21, 59]. Additionally, more work is
needed to investigate the impact of privacy [60] and security [61] during LTQP over
decentralized environments. The incorporation of more expressive Linked Data
Fragments interfaces [62, 63, 64, 65, 66, 67] in certain Solid vaults could introduce in-
teresting trade-offs in terms of server and client query execution effort, especially if
they can be combined in a heterogeneous manner [68, 69, 70].
In summary, traversal-based querying over decentralized environments can become
practically feasible performance-wise. Furthermore, it is useful given the lack of alter-
natives, because centralization of private data may not be feasible or legal. However,
for complex queries, more improvements through future research are needed.
This work provides answers to the increasing need of querying over decentralized en-
vironments, and uncovers next steps for resolving current limitations. Hence, it brings
us closer to querying a decentralized Web where users are in full control.

Acknowledgements

This work is supported by SolidLab Vlaanderen (Flemish Government, EWI and RRF
project VV023/10). Ruben Taelman is a postdoctoral fellow of the Research
Foundation – Flanders (FWO) (1274521N)

Supplemental Material Statement

Implementation: https:/ / github.com/comunica/comunica-feature-link-traversal
Experiments: https:/ / github.com/comunica/Experiments-Solid-Link-Traversal
Benchmark: https:/ / github.com/SolidBench/SolidBench.js

https://rubensworks.github.io/article-privacy-decentralized/
https://rubensworks.github.io/article-ldtraversal-security-short/
https://github.com/comunica/comunica-feature-link-traversal/
https://github.com/comunica/Experiments-Solid-Link-Traversal/
https://github.com/SolidBench/SolidBench.js/
Ruben Taelman
16 R. Taelman et al.

References

1. Berners-Lee, T.J.: Information management: A proposal. (1989).
2. Verborgh, R.: Re-decentralizing the Web, for good this time. In: Seneviratne, O.

and Hendler, J. (eds.) Linking the World’s Information: A Collection of Essays on
the Work of Sir Tim Berners-Lee. ACM (2022).

3. Bluesky: Bluesky. https:/ / blueskyweb.xyz/ (2023).
4. Zignani, M., Gaito, S., Rossi, G.P.: Follow the Mastodon: Structure and Evolution

of a Decentralized Online Social Network. In: Twelfth International AAAI
Conference on Web and Social Media (2018).

5. Kuhn, T., Taelman, R., Emonet, V., Antonatos, H., Soiland-Reyes, S., Dumontier,
M.: Semantic micro-contributions with decentralized nanopublication services.
PeerJ Computer Science. (2021). doi:10.7717/peerj-cs.387

6. Hogan, A., Blomqvist, E., Cochez, M., d’Amato, C., Melo, G.de, Gutierrez, C.,
Kirrane, S., Gayo, J.E.L., Navigli, R., Neumaier, S., others: Knowledge graphs.
Synthesis Lectures on Data, Semantics, and Knowledge. 12, 1–257 (2021).

7. Dedecker, R., Slabbinck, W., Wright, J., Hochstenbach, P., Colpaert, P., Verborgh,
R.: What’s in a Pod? – A knowledge graph interpretation for the Solid ecosystem.
In: Saleem, M. and Ngonga Ngomo, A.-C. (eds.) Proceedings of the 6th
Workshop on Storing, Querying and Benchmarking Knowledge Graphs. pp. 81–
96 (2022).

8. Berners-Lee, T.: Linked Data. https:/ / www.w3.org/DesignIssues/LinkedData.html
(2009).

9. Cyganiak, R., Wood, D., Lanthaler, M.: RDF 1.1: Concepts and Abstract Syntax.
W3C, https:/ / www.w3.org/TR/2014/REC-rdf11-concepts-20140225/ (2014).

10. Feigenbaum, L., Todd Williams, G., Grant Clark, K., Torres, E.: SPARQL 1.1
Protocol. W3C, https:/ / www.w3.org/TR/2013/REC-sparql11-protocol-20130321/
(2013).

11. Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: Fedx: Optimization
Techniques for Federated Query Processing on Linked Data. In: International se-
mantic web conference. pp. 601–616. Springer (2011).

12. Verborgh, R., Vander Sande, M., Hartig, O., Van Herwegen, J., De Vocht, L., De
Meester, B., Haesendonck, G., Colpaert, P.: Triple Pattern Fragments: a low-cost
Knowledge Graph Interface for the Web. Journal of Web Semantics. 37, 184–206
(2016).

13. Saleem, M., Ngomo, A.-C.N.: Hibiscus: Hypergraph-based Source Selection for
SPARQL Endpoint Federation. In: European semantic web conference. pp. 176–
191. Springer (2014).

14. Görlitz, O., Staab, S.: Splendid: SPARQL Endpoint Federation Exploiting Void
Descriptions. In: Proceedings of the Second International Conference on
Consuming Linked Data-Volume 782. pp. 13–24. CEUR-WS. org (2011).

15. Hartig, O.: An Overview on Execution Strategies for Linked Data Queries.
Datenbank-Spektrum. 13, 89–99 (2013).

https://blueskyweb.xyz/
https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/
Ruben Taelman
LTQP over Decentralized Environments with Structural Assumptions 17

16. Hartig, O., Freytag, J.-C.: Foundations of Traversal based Query Execution over
Linked Data. In: Proceedings of the 23rd ACM conference on Hypertext and so-
cial media. pp. 43–52. ACM (2012).

17. Speicher, S., Arwe, J., Malhotra, A.: Linked Data Platform 1.0. W3C, https:/ /
www.w3.org/TR/ldp/ (2015).

18. Turdean, T.: Type Indexes. Solid, https:/ / solid.github.io/type-indexes/ (2022).
19. Hartig, O.: SPARQL for a Web of Linked Data: Semantics and computability. In:

Extended Semantic Web Conference. pp. 8–23. Springer (2012).
20. Harth, A., Hose, K., Karnstedt, M., Polleres, A., Sattler, K.-U., Umbrich, J.: Data

summaries for on-demand queries over linked data. In: Proceedings of the 19th
international conference on World wide web. pp. 411–420 (2010).

21. Umbrich, J., Hose, K., Karnstedt, M., Harth, A., Polleres, A.: Comparing data
summaries for processing live queries over linked data. World Wide Web. 14,
495–544 (2011).

22. Hartig, O., Hose, K., Sequeda, J.: Linked Data Management. In: Sakr, S. and
Zomaya, A. (eds.) Encyclopedia of Big Data Technologies. Springer, Germany
(2019). doi:10.1007/978-3-319-63962-8_76-1

23. Hartig, O.: Zero-knowledge query planning for an iterator implementation of link
traversal based query execution. In: Extended Semantic Web Conference. pp.
154–169. Springer (2011).

24. Mendelzon, A.O., Mihaila, G.A., Milo, T.: Querying the world wide web. In:
Fourth International Conference on Parallel and Distributed Information Systems.
pp. 80–91. IEEE (1996).

25. Konopnicki, D., Shmueli, O.: Information gathering in the World-Wide Web: the
W3QL query language and the W3QS system. ACM Transactions on Database
Systems (TODS). 23, 369–410 (1998).

26. Chakrabarti, S., Van den Berg, M., Dom, B.: Focused crawling: a new approach to
topic-specific Web resource discovery. Computer networks. 31, 1623–1640
(1999).

27. Batsakis, S., Petrakis, E.G.M., Milios, E.: Improving the performance of focused
web crawlers. Data & Knowledge Engineering. 68, 1001–1013 (2009).

28. Hartig, O., Pirrò, G.: SPARQL with Property Paths on the Web. Semantic Web. 8,
773–795 (2017).

29. Harris, S., Seaborne, A., Prud’hommeaux, E.: SPARQL 1.1 Query Language.
W3C, https:/ / www.w3.org/TR/2013/REC-sparql11-query-20130321/ (2013).

30. Bogaerts, B., Ketsman, B., Zeboudj, Y., Aamer, H., Taelman, R., Verborgh, R.:
Link Traversal with Distributed Subweb Specifications. In: Rules and Reasoning:
5th International Joint Conference, RuleML+RR 2021, Leuven, Belgium,
September 8 – September 15, 2021, Proceedings (2021).

31. Hartig, O., Özsu, M.T.: Walking without a Map: Optimizing Response Times of
Traversal-based Linked Data Queries (extended version). arXiv preprint
arXiv:1607.01046. (2016).

32. Schaffert, S., Bauer, C., Kurz, T., Dorschel, F., Glachs, D., Fernandez, M.: The
linked media framework: Integrating and interlinking enterprise media content

https://www.w3.org/TR/ldp/
https://solid.github.io/type-indexes/
https://www.w3.org/TR/2013/REC-sparql11-query-20130321/
Ruben Taelman
18 R. Taelman et al.

and data. In: Proceedings of the 8th International Conference on Semantic
Systems. pp. 25–32 (2012).

33. Hartig, O., Pérez, J.: LDQL: A query language for the web of linked data. Journal
of Web Semantics. 41, 9–29 (2016).

34. Fionda, V., Pirrò, G., Gutierrez, C.: NautiLOD: A formal language for the web of
data graph. ACM Transactions on the Web (TWEB). 9, 1–43 (2015).

35. Capadisli, S., Berners-Lee, T., Verborgh, R., Kjernsmo, K.: Solid Protocol. Solid,
https:/ / solidproject.org/TR/protocol (2020).

36. Van Herwegen, J., Verborgh, R., Taelman, R., Bosquet, M.: Community Solid
Server. https:/ / github.com/CommunitySolidServer/CommunitySolidServer
(2022).

37. Inrupt: PodSpaces. https:/ / docs.inrupt.com/pod-spaces/ (2022).
38. Flanders, D.: The Flemish Data Utility Company. https:/ / www.vlaanderen.be/digi-

taal-vlaanderen/het-vlaams-datanutsbedrijf/the-flemish-data-utility-company
(2022).

39. Capadisli, S.: Web Access Control. Solid, https:/ / solid.github.io/web-access-con-
trol-spec/ (2022).

40. Bosquet, M.: Access Control Policy (ACP). Solid, https:/ / solid.github.io/autho-
rization-panel/acp-specification/ (2022).

41. Coburn, A., Pavlik, elf, Zagidulin, D.: Solid-OIDC. Solid, https:/ /
solid.github.io/solid-oidc/ (2022).

42. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM
Transactions on Database Systems (TODS). 34, 1–45 (2009).

43. Hartig, O.: SQUIN: a traversal based query execution system for the web of
linked data. In: Proceedings of the 2013 ACM SIGMOD International Conference
on Management of Data. pp. 1081–1084 (2013).

44. Ladwig, G., Tran, T.: SIHJoin: Querying remote and local linked data. In:
Extended Semantic Web Conference. pp. 139–153. Springer (2011).

45. Miranker, D.P., Depena, R.K., Jung, H., Sequeda, J.F., Reyna, C.: Diamond: A
SPARQL query engine, for linked data based on the Rete match. In: Proc. of the
Workshop on Artificial Intelligence meets the Web of Data (AImWD) (2012).

46. Wilschut, A.N., Apers, P.M.G.: Pipelining in query execution. In: Proceedings.
PARBASE-90: International Conference on Databases, Parallel Architectures, and
Their Applications. p. 562. IEEE (1990).

47. Taelman, R., Van Herwegen, J., Vander Sande, M., Verborgh, R.: Comunica: a
Modular SPARQL Query Engine for the Web. In: Proceedings of the 17th
International Semantic Web Conference (2018).

48. Fafalios, P., Yannakis, T., Tzitzikas, Y.: Querying the Web of Data with SPARQL-
LD. In: Research and Advanced Technology for Digital Libraries: 20th
International Conference on Theory and Practice of Digital Libraries, TPDL 2016,
Hannover, Germany, September 5–9, 2016, Proceedings 20. pp. 175–187.
Springer (2016).

49. Hartig, O.: How caching improves efficiency and result completeness for query-
ing linked data. In: LDOW (2011).

https://solidproject.org/TR/protocol
https://github.com/CommunitySolidServer/CommunitySolidServer
https://docs.inrupt.com/pod-spaces/
https://www.vlaanderen.be/digitaal-vlaanderen/het-vlaams-datanutsbedrijf/the-flemish-data-utility-company
https://solid.github.io/web-access-control-spec/
https://solid.github.io/authorization-panel/acp-specification/
https://solid.github.io/solid-oidc/
Ruben Taelman
LTQP over Decentralized Environments with Structural Assumptions 19

50. Erling, O., Averbuch, A., Larriba-Pey, J., Chafi, H., Gubichev, A., Prat, A., Pham,
M.-D., Boncz, P.: The LDBC social network benchmark: Interactive workload. In:
Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data. pp. 619–630 (2015).

51. Schmidt, M., Meier, M., Lausen, G.: Foundations of SPARQL query optimization.
In: Proceedings of the 13th International Conference on Database Theory. pp. 4–
33. ACM (2010).

52. Stocker, M., Seaborne, A., Bernstein, A., Kiefer, C., Reynolds, D.: SPARQL Basic
Graph Pattern Optimization using Selectivity Estimation. In: Proceedings of the
17th international conference on World Wide Web. pp. 595–604. ACM (2008).

53. Nielsen, J.: Response times: the three important limits. Usability Engineering.
(1993).

54. Deshpande, A., Ives, Z., Raman, V.: Adaptive query processing. Foundations and
Trends\textregistered in Databases. 1, 1–140 (2007).

55. Acosta, M., Vidal, M.-E., Lampo, T., Castillo, J., Ruckhaus, E.: ANAPSID: an
adaptive query processing engine for SPARQL endpoints. In: International
Semantic Web Conference. pp. 18–34. Springer (2011).

56. Acosta, M., Vidal, M.-E.: Networks of linked data eddies: An adaptive web query
processing engine for RDF data. In: International Semantic Web Conference. pp.
111–127. Springer (2015).

57. Heling, L., Acosta, M.: Robust query processing for linked data fragments.
Semantic Web. 1–35 (2022).

58. Neumann, T., Moerkotte, G.: Characteristic sets: Accurate cardinality estimation
for RDF queries with multiple joins. In: 2011 IEEE 27th International Conference
on Data Engineering. pp. 984–994. IEEE (2011).

59. Prud’hommeaux, E., Bingham, J.: Shape Trees Specification. W3C, https:/ / shape-
trees.org/TR/specification/ (2021).

60. Taelman, R., Steyskal, S., Kirrane, S.: Towards Querying in Decentralized
Environments with Privacy-Preserving Aggregation. In: Proceedings of the 4th
Workshop on Storing, Querying, and Benchmarking the Web of Data (2020).

61. Taelman, R., Verborgh, R.: A Prospective Analysis of Security Vulnerabilities
within Link Traversal-Based Query Processing. In: Proceedings of the 6th
International Workshop on Storing, Querying and Benchmarking Knowledge
Graphs (2022).

62. Verborgh, R., Vander Sande, M., Hartig, O., Van Herwegen, J., De Vocht, L., De
Meester, B., Haesendonck, G., Colpaert, P.: Triple Pattern Fragments: a low-cost
Knowledge Graph Interface for the Web. Journal of Web Semantics. 37, 184–206
(2016).

63. Azzam, A., Fernández, J.D., Acosta, M., Beno, M., Polleres, A.: SMART-KG: hy-
brid shipping for SPARQL querying on the web. In: Proceedings of The Web
Conference 2020. pp. 984–994 (2020).

64. Minier, T., Skaf-Molli, H., Molli, P.: SaGe: Web preemption for public SPARQL
query services. In: The World Wide Web Conference. pp. 1268–1278 (2019).

https://shapetrees.org/TR/specification/
Ruben Taelman
20 R. Taelman et al.

65. Azzam, A., Aebeloe, C., Montoya, G., Keles, I., Polleres, A., Hose, K.: WiseKG:
Balanced access to web knowledge graphs. In: Proceedings of the Web
Conference 2021. pp. 1422–1434 (2021).

66. Aebeloe, C., Keles, I., Montoya, G., Hose, K.: Star Pattern Fragments: Accessing
Knowledge Graphs through Star Patterns. arXiv preprint arXiv:2002.09172.
(2020).

67. Hartig, O., Buil-Aranda, C.: Bindings-restricted triple pattern fragments. In: OTM
Confederated International Conferences” On the Move to Meaningful Internet
Systems”. pp. 762–779. Springer (2016).

68. Heling, L., Acosta, M.: Federated SPARQL Query Processing over Heterogeneous
Linked Data Fragments. In: Proceedings of the ACM Web Conference 2022. pp.
1047–1057 (2022).

69. Cheng, S., Hartig, O.: FedQPL: A Language for Logical Query Plans over
Heterogeneous Federations of RDF Data Sources. In: Proceedings of the 22nd
International Conference on Information Integration and Web-based Applications
& Services. pp. 436–445 (2020).

70. Montoya, G., Aebeloe, C., Hose, K.: Towards efficient query processing over het-
erogeneous RDF interfaces. In: 2nd Workshop on Decentralizing the Semantic
Web, DeSemWeb 2018. CEUR Workshop Proceedings (2018).

Ruben Taelman
LTQP over Decentralized Environments with Structural Assumptions 21

